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Purpose  This paper reports on the development of intelligent probabilistic models for real-time estimation of construc-
tion progress, which operate on the basis of a continuous data flow collected by monitoring networks deployed on-site. 
Several authors listed the advantages that would be provided by the availability of such models, like project performance 
and quality control, timely onsite inspections, better control of health and safety prescriptions against job injuries and 
fatalities. The findings reported in this paper represent a feasibility study and preliminary examples of Bayesian Net-
works, which are able to infer the work progress attained at every step, starting from real-time tracks of the construction 
site activities. Activity tracks are represented as a set of state variables figuring out workers’ effort, equipment and mate-
rials usage rates and other knowledge about the context.  Method  As estimations are always related to dynamic pro-
cesses, Dynamic Object Oriented Bayesian Networks have been used to develop a set of first order Hidden Markov 
Models. Hence, the models are arranged as a sequence of time steps, where each time step propagates evidences 
collected by the site monitoring sensor network along the time line. The actual cumulative progress is computed as a 
function of the progress achieved in each time step. Models representing a number of typical tasks (external piping, on-
site cast of reinforced concrete floor slab, walls erection, ceiling installation) for a real case of a construction site have 
been developed. Their structure has been designed as part of a general monitoring framework, covering all the phases 
from design to execution, where BIM design, monitoring systems, methodological process innovations, intelligent infer-
ences and advanced visualization are combined.  Results & Discussion  The networks have been developed and vali-
dated through data collected from a real case, and they have been shown to be able to infer work progress, the accuracy 
of which depends on the resolution and quality of the collected data.  
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INTRODUCTION 
Among the outstanding benefits that would derive 
from automated on-site workers, equipment and 
material tracking, real-time work progress estimation 
is considered as one of the most critical. Most of the 
ongoing research on this field, which is summarized 
in the next paragraph, is targeted to the following 
three main goals: 
• setting up a cost-effective construction project 

management, featuring real-time deployment of 
information, including material and equipment  
inventory and their traceability; 

• performing intelligent waste management, which 
makes its delivery to the appropriate facility for 
reuse, recycling, recovery or disposal feasible; 

• providing a safe working environments to em-
ployees, whose translation into practical situa-
tions may be in the form of automated control of 
proper wearing of safety gears, signaling hazards 
in real-time, automated predictive collision detec-
tion and fall hazards warning in crowded site’s 

areas, and so on depending on the particular kind 
of work to be performed.      

The main focus of this concerns a methodology, 
based on the use of advanced probabilistic models 
(Bayesian Networks) and real-time and low-invasive 
monitoring networks, to automatically estimate the 
work progress at the execution phase. In particular, 
the construction of a shopping mall made up of a 
precast concrete technology has been considered, 
and the feasibility of a monitoring approach for work 
progress estimation and based on the automated 
detection of those resources present on site has 
been shown.       
Moreover, this research step is part of a wider ap-
proach aiming at the development of an integrated 
framework1 for advanced construction management. 
Effective monitoring is conditioned upon embedding 
non-invasive sensors within resources which are 
expected to operate on-site. To this aim, BIM-based 
engineering design constitutes a fundamental sup-
port, because it allows the disaggregation of any 
building’s design into its elements and phases. In the 
proposed example a kind of tasks list has been pre-



liminary arranged through BIM, making the assign-
ment of one or more sensor kit to each phase of the 
construction plan easier and faster (Fig. 1). Once 
resources and relevant variables are tracked, data 
collected can be filtered and processed in real-time 
by advanced probabilistic models, in order to infer 
the work progress, so that higher reliability and effi-
ciency in Project Control reporting (e.g. Daily Site 
Reports) and quality inspection management can be 
achieved. 
 

 
Fig.1. Interoperability for work progress management. 
 
The next paragraph reports about the most relevant 
research in this field. The following paragraph dis-
cusses the conceptualization of the whole frame-
work. Following the details of a case study will be 
described. Conclusions close the paper, before the 
list of references.   
 

BRIEF OVERVIEW OF THE SCIENTIFIC BACKGROUND 
On-site tracking is seen as much challenging as 
promising, thanks to the many advantages that 
would be brought into the construction process2: 
material management and inventory traceability, 
automated waste management (i.e. automatic 
recognition of the waste destination and its cycle), 
safety support through real-time laborers’ warning in 
case of imminent and probable risk occurrence (e.g. 
collision avoidance, fall from heights etc…). Assisted 
design can help avert accidents at the design 
phase3, but a real-time warning system is anyway 
useful to avoid unexpected or difficult to model oc-
currences4,5.  
Automated progress monitoring would reduce the 
burden of work usually required to produce project 
reports editing6,7, and would make easier communi-
cation through automated visualization of construc-
tion data8. Information awareness is an undisputable 
excellent tool to manage machines, as it can record 
operators and operational times in a central server, 
planning and ensuring inspection and maintenance. 
However, general economic efficiency is conditioned 
upon the development of a system for automated 

project performance control, where indirect data 
would be intelligently converted into performance 
measurements9. The availability of such an approach 
would pave the way to many innovations, and sever-
al contributions in literature stressed those ones 
related to quality management: automated remote 
inspection of infrastructures10; control of the con-
struction quality of details that are no more visible 
after the task is accomplished (e.g. to validate the 
depth of foundation piers)11; tracking and under-
standing the context for automated relevant infor-
mation retrieval during site inspection12.  
This paper contributes to the use of advanced prob-
abilistic models (namely Dynamic Bayesian Net-
works) to perform inference from real-time collected 
data about the estimation of on-site work progress.  
 
THE CONCEPT 
The work progress estimation process, we are going 
to discuss, is part of a more comprehensive frame-
work (Fig. 1) made up of interrelated technologies, 
which all together figure out an automated construc-
tion management system. Within this framework, the 
work progress monitoring function is the result of a 
management procedure that encompasses many 
different technologies. As depicted in Fig. 2, initially 
the construction process is broken down into basic 
activities, so that the resources used in each of them 
can be unambiguously identified. BIM-based engi-
neering design can be used to support this task, 
since BIM object oriented modeling allows activities 
and resources to be clearly identified and assigned 
to design objects, such as building components and 
technical systems. A set of sensors is then assigned 
to each resource so that real-time data about the 
resource usage can be gathered. Given the research 
results and experiences about on-site materials and 
laborers tracking reported in the previous paragraph, 
and given the ongoing technology innovations13, at 
present data about on-site resource usage, gathered 
in real time by embedded monitoring networks,  can 
be considered sufficiently reliable to support man-
agement tasks. 
 
Hence resource usage data is then processed by 
intelligent algorithms, capable estimating the pro-
gress of the ongoing activities. The results are finally 
arranged in a management database so that further 
elaborations, including scheduling of real-time in-
spection and quality assessment, as labeled in the 
fourth phase of Fig. 2, can be performed.  
In the next paragraphs we will discuss the feasibility 
of automated progress monitoring by means of Dy-
namic Bayesian Networks, which is the key algo-
rithmic step of this procedure, through a case study. 



 
Fig.2. A possible procedure to perform automated work 
progress management. 
    
CASE STUDY 
The construction site and monitored tasks 
The resource usage data, the will be feed to the 
progress estimation algorithm, have been collected 
by monitoring the execution of a shopping mall in the 
village Cerreto d’Esi (AN), built by the company 
Torelli & Dottori SpA. The whole project includes 
three areas: the shopping mall, the office building 
and the parking lot. Our monitoring was relative to 
the erection of the shopping mall, which is on the left 
side of Fig. 3.  
 

 
Fig.3. Whole picture of the monitored site. 
 
The squared shaped mall has a total surface ex-
ceeding 9,000 m2, external height 6.90m and internal 
net floor-to-ceiling height 3.50m. It is made of pre-
cast concrete bearing frames; the roof is made of 
precast concrete floor slabs, walls made of concrete 
panels and aluminum framed windows. It is provided 
with a conditioning system, a solar heating system, a 
fire protection system, electric and lighting systems.  
Three tasks have been monitored during the execu-
tion: 
- excavation and pipelines laying (sewage, electri-

cal power line, water supply), both external and 
internal; 

- site cast ground floor concrete slab;  

- fabrication of internal hollow brick partitioning 
walls. 

During excavation (Fig. 4a) the following state varia-
bles have been collected: rate of usage and position 
of excavators; usage and positions of dumpers; 
number of man-hours used to operate equipment, to 
lay pipes underground and to fill in trenches; number 
of pits laid underground. In addition, every half a day 
the actual work progress for the task was measured 
by our operators in charge of monitoring. Collected 
data extend from Monday 2011, July 18th to Thurs-
day 2011, July 21st, when the task was accom-
plished. The site cast ground floor concrete slab 
execution took place between Tuesday and 
Wednesday 2011, July 26th–27th (Fig. 4b): first of all 
reinforced bars have been put in place (through the 
use of dumpers to transfer them from  storage areas) 
and laborers and formworks were installed along the 
boundaries; then concrete was brought to the site by 
concrete truck mixers and poured in the formwork 
through the use of one concrete pumping truck setup 
on-site. So the usage of all the equipment and man-
hours were monitored and recorded, together with 
work progress. 

a)  

b)  

c)  
Fig.4. Excavation phase (a), site cast concrete ground 
floor (b), hollow brick internal walls (c). 



The hollow brick partitions were executed indoor 
(Fig. 4c) during 9 working days split into two phases: 
from Monday 2011, August 1st to Thursday 2011, 
August 4th and then again (after summer holidays) 
between Tuesday 2011, August 30th and Tuesday 
2011, September 6th. In this case equipment (small 
dampers to move bricks from storage to the interior 
and concrete mixers to produce mortar) and number 
amount of bricks employed constituted relevant indi-
cators for work progress estimation, together with 
employed man-hours.  
 
Data gathering   
As relevant variables for work progress monitoring 
were not know a-priori before the development of 
probabilistic models, monitoring was performed by 
operators observing the work progress and writing 
down records every 5min relative to the use of the 
resources listed above. This approach allowed re-
dundancies and boost awareness on the procedures 
performed on site. So for each of the monitored 
tasks the following documents have been produced:  
- a database comparing the work progress with the 

amount of resources employed during a time du-
ration of 5min; 

- reports with description of the work performed 
and monitored data; 

- a photographic survey of the activities. 
As the Dynamic Bayesian Network presented in the 
next paragraph is relative to the excavation and pipe 
laying task, Table 1 shows the data collected and 
reworked after such monitoring.  

Id
excavator 

(%/60 min)
excavation 
man-hours

excavation 
progress 

pipelines 
man-hours

dumper 
(%/60min)

pipelines 
progress

truck (%/60 
min)

dumper 
(%/60 min)

trench filling 
progress

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.77 0.58 5.00 1.50 0.00 5.00 0.08 0.00 0.00
3 1.00 0.17 15.00 2.17 0.00 10.00 0.08 0.17 10.00
4 1.00 0.25 10.00 2.92 0.00 10.00 0.00 0.25 5.00
5 0.57 0.00 20.00 1.42 0.00 10.00 0.29 0.00 0.00
6 1.00 0.00 5.00 1.00 0.00 5.00 0.00 0.00 0.00
7 0.00 0.50 0.00 2.58 0.00 10.00 0.00 0.92 20.00
8 0.50 1.00 0.00 1.00 0.00 0.00 0.08 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.85 0.10 20.00 0.17 0.54 20.00 0.00 0.00 0.00
11 1.00 0.08 25.00 2.83 0.54 30.00 0.00 0.00 0.00
12 0.92 0.15 25.00 4.25 0.58 40.00 0.00 0.00 0.00
13 0.42 0.10 25.00 2.67 0.08 20.00 0.17 0.00 20.00
14 1.00 0.15 25.00 0.67 0.00 20.00 1.00 0.00 30.00
15 1.00 0.07 20.00 0.17 0.00 12.00 1.00 0.00 30.00
16 1.00 0.08 25.00 2.08 0.00 20.00 0.67 0.00 30.00
17 1.00 0.08 10.00 1.33 0.00 20.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.75 1.00 0.00 1.00 0.00 0.00
19 0.00 1.08 0.00 4.58 0.00 10.00 1.00 1.00 10.00
20 0.00 1.08 0.00 3.25 0.00 5.00 1.00 1.00 10.00
21 0.00 1.00 0.00 4.08 0.00 5.00 1.00 1.00 10.00
22 0.00 1.00 0.00 7.75 0.00 15.00 1.00 1.00 10.00
23 0.00 0.58 0.00 3.83 0.00 10.00 1.00 1.00 10.00
24 0.00 0.50 0.00 2.92 0.00 10.00 1.00 0.83 5.00
25 0.00 1.00 0.00 6.75 0.42 20.00 1.00 0.00 5.00
26 0.00 1.00 0.00 6.58 0.00 10.00 1.00 0.42 10.00
27 0.00 1.00 0.00 6.83 0.00 5.00 1.00 0.25 10.00
28 0.00 1.00 0.00 1.25 0.00 0.00 0.25 0.00 5.00
29 1.00 1.58 0.00 0.17 0.23 0.00 0.00 0.00 0.00
30 1.00 1.58 30.00 0.00 0.00 0.00 0.23 0.00 35.00
31 1.00 1.58 30.00 2.42 0.00 20.00 0.00 0.00 0.00
32 1.00 1.17 30.00 1.75 0.00 20.00 0.43 0.00 30.00
33 1.00 1.08 30.00 1.50 0.00 20.00 0.00 0.00 0.00
34 1.00 2.67 30.00 2.58 0.00 30.00 0.75 0.00 20.00
35 0.83 1.42 20.00 2.83 0.00 30.00 1.00 0.00 45.00
36 1.00 0.42 20.00 1.00 0.00 0.00 0.00 0.00 0.00
37 0.75 0.06 15.00 2.50 0.25 10.00 0.42 0.00 20.00
38 0.00 0.08 0.00 0.33 0.00 0.00 0.00 0.00 0.00
39 1.00 1.58 0.00 0.17 0.23 0.00 0.00 0.00 0.00
40 0.58 1.08 25.00 2.67 0.00 20.00 0.00 0.00 0.00
41 0.67 0.67 10.00 3.00 0.00 15.00 0.33 0.00 10.00  

Table 1. Hourly dataset worked out from the database 
collected during the execution of excavation and pipe-
lines. 

 
A pre-processing phase showed that a sampling time 
of one hour is short enough to capture all the rele-
vant dynamics of the monitored activities. In addition 
the task under analysis has been subdivided into the 
three sub-tasks: 
- trench excavation;  
- laying of pipelines on a concrete bed;  
- trench filling with sand and previously excavated 

ground.  
That’s because the overall work progress of the main 
task resulted in fact from the composition of the work 
progress of these sub-activities. Therefore the data 
initially recorded have been resampled with a time 
scale of 1 hour (i.e. the time of equipment usage and 
the man-hours has been summed). Photos, site 
reports and measurements allowed to assign the 
actual work progress to each working hour. The data 
in Table 1 have been consequently organized 
through 41 rows (one for each hour) and 9 columns: 
three devoted to the work progress of each sub-task 
and other six devoted to resource usage during their 
execution. These data have been used to train the 
Dynamic Bayesian Network Model, as it will be dis-
cussed in the next section.  
  
DEVELOPMENT OF THE PROBABILISTIC MODELS 
Dynamic Bayesian Networks  
Bayesian Networks (BN) have the unique capability 
to provide both intuitive and scientifically rigorous 
representations of complex systems. In addition, 
after validation, they can be used for performing both 
scenario analyses, through inference propagation 
algorithms, and diagnostic reasoning, through back-
ward propagation based on the inversion rule14.  
These networks also have the advantage of enabling 
qualitative and explicit representation, where nodes 
represent variables and arcs represent quantitative 
relationships among the same, worked out through 
parametric probabilistic models15.  
When the domains to be modeled are very complex, 
Object Oriented Bayesian Networks (OOBN) are 
usually used: they are made up of several elemen-
tary networks, sharing some of the variables, which 
constitute the links between the networks. Each 
elementary network is generally developed separate-
ly (and models one of the involved many physical 
phenomena) but the inference algorithms are propa-
gated over the whole set of elementary networks. 
Dynamic Bayesian Networks (DBN) are used to 
represent statistical models that depends on time, 
usually called stochastic processes. DBN are based 
on a discretized time line, and are made up of sev-
eral time slices, each representing a snapshot of the 
state of the system at a particular moment in time. 
Transition relationships among different state varia-
bles in different time slices capture the system tem-
poral dynamic. The application of BNs to model the 



evolution of processes that have temporal dynamics 
requires, in its simplest formulation15:  
- an initial instance of the Bayesian network that 

contains the formulation of the problem at time 
t=0, that is the set of random variables Xi,0 and 
the related conditional probability distributions: 
P(Xi,0|Xi-1,0), P(Xi-1,0|Xi-2,0), etc.; 

- one or more transition networks that correlate 
the variables of the BN instance at t=0 with the 
variables of the BN instance at t=1. 

Fig. 5 shows a graphical representation of three time 
slices of a DBN. 

 
 
Fig.5. Graphical representation of a general Dynamic 
Bayesian Network: it is made up of three instances of 
the same BN. 
 
Two assumptions are usually made about the physi-
cal processes at hand: 
- all the information needed to predict the state of 

the process at time t+1 is contained in the de-
scription of the process state at time t. No infor-
mation about earlier time is needed. These kinds 
of processes are called Markov processes of or-
der one; 

- the process is steady, that is, the transition net-
works remain the same for any ti → ti+1. 

 
The BN for work progress estimation 
Fig. 6 depicts a plot of the work progress versus 
man-hours in the case of excavation sub-task. Simi-
larly to the other sub-tasks (laying of pipelines and 
trench filling) it‘s clear that no functional dependence 
can be defined established by the two variables, 
Hence the processes must have be modeled as 
stochastic Markov processes. Both first-order and 
second-order Markov networks have been tested, 
showing that the second worked better.  
Networks development followed three steps:  

- the qualitative network relative to a second-order 
Markov process for each of the sub-tasks has 
been developed;  

- the dataset has been rearranged to train the 
network according to the above defined variables 
and the NPC structural learning performed to find 
out other hidden causal relationships; 

- the EM learning process has been performed by 
means of the Hugin ExpertTM software and 
demonstration of reliability carried out.  

 

 
Fig.6. work progress plotted vs man-hours relative to 
the excavation sub-task. 
 
Fig. 7 depicts the structure of the DBN relative to the 
excavation sub-task; the meaning of the nodes being 
as follows: A = work progress; B = equipment usage; 
L = amount of man-hours. The second digits (i.e 0, 1, 
2 and 3) are referred to the time slice: for example 
L0 is the amount of man-hours used the hour before 
L1 and two hours before L2. It can be noticed that in 
each time slice the work progress (A) has been as-
sumed as conditionally dependent upon man-hours 
(L) and equipment usage (B). In addition every vari-
able in each time slice is influenced by the value of 
the same variable in the two previous time slices 
(e.g. A2 is dependent on A1 and A0): this is the 
translation of a second-order Markovian process into 
a Dynamic Bayesian Network. 
 

  
Fig.7. Initial qualitative representation of a sub-network. 
 
Then the dataset in Table 1 has been rearranged to 
replicate each variable in the four time slices (e.g. 
L0, L1, L2, L3) with a shift of 1 hour each time slice 
and NPC structural learning performed. This algo-
rithm allowed us to test whether other conditional 
dependence relationships occurred among each pair 
of variables, through an independence test, which is 
performed according to equations16: 

Time slice at time t=1 
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Referring to eq. (1), it is run on a dataset of n rec-
ords, where xij is any record. xi+ is every observation 
where x is found with a given value and the same 
holds for x+j. If the two variables are conditionally 
independent, their mean value for the generic xij 
must be given by equation (1). Eq. (2) holds on the 
same bunch of theory, but considers marginal prob-
ability distributions where dependence of the varia-
ble xi from xj is surveyed once the value of xk is giv-
en. The use of eqs. (1) or (2) depends on the kind of 
qualitative relationships assumed among the varia-
bles. The statistics is distributed as a “chi-squared”.  
After performing the test with the help of Hugin 
ExpertTM software, in the network of Fig. 7 more 
causal relationships (given by arrows) as in Fig. 8-a 
were added. Similarly, it was done for the other sub-
networks: pipelines laying (Fig. 8b) and trench filling 
(Fig. 8c).  
 

a)      

b)  

c)  
Fig.8. Final qualitative representations of the three sub-
networks relative to: excavation (a), pipeline laying (b) 
and trench filling (c). 
 
At this juncture the dataset was used to perform EM 
learning16 for each sub-network: this kind of learning 
is capable of estimating multivariate “Dirichlet” distri-
butions describing every conditional relationships in 
the network, the order of the distribution of each 
variable (or node) being as high as the number of 
parents (i.e. incoming arrows) pertinent to any varia-

ble. The final qualitative structure of the OOBN ca-
pable of mixing all the inputs and computing the 
expected overall progress in given in Fig. 9a: the 
three sub-networks discussed above give as outputs 
the single work progress, which is passed through 
the OOBN in Fig. 9-a to the sub-network in Fig. 9-b, 
where the overall work progress is then computed as 
a weighted input from each of the sub-networks.   
 

a)  

b)  
Fig.9. Qualitative structure of the overall work progress 
network (a) and sub-network for the computation of the 
work progress (b). 
 
Demonstrations 
In this paragraph it is shown that the three sub-
networks developed in the previous sub-section are 
able to model the processes under analysis. To this 
aim the networks have been used in the running 
modes and their inferences compared to the dataset.  
Fig. 10 shows how validation was performed: the 
variables on the left with red rows are those ones 
where evidences have been inserted, that is to say 
the state of the variables have been observed and 
fixed in the networks.  
 

 
Fig.10. One of the validation cases for the sub-network 
relative to the excavation phase. 
 
Then the network performs inferences on the future 
states (time slice no. 3) and gives back the intervals 
depicted in Fig. 10, which are in accordance with the 
dataset. In Fig. 11a and 11b two other validation 
cases for the same sub-network are shown. It came 
out that the three sub-networks are capable of repre-



senting the process and restituting the non-linear 
relationships holding between the variables and 
regarding the work progress on the considered con-
struction site.  
 

a)  

b)   
Fig.11. Two validations where estimations by the sub-
network have been compared to the database. 
 
CONCLUSIONS AND FUTURE DEVELOPMENTS 
In this paper we have faced the problem of real-time 
work progress estimation. One of the difficulties lays 
in the need to decompose the tasks into sub-tasks 
and find out causal relationships among the involved 
variables so the whole progress may be estimated. 
In the case of construction sites there is no linear 
dependence (or functional relationship) between the 
resources employed at every hour and the work 
progress. So it was necessary to work out Bayesian 
networks representing second-order Markovian pro-
cesses, whose causal relationships have been mod-
eled through the EM learning algorithm, based on 
the use of Dirichlet probability functions. As it was 
demonstrated, the relative sub-networks well repre-
sent the several processes as probabilistic infer-
ences are within the observations recorded in the 
dataset. Finally the qualitative structure of the overall 
network, working out the progress estimation has 
been proposed. Future steps will be relative to vali-
dations of the overall network and inferences per-
formed with respect to tasks spanning longer time 
periods.  
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