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ABSTRACT

Automation of excavation work calls for a robotic system able to
perform the planned digging work, and responsive to interaction forces
experienced during excavation. The development of automated excavation

control method requires a dynamic model to describe the evolution of the
excavator motion with time. The joint torques of the boom mechanism are

generated by hydraulic rams which also affect the torques at other joints. A
Newton-Euler formulation is applied to derive a dynamic model for an
excavator in this paper. Secondly, for determining the soil resistance the
effect of soil on digging is described. Combining these equations makes it

possible to design a control method for an excavator.

1. INTRODUCTION

Automation of excavation work poses a requirement for a robotic system
able to perform the planned digging work and responsive to interaction forces
experienced during excavation. For that purpose a complete dynamic model is

required. This paper presents the dynamic model for an excavator and the
effect of type of soil on digging. The dynamic model of a manipulator based
on Newton-Euler equations of motion specifies the equations of motion

relative to a chosen coordinate system. The equations of motion can be
obtained by forming Euler-Lagrange's equation on the basis of Lagrange energy
function, or by considering each link as a free body and obtaining the

equations of motion for each link in succession on the basis of Newton's and

Euler's laws.
The application of Lagrange's formulation gives the designer a physical

insight needed to understand the behavior of the overall system, but the
formulation is computationally complex. Using Newton's and Euler's equations

each link in succession is isolated as a free body, resulting in a recursive
model for a link involving variables of the adjacent links. Since the joint

torques of the boom mechanism are generated by hydraulic rams which also

affect the torques at other joints, the method can be applied in a straight-
forward manner. The equations describe in detail the translational and

rotational dynamics of the link, containing internal forces and torques.
Newton-Eul'er equations of motion for each link of a serial link manip-

ulator can be expressed either in Cartesian base or local coordinate frames.
Since the mass moment of inertia depends on the configuration of the

manipulator the equations of motion for each link are expressed in a local
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coordinate frame moving with the link. Then the mass moment of inertia in the
moving coordinate frame remains constant during the motion.

In digging the soil resists bucket movements, demanding the excavator
to comply with the restrictions imposed by the environment. An essential
variable in compliant motion is the generalized force exerted by the end-
effector or the bucket of an excavator. The contact between the bucket and

the soil is soft, since the bucket penetrates into the soil (Vaha 1990). In

order to study the control of an excavator during digging, the interfacing

contact of the bucket with the soil must also be considered. The task of the
excavator is to scoop soil according to a preplanned digging trajectory
despite of varying soil resistance. If, however, the soil resistance is so

high that the excavator is not able to follow the preplanned trajectory, it

should have an ability to change its scooping path on line by reducing
digging depth and taking less soil into the bucket.

2. KINEMATICS

In order to describe the position of the points on the mechanism of an

excavator, coordinate systems are first defined. A fixed Cartesian
(rectangular and right-hand) coordinate system is assigned to body of the
excavator. The local coordinate frames are assigned to each link of the
mechanism. A systematic method to define the local coordinate systems for the
serially connected links (upperstructure, boom, arm and bucket) of the
excavator is accomplished by applying Denavit and Hartenberg procedure (Koivo
1989). The resulting coordinate frames for the links of the excavator are

shown in Fig. 1. It should be noticed that the first link rotates on the
supporting base about the vertical axis. The rotational axes for the other
joints are horizontal.

For determining the transformation matrices, structural kinematic pa-
rameters are defined and presented in Table 1, where d., a., a, and e, are
structural kinematic parameters of the Denavit Hartenberg procedure. 1

Table 1. link d. a. a. e.

(1) (^) () (4) (^)

Structural 1 0 a 90 e
kinematic 2 0

1
a 0

l
6

parameters 3 0 a 0 e
4 0 a3 0 e4

The transformation matrices for rotational joints
general form:

Ai-1

cos e, -cos a.sin e
1

sin e, cos a.cos e.
1 1 . _1

0

0

3.. NEWTON-EULER FORMULATION

01

assume the following

sin aisin ei alcos ei
-sin aicos ei a sin ei

cos a. d.

01 11
(1)

By applying the algorithm of Newton-Euler's formulation the equations
of motion can be obtained (Goldstein 1980, Koivo 1989). The rotation

submatrices can be obtained first from the homogeneous transformation
matrices, and the inverse of rotation matrix is equal to its transpose.

First, the forward difference equations are determined for each of the

joints. Following the recursive relationship for positions, velocities and
accelerations in local coordinate frames of links and centroids of the links
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can be determined, as well as the external forces and moments acting on each
link.

In the local coordinate frame the joint can rotate only about the z
axis when the inertia takes the following form:

10i

'-I .
20zi

0

0 0

zi -,0

2 zi

(2)

where I is a symmetric matrix and I is the moment of inertia about the
axis of Orotation, z-axis. The second mass moments are defined as follows:

I zi = ^(P xi 2 + P yi 2)dm (3)

The integration is over the mass of the link "m". The term I is the
second mass moment of inertia about the axis indicated with a letter Z1

The mass moment of inertia for the upperstructure can be calculated by
adding mass moments of separate parts. The moment can be calculated by

applying the mass moment of inertia of the rectangular about centroidal axial
axis, and then using the parallel axis theorem to obtain it about the center

of gyration. The inertia of the boom can also be calculated in stages. The

boom shape can be approximated by the use of triangles. The total inertia is
then achieved by summing up the inertias of these triangles. The mass inertia
of the arm can be obtained by using the same principle as in the boom case,
e.g. dividing the arm into two triangles and calculating their moments sep-
arately and summing them up. The inertia of the bucket is calculated in three

phases; the walls are approximated to be semicircles and the bottom to be a
semiannulus (Pilkey and Pilkey 1974).

Once the velocities and accelerations for the links and their gravity
centers have been obtained recursively for each link, then the backward
difference equations can be determined by using general formulas (Koivo
1989).

The force torque relations for the links are written according to the
following method. The required force and torque at joint 4 (i = 4) can be
calculated in a straightforward manner (Koivo 1989). In calculations of the
moments for the third and second joints the forces and moments generated by

the driving cylinders of the forth and third joints must also be considered.
The force of the driving cylinder 4 generates a moment, which must be added
to the total moment of joint 3. The moment arm 1 from ram 4 to joint 3 is
taken as a constant, because it variation witv e4 is negligible. Cor-
respondingly, the ram force 3 has to be considered in calculations of moments
at other joints.

As an example, the dynamic model for an excavator is presented in the
digging mode, which means that the rotation angle 91 is held constant during
that time. Now it can be assumed that the movements of the excavator
mechanism during digging take place in the plane parallel to the mechanism.
Thus, the model takes the following form:

T2 d21 d22 d23 2 h2 g2 fc2

T3 = d31 d32 d33 e3 + h3 + g3 + fc3 (4)

T4 d41 d42 d43 e4 h4 g4 fc4

where
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d21 = (4a214gm4c347 + 4a314gm4c47 + 4a213gm3c36 + 4a2a3m4c3

+ 214
g
2m4 + 2a32m4 + 2a22m4 + 213g2m3 + 2a22m3

+ 212g2m2 + Iz4 + Iz3 + Iz2)/2

d22 = (2a214gm4c347 + 4a314gm4c47 + 2a213gm3c36 + 2a2a3m4c3

+ 214g2m4 + 2a32m4 + 213g2m3+ Iz4 + IX3)/2

d23 = (2a214gm4c347 + 2a314gm4c47 + 214g2m4 + Iz4)/2

d31
= (2a214gm4c347 + 4a314gm4c47 + 2a213gm3c36

(5)

(6)

(7)

+ 2a2a3m4c3 + 214g2m4 + 2a32m4 + 213g2m3 + Iz4 + IX3)/2 (8)

d32

d33

= (4a314gm4c47 + 214g2m4 + 2a32m4 + 213g2m3

= (2a314gm4c47
+ 214g2m4 + Iz4) /2

(10)

d41 = (2a214gm4c347 + 2a314gm4c47 + 214g2m4 + Iz4)/2 (11

d42 = (2a314gm4c47 + 214g2m4 + Iz4)/2

d43 = (214g2m4 + Iz4)/2

h2 = -(a214gm4s347 + a314gm4s47)(02 + 03 + 04)

h3

h4

+ (a314gm4s7-4 - a213gm3s36 - a2a3m4s34 - 2a32m4c4s4)

(02+03)2 + (a214gm4s347 + a213gm3s36 + a2 a3m4s3)

22 + b2e2

_ -(a 314gm4s47)(e2+03+04) 2 +

(02+03) 2 + (a214gm4s347 +

022 + b303

(a314gm4s7-4 - 2a32m4c4s4)

a213gm3s35 + a2a3m4s3)

_ (a314gm4s7-4)(e2+e3)2 + a214gm4s237e22 + b4e4

g2 = gl4gm4c2347 + g13gm3c236 + g12gm2c25 + ga3m4c23

+ Iz4 + IX3)/2 (9)

(12)

(13)

(14)

(15)

(16)

+ ga2m4c2 + ga2m3c2 (17)
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g3 = g14gm4c2347 + gl3gm3c236 + ga3m4c23

g4 = gl4gm4c2347

fc2 1c4yF4c + 1c3yF3c' fc3 = 1c4yF4c, fc4 = 0

(18)

(19)

(20)

In order to make the excavator bucket to move along the desired preplanned
trajectory, the restrictions of the soil have to be incorporated into the

excavator dynamic model. Thus, the total manipulator dynamics can be
presented in a general form:

D(e)e + H ( e,e) + G(e ) + Fc(9) = F - J(e)' Fe (21)

where matrix J' (e) signifies the transpose of Jacobian matrix evaluated at e

= e(t). The Jacobian matrix for the excavator shown in Figure 1, when the
digging plane is along x-axis, can be presented as follows:

J(e)'=
a4•s234 + a3•s23 + a2•s2 -a4•c234 - a3•c23 -
a4•s234 + a3•s^3 -a4•c234 - a3•c23
a • s

-
4 234

and the generalized force is:

F =
e

f
fex

ez
m
ey

a4 c234

since fey - 0, mex - 0, mez - 0

4. CALCULATION OF REQUIRED RAM FORCES

(22)

(23)

The driving forces at joints 2, 3 and 4 are generated by their driving
cylinders. Therefore the torques determined above have to be transformed to
their corresponding ram forces, Fig. 2. This requires the calculation of

lengths for lever arms as a function of joint angles (appendices I and II).
According to the equations, the torque at joint 4 is calculated first and
transformed to a corresponding ram force. Then the torque at joint 3 can be

calculated by substituting it to the torque equation of joint 3. The torque
at joint 2 is also a function of the ram forces at joints 4 and 3 which have
to be substituted into that equation.

5. EFFECT OF TYPE OF SOIL ON DIGGING

The soil resists the penetration of the bucket and scooping of a buck-
etful of soil demands varying amount of energy depending on the type of soil,

area of the cutting edge of the bucket blades and thickness of the cut, Fig.
3. The maximum cutting ability of the bucket is consistent with the direction
of the cutting blades. During the digging of soil by excavator there are
three tangential resistances resisting the movement of the bucket (see
Alekseeva et al. 1985):

P t = +P +P
where t p m g (

24 )
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P
p

P
m

P
g

soil resistance to cutting

frictional resistance of the working tool with the ground

resistance to movement of the prism of soil, and soil movement in the

bucket

The tangential resistance expressed in a more specific form is:

Pt = ksbh + µN + E(1+gn)gkn

where
k
bsh

µ
N
q
n

q

k
n

specific resistance to cutting, N/m2
width and thickness of the cut slice of the soil, respectively, m

coefficient of

pressure force
volume of the

the bucket

friction of the bucket with the ground

of the bucket on the soil, N
prism of soil expressed as a

volume of the bucket
coefficient of resistance to

fraction of the

(25)

volume of

filling of the bucket and movement of the

prism of soil, N/m , = 0.1•k
coefficient of filling the %ucket;

soil in the bucket to the geometric

the ratio of the volume of ripped

volume of the bucket.

The resultant resistance force to digging is at certain angle to the
bucket trajectory and varies depending on the digging angle and the wear and

tear of the cutting edge. The normal component is calculated as a function of

the tangential component as follows:

Pn = SPt, 0.1 0.45 (26)

For simulating the behavior of the excavator dynamics during digging

the former equations can be used. A small cutting angle between the bucket
bottom and the digging direction should be maintained to achieve the
resultant force parallel to the digging direction, Fig. 3. The equations (25)
and (26) account for the interaction forces experienced when the bucket

penetrates into the soil to get a scoopful of soil. In a subsequent computer

study conducted at Purdue that coefficient was held constant (, = 0.1). This
corresponds to a deviation of 5.7°. Then the horizontal and vertical digging

resistances get the following equations:

Ph = kp(ksbh + µN + E•(1 + Vs/Vb)•b•J(hsx)) cos(ed - 0.1) (27)

Pv = kp(ksbh + µN + E•(1 + Vs/Vb)•b•J(hbx)) sin(ed - 0.1) (28)

where

k = 1.005

ea = digging (penetration) angle;

V = volume of the prism of soil;

Vs = volume of the bucket

I%Sx) = amount of soil ripped into bucket

These forces are then applied in the dynamic model of an excavator. The

resistance to movement of the prism of soil, and the soil movement in the

bucket has the least influence on the digging force being less than 10 %.
From the above knowledge the coefficients needed for calculating the digging
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force can be evaluated.

6. CONCLUSIONS

The dynamic model of an excavator presented above provides a useful
computational platform for investigating the machine behavior of a typical

excavator. In particular, the model can serve as a basis for computer
simulation of excavator behavior during gross motion and digging of soil by
excavator bucket. Moreover, it is useful in designing a controller to make

the excavator motion track a specified path for a given digging task.
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link 0

Figure 1. Typical excavator and its coordinate frames.

Figure 2. Excavator geometry.

joint t

X Defines a Cartesian point and orientation

Figure 3. Schematics of excavation path geometry.
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APPENDIX I - Calculation of Required Ram Forces

The lever arm and force at joint 2 are:

1ab•c28•(lab•S28 + lah)
zm2 _

[(lab•c28 lhe)2 + (lab•s28 +
lah)2I

F2c = T2/1m2
s28 = sin(e2 + e8)

Correspondingly, the force and the lever arm at joint 3 are:

2
I? c3 = T3/1m2' 1m2 = 1ci(1-e

21ci 2 - 21cf•1ci•c39

e = 2 2 i

21ci[-21cf•1ci•c39 + lci + lcf

c39 = cos( e3 + e9)

Finally, the lenght of the lever arm at joint 4 is:

Fc4 = T4/1m4 1m4 = -1dg•cos(e19 + 0i4)-sin (e4 -

a = 916 + e15 + 014 + 010

014

015

cos

•cos(e - e ) + l 2 + 1 2- 1 2- 1 221 •1
-1

(
dl dg 4 10 kg kl dm dl

-1(-21gl• 1dg•cos(e4 -

cos

21k1.1kg

21kl•1kg

2 2
e10) + 1kl + 1dl )

-1 21d12 - 21 d1•1dg•cos(e4 - e10)c410

e16 = cos 2 2 z
21dl(-21d1•1 dg•c410 + ldg + 1dl )

(1)

(2)

(3)

(4)

(5)

(7)

(8)

(9)

(10)

e cos 21 k1 ^
2 - 21.1• 1

kl
•cos ( e

16 + 0 15 + 9 ) ) (11)
= -1( ^1

19 21 -21 •l •cos( e + e + e ) + 1 + 1

2

)Z
kl ( j1 kl 16 15 11

) k1 j1
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APPENDIX II - List of Symbols

Lenghts of links Mass centers

a1 =
a2 =
a3 =
a4 =

e
e5
e
e8

0.05 m
5.16 m

1

11g =

0.61 m

0.21 m
1
1 39

0.64 m
0 65 m

2.59 m
Z

1 2 71
4g _ .

2 = . m
1.33 m

g

= angle between lines AP and AC (0.2566 rad)
= angle between lines CD and CQ (0.3316 rad)
= angle between lines DR and DN (0.3944 rad)
= angle between lines AB and AC (0.4957 rad)

e9 =TC-e9j -e2
e = angle 6etw^en lines CD and CF (2.71049 rad)
e
92
2 = angle between lines CA and CI (0.47822 rad)

e10
E)
e102

e_L1

= TC - a
-el 1 102

B= angle etween lines DN and DG (2.19737)
= angle between lines CL and CD (0.15359)
= angle between lines JL and LD (0.13265)

Masses of links Inertial moments

ml = 6420 kg m = 735 kg I = 11748.6 kg m2 I = 727 .7 kg m2
m2 = 1566 kg m4 = 432 kg Iz2 = 14250.6 kg m2 Iz4 = 224 .6 kg m2

Lenght between points I and J is denoted as lid, i.e.:

1ab = 2.31 m 1.1 = 1.93 m
1 = 0.56 m 1^ = 0.50 m

lai = 2 .80 m 1km = 0.50 m

I = 0.42 m
the = 0.77 m
13cy = 1.37 m

^

1 = 0.4o m
lgl = 0.40 m
1gmy = 0.63 m

I and 1 are the tangential distances from points I and J to lines AC
anddyCD, resp.9ctively.

g = -9.87 m/s2
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