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ABSTRACT 

 

The pose of an articulated machine includes the 

position and orientation of not only the machine base 

(e.g., tracks or wheels), but also each of its major 

articulated components (e.g., stick and bucket). The 

ability to automatically estimate this pose is a crucial 

component of technical innovations aimed at 

improving both safety and productivity in many 

construction tasks. A computer vision based solution 

using a network of cameras and markers is proposed 

in this research to enable such a capability for 

articulated machines. Firstly, a planar marker is 

magnetically mounted on the end-effector of interest. 

Another marker is fixed on the jobsite whose 3D 

pose is pre-surveyed in a project coordinate frame. 

Then a cluster of at least two cameras respectively 

observing and tracking the two markers 

simultaneously forms a camera-marker network and 

transfers the end-effector's pose into the desired 

project frame, based on a pre-calibration of the 

relative poses between each pair of cameras. 

Through extensive sets of uncertainty analyses and 

field experiments, this approach is shown to be able 

to achieve centimeter level depth tracking accuracy 

within up to 15 meters with only two ordinary 

cameras (1.1 megapixel each) and a few markers, 

providing a flexible and cost-efficient alternative to 

other commercial products that use infrastructure 

dependent sensors like GPS. A working prototype 

has been tested on several active construction sites 

with positive feedback from excavator operators 

confirming the solution's effectiveness. 

Keywords - 

Pose Estimation, Camera-Marker Network, 

Bundle Adjustment, Uncertainty Analysis, 

Excavation Guidance 

 

1 Introduction 

The construction industry has long been affected by 

high rates of workplace injuries and fatalities. 

According to the United States Bureau of Labor 

Statistics' 2013 Census of Fatal Occupational Injuries 

(CFOI) report
1
, the construction industry had the largest 

number of fatal occupational injuries, and in terms of 

rate ranked the fourth highest among all industries. 

 

 
 

Figure 1. SmartDig: (A) camera cluster and stick 

marker; (B) benchmark with pre-surveyed pose 

in the project reference frame; (C) system 

calibration; (D) working prototype of automatic 

grade control; (E) comparison to manual grade 

 

In addition to the safety concerns, there are also 

increasing concerns of relatively stagnant productivity 

rates and skilled labor shortage in the construction 

industry. For example, recently the construction sector 
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in the United Kingdom is reported to be in urgent need 

of 20% more skilled workers and thus 50% more 

training provision by 2017, to deliver projects in 

planning
2
. 

Excavation is a typical construction activity affected 

by the safety and productivity concerns mentioned 

above. Excavator operators face two major challenges 

during excavation operations, described as follows: 

First is how to maintain precise grade control. 

Currently, grade control is provided by employing 

grade-checkers to accompany excavators during 

appropriate operations. Grade-checkers specialize in 

surveying and frequently monitor the evolving grade 

profile. The evolving grade profile is compared to the 

target grade profile and this information is 

communicated by the grade-checker to the excavator 

operator. The operator reconciles this information and 

adjusts the digging strokes accordingly. This process is 

repeated until the target profiles are achieved. 

Employing grade-checkers is not only dangerous but 

also results in a significant loss in excavation 

productivity due to frequent interruptions required for 

surveying the evolving profile. 

Second is how to avoid collisions to either human 

workers, buried utilities, or other facilities, especially 

when excavator operators cannot perceive the digging 

machine’s position relative to hidden obstructions (i.e., 

workers or utilities) that it must avoid. According to the 

aforementioned CFOI report, among all the causes for 

the 796 fatal injuries in the U.S. construction industry in 

2013, the cause of striking by object or equipment 

comprised 10 percent. This percentage is even higher in 

other industries such as agriculture (19%), forestry 

(63%), and mining (23%). Besides directly causing fatal 

injuries on jobsites, construction machines can also 

inadvertently strike buried utilities, thus disrupting life 

and commerce, and pose physical danger to workers, 

bystanders, and building occupants. Such underground 

strikes happen with an average frequency of about once 

per minute in the U.S., reported by the Common Ground 

Alliance
3
, the nation's leading organization focused on 

excavation safety. More specifically, excavation 

damage is the third biggest cause of breakdowns in U.S. 

pipeline systems, accounting for about 17% of all 

incidents, leading to over 25 million annual utility 

interruptions
4
. 

Automation and robotics in construction (ARC) has 

been extensively promoted in the literature as a means 

of improving construction safety, productivity and 

mitigating skilled labor shortage, since it has the 

potential to relieve human workers from either 
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repetitive or dangerous tasks and enable a safer 

collaboration and cooperation between construction 

machines and the surrounding human workers. In order 

to apply ARC and increase intelligence of construction 

machines to improve either safety or productivity for 

excavation and many other activities on construction 

jobsites, one of the fundamental requirements is the 

ability to automatically and accurately estimate the pose 

of an articulated machine (e.g., excavator or backhoe). 

The pose here includes the position and orientation of 

not only the machine base (e.g., tracks or wheels), but 

also each of its major articulated components (e.g., stick 

and bucket). 

When a construction machine can continuously track 

its end-effector's pose on the jobsites, such information 

can be combined together with the digital design of a 

task, either to assist human operators to complete the 

task faster and more efficiently, or to eventually finish 

the task autonomously. For example, an intelligent 

excavator being able to track the pose of its bucket can 

guide its operator to dig trenches or backfill according 

to designed profiles more easily and accurately with 

automatic grade-check. This can eventually lead to fully 

autonomous construction machines. When construction 

machines becomes more intelligent, it can be expected 

to save time in training operators and thus to mitigate 

skilled labor shortage and also improve productivity. 

On the other hand, when construction machines are 

aware of the poses of their components at any time and 

location on jobsites, combined with other abilities such 

as the recognition of human workers' poses and actions, 

such machines will be able to make decisions to avoid 

striking human workers, for example by sending alerts 

to their operators or even temporarily taking over the 

controls to prevent accidents. Thus it will help to 

decrease the possibilities of those injuries and fatalities 

and improve the safety on construction jobsites. 

Similarly, with continuous tracking of the pose of its 

end-effector (e.g., a bucket of an excavator), an 

intelligent excavator could perform collision detection 

with an existing map of underground utilities and issue 

its operator a warning if the end-effector's distance to 

any buried utilities exceeds some predefined threshold.  

Thus, from a safety, productivity, and economic 

perspective, it is critical for such construction machines 

to be able to automatically and accurately estimate 

poses of any of their articulated components of interest. 

In this paper, a computer vision based solution using 

planar markers is proposed to enable such capability for 

a broad set of articulated machines that currently exist, 

but cannot track their own pose. A working prototype 

(Figure 1) is implemented and shown to enable 

centimeter level excavator bucket depth tracking. 

The remainder of the paper is organized as follows: 

Related work is reviewed in section 2. The authors’ 



technical approach is discussed next in detail in section 

3. The experimental results are presented in section 4. 

Finally, in section 5, the conclusions are drawn and the 

authors’ future work is summarized. 

2 Previous Work 

The majority of the construction machines on the 

market do not have the ability to track their poses 

relative to some project coordinate frames of interest. 

To track and estimate the pose of an articulated machine, 

there are mainly four groups of methods. 

First are the 2D video analysis methods, stimulated 

by the improvement in computer vision on object 

recognition and tracking. Static surveillance cameras 

were used to track the motion of a tower crane in [1] for 

activity understanding. Similarly in [2] part based model 

was used to recognize excavators for productivity 

analysis. This type of methods generally require no 

retrofitting on the machine, but suffers from both 

possibilities of false or missed detection due to complex 

visual appearance on jobsites and the relative slow 

processing speed. Although real-time methods exist as 

in [3, 4], they either cannot provide accurate 6D pose 

estimation, or require additional information such as a 

detailed 3D model of the machine. 

Second are stereo vision based methods. A detailed 

3D model of the articulated object was required in [5] in 

addition to stereo vision. A stereo camera was installed 

on the boom of a mining shovel to estimate pose of haul 

trucks in [6], yet the shovel’s own pose was unknown. 

In [7] the shovel’s swing rotation was recovered using 

stereo vision SLAM, yet the pose of its buckets was not 

estimated. This type of methods can be infrastructure 

independent if with SLAM, yet some problems 

(sensitivity to lighting changes or texture-less regions) 

remain to be resolved for more robust applications. 

Third are laser based methods, e.g., [8, 9, 10], which 

rooted from the extensive use of laser point clouds in 

robotics. This type of methods can yield good pose 

estimation accuracy if highly accurate dense 3D point 

clouds of the machine are observed using expensive and 

heavy laser scanners. Otherwise with low quality 2D 

scanners, only decimeter level accuracy was achieved 

[9]. 

Finally are angular sensor based methods, such as 

[11, 12, 13]. They are usually infrastructure independent 

and light-weight, but the resulting pose estimation is 

either not accurate enough or sensitive to changes of 

magnetic environment which is not uncommon in 

construction sites and can lead to large variations in the 

final estimation of the object poses. Moreover this type 

of methods only estimate the articulated machine's pose 

relative to the machine base itself, if without the help of 

sensors dependent on infrastructure that consume power 

and need careful maintenance like GPS. However the 

use of GPS brings several technical challenges. For 

example, construction sites in a lot of cases do not have 

good GPS signals to provide accurate position 

estimation when these sites are located in urban regions 

or occluded by other civil infrastructure such as under 

bridges. Sometimes GPS signals could even be blocked 

by surrounding buildings on jobsites and thus fail to 

provide any position estimation [14]. In addition, since 

the GPS only provides 3D position estimation, to get the 

3D orientation estimation one needs at least two GPS 

receivers at different locations of a rigid object. When 

the object is small, such as a mini-excavator's bucket, 

the estimated 3D orientation's uncertainty will be high. 

3 Technical Approach 

In this section, different versions of the proposed 

articulated machine pose estimation system design are 

explained first. Then, the process to calibrate this 

system is described. Finally, uncertainty analysis is 

explored for the system with some important 

observations of the relationship between the system 

configuration and its stability, i.e., uncertainty of the 

estimated pose. 

3.1 System Design 

As mentioned previously, this computer vision based 

articulated machine pose estimation solution relies on a 

method called marker based pose estimation. Generally, 

marker based pose estimation firstly finds a set of 2D 

geometry features (e.g., points or lines) on an image 

captured by a calibrated camera, then establishes 

correspondences between another set of 2D or 3D 

geometry features on a marker whose pose is known 

with respect to a certain coordinate frame of interest, 

and finally estimates the pose of the camera in that 

coordinate system. If 2D-2D correspondences are used, 

the pose is typically estimated by homography 

decomposition. If 2D-3D, the pose is typically estimated 

by solving the perspective-n-point (PnP) problem. Two 

typical marker-based pose estimation methods are 

AprilTag [15] and KEG [16] algorithms. 

There are two ways of applying marker based pose 

estimation for poses of general objects of interest. As 

shown in Figure 2, one way is to install the calibrated 

camera 1 rigidly on the object of interest (in this case, 

the cabin of the excavator), and pre-survey the marker 

1's pose in the project coordinate frame. The other way 

is to install the marker 2 rigidly on the object (in this 

case, the stick of the excavator), and pre-calibrate the 

camera 2's pose in the project coordinate frame. As long 

as the camera 2 (or the marker 1) stays static in the 

project coordinate frame, the pose of the excavator's 

stick (or the cabin) can be estimated in real-time. 



 
 

Figure 2. Two examples of basic camera-marker 

configuration 

 

However, these basic configurations don't always 

satisfy application requirements. For example, if only 

the camera 1 and the marker 1 are used, the excavator's 

stick pose cannot be estimated. On the other hand when 

only the camera 2 and the marker 2 are used, once the 

stick leaves the field of view (FOV) of the camera 2, the 

stick's pose becomes unavailable as well. Thus it is 

necessary to take a camera's FOV into consideration 

when designing an articulated machine pose estimation 

system. This understanding leads to the camera-marker 

network design proposed as follows: 

3.1.1 Camera-Marker Network 

A camera-marker network is an observation system 

containing multiple cameras or markers for estimating 

poses of objects embedded in this system. It can be 

abstracted as a graph with three types of nodes and two 

types of edges (e.g., Figure 3). A node denotes an object 

pose (i.e. the local coordinate frame of that object), 

which can be a camera, a marker, or the world 

coordinate frame. An edge denotes the relative 

relationship between two objects connected by this edge, 

which can be either image point observations for the 

previously mentioned marker based pose estimation, or 

a known pose constraint (e.g., through calibration). 

 

 
 

Figure 3. An example graph of a camera-marker 

network 

 

Thus, if at least one path exists between any two 

nodes in such a graph, the relative pose between them 

can be estimated. In addition, any loop in the graph 

means a constraint of poses that can be used to improve 

the pose estimation. For example, in Figure 3, marker 

2's pose in the world frame can be found via a path 

through camera 3 whose own pose in the world frame is 

pre-calibrated. The marker 2's pose can also be better 

estimated when observed by the rigidly connected 

camera 1 and 2 whose relative pose is pre-calibrated, 

since a loop is created. 

Applying this concept to articulated machine pose 

estimation results in numerous possible designs. One of 

the possible camera-marker networks is shown in Figure 

4, camera 1 observes the benchmark while camera 2 

observes the stick marker, and the rigid transformation 

between the two cameras is pre-calibrated. Thus as long 

as the two markers stay inside the two cameras' FOV 

respectively, the stick's pose in the world frame can be 

estimated. It is worth noting that this only illustrate a 

simple configuration. With more cameras and markers 

in the network, there are more chances of creating loops 

and thus improving pose estimation, especially 

considering that surveillance cameras are becoming 

popular in construction jobsites whose poses can be pre-

calibrated and thus act as the camera 3 in Figure 3. 

 

 
 

Figure 4. Multiple-camera multiple-marker 

configuration 

3.1.2 Prototypes 

Multiple prototypes have been implemented to 

realize the above described camera-marker network 

designs. Figure 5 demonstrates one of the early 

prototypes implementing a single-camera multiple-

marker configuration. A mechanical component using a 

timing belt was adopted to map the relative rotation 

between the excavator bucket and the stick to the 

relative rotation between the stick marker and the flip 

marker. This implementation enables pose tracking of 

the excavator bucket. 
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Figure 5. An early prototype configuration 

 

Due to the potential interference of the flip marker 

and any obstructions during excavation, the above early 

prototype was slightly modified and evolved to the 

current prototype as shown in Figure 1. The newer 

working prototype implements the multiple-camera 

multiple-marker configuration similar to Figure 4. Two 

cameras are rigidly mounted forming a camera cluster. 

A linear potentiometer is installed on the stick to track 

the relative motion of the excavator bucket and the stick 

even if the bucket is deep inside the earth. 

3.2 System Calibration 

Two types of calibration are necessary for an 

articulated machine pose estimation system 

implementing the above camera-marker network design. 

The first type is intrinsic calibration which 

determines internal parameters (e.g., focal length) of all 

cameras in the system. This is done using same methods 

as in [17]. 

The second type is extrinsic calibration which 

determines relative poses (e.g. dotted edges in the graph) 

designed to be calibrated before system operation. There 

are two kinds of such poses: 1) poses of static markers 

in the world frame, and 2) poses between rigidly 

connected cameras. The first kind of poses can be 

calibrated by traditional surveying methods using a total 

station. The second kind of poses, however, cannot be 

directly surveyed physically since a camera frame's 

origin and principal directions usually cannot be found 

or marked tangibly on that camera. Thus to calibrate a 

set of m rigidly connected cameras, a camera-marker 

graph needs to be constructed as denoted in Figure 6. A 

set of n markers' poses need to be surveyed in the world 

frame. Then when the m cameras observe these n 

calibration markers, the graph is formed to estimate 

each camera's pose in the world frame and thus their 

relative poses between each other (i.e., edges with 

question mark) are calibrated. It is suggested to ensure 

that multiple loops exist in this graph to improve the 

accuracy of the poses to be calibrated. Such loop exists 

as long as at least two markers are observed by a same 

camera simultaneously. It is also worth noting that with 

enough many calibration markers, each camera's 

intrinsic parameters can be further optimized together 

with their extrinsic parameters. 

 

 
 

Figure 6. A camera-marker graph for extrinsic 

calibration 

3.3 Uncertainty Analysis 

It is not sufficient to only estimate the pose of an 

articulated machine. The uncertainty of the estimated 

pose is critical for the following reasons. Firstly the 

uncertainty provides a measure of the confidence level 

of the estimated pose, which is necessary for many 

downstream applications (e.g., deciding buffer size for 

collision avoidance). Secondly it serves as a tool for 

evaluating the stability of the pose estimation system 

under different configurations, and thus further guiding 

to avoid critical configurations that lead to unstable pose 

estimation. 

To perform uncertainty analysis on the proposed 

camera-marker network pose estimation system, the 

system is firstly abstracted as the following state space 

model: 

 

 F( ; , )Z X Y C  (1) 

 

where X is the state vector of the network (usually 

encodes the poses of nodes in the graph), Z is the 

predicted measurement vector containing image 

coordinates of all the points projected from markers, Y 

is the known parameters (usually contains marker 

points' local coordinates), C is the calibrated parameters 

(usually encodes all cameras' intrinsic parameters and 

all calibrated poses), and F is the system's observation 

function parameterized by Y and C, i.e., the camera 

perspective projection function. 

For example, for a network of a single camera and a 

single marker, X is a 6 1  vector that encodes the 

marker's orientation and position in the camera frame; Y 

is a 3 1n  vector containing n marker points' 

coordinates from surveying; C is a vector of the camera 

intrinsic parameters. If another marker is added to this 
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network, Y should be extended with points on the new 

marker. 

3.3.1 Uncertainty Propagation 

No matter how complex such a network is and what 

method is used to get an initial estimate of X (either PnP 

or homograph decomposition), the optimized state X̂  

can be calculated by the following least square 

optimization, i.e., bundle adjustment: 

 

 
ˆ

2
ˆ ˆarg min F( ; , ) 

Z
PX

X Z X Y C  (2) 

 

where 
Ẑ

P  is the a priori covariance matrix of the actual 

measurements Ẑ , typically assumed as 
2
u I  when 

image coordinates are measured with a standard 

deviation of u . 

To backward propagate the measurement uncertainty 

Ẑ
P  to the uncertainty of the optimized state X̂  requires 

linearization of F around X̂ . Since the error is assumed 

to come from only the measurements (the uncertainty in 

calibrated parameters C can be included in future work, 

but is assumed to be negligible in this paper), one can 

directly apply the results in [18] to calculate the 

uncertainty of the optimized states: 
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where 
ˆ

F

 X

J
X

 is the Jacobian matrix of F evaluated 

at X̂ . 

3.3.2 Uncertainty and Configuration 

Equation (3) not only provides a means of 

evaluating uncertainty of the optimized pose estimation 

of a camera-marker network, but also provides a tool to 

predict the system stability at any given system 

configuration X before even making any measurements. 

This is done by evaluating the Jacobian matrix J of F at 

that X, and then applying equation (3) to predict the 

covariance matrix. It is based on the fact that the 

aforementioned backward propagation of measurement 

uncertainty does not directly rely on specific 

measurements. In fact it directly relies on the system 

configuration X around which the linearization is 

performed. Thus, when evaluating Jacobian matrix J at 

a configuration X, equation (3) yields the theoretically 

best/smallest pose estimation uncertainty one can expect 

at that configuration, which denotes the system stability 

at that configuration. 

Using this method, some important empirical 

conclusions on the basic single-camera single-marker 

system are found about relationships between system 

stability and configuration, based on numerical 

experiments, which are useful for more complex system 

design and are listed as follows. Similar analysis will be 

performed to multiple-camera or multiple-marker 

system in future work. 

1. The marker's origin/position in the camera 

frame, 
c

mt , has the largest uncertainty along a 

direction nearly parallel to the camera's line of sight to 

the marker, i.e., 
c

mt  itself. Figure 7 exemplifies this 

observation at two randomly generated poses between 

the camera and the marker. 

 

 
 

Figure 7. Largest position error direction 

 

2. The largest uncertainty of marker's position in 

the camera frame increases approximately quadratic to 

the marker's distance to the camera; compared to which 

the two smallest uncertainty's increases are almost 

negligible. Figure 8 shows a typical example. 

 

 
 

Figure 8. Position error vs marker distance 

 

3. The largest uncertainty of marker's position in 

the camera frame increases approximately linear to the 

camera focal length; compared to which the two 

smallest uncertainty's increases are almost negligible. 

Figure 9 shows a typical example. 



 
 

Figure 9. Position error vs focal length 

4 Experimental Results 

4.1 Feasibility Experiments 

Before implementing the pose estimation system 

prototypes, a set of experiments were performed to test 

the feasibility of marker based pose estimation in 

different indoor/outdoor construction environments. In 

all the experiments, AprilTag [15] was chosen as the 

basic marker detection and tracking algorithm. 

Firstly, the outdoor detectability of markers was 

tested. A marker's detectability is a function of many 

factors including the marker size, the distance between 

the marker and the camera, included angle between the 

camera viewing direction and the marker plane's normal 

direction, and also image resolution. Since the distance 

between the marker and the camera is the most critical 

factor affecting the method's feasibility in real 

applications, this experiment is performed by fixing 

other factors and then gradually increasing the distance 

of the marker in front of the camera, until the algorithm 

fails to detect the marker, and recording the distance. 

Varying other factors and repeating this process results 

in Table 1. One can consult this table to decide how 

large the marker should be to fit application need. 

Secondly, illumination is a critical factor affecting 

performance of many computer vision algorithms. The 

AprilTag algorithm was thus tested under various 

illumination conditions to examine its robustness for 

construction applications. Figure 10 shows successful 

marker detection under different indoor/outdoor lighting 

conditions. These experiments and following extensive 

prototype tests proved AprilTag based marker detection 

method's robustness to illumination changes. 

 

 
 

Figure 10. Marker detection vs illumination 

 

Finally, for uncertainty propagation, one needs to 

have a prior estimation of the image measurement 

noise's standard deviation u . This is achieved by 

collecting multiple images under a static camera marker 

pose. Repeating this process for different poses and 

collecting corresponding image measurement statistics 

lead to an image measurement covariance matrix uΣ , 

which can be further relaxed to 
2
u I  to include all the 

data points. Figure 11 shows that 0.2u   pixel is 

reasonable. 

 

 
 

Figure 11. Image measurement noise estimation 

 

Table 1. Outdoor detectability of AprilTag 

Max Detectable Distance (m) 
Marker Angle (degree) 

0 45 0 45 

Marker Size (m
2
) 

0.2 x 0.2 6.10 4.88 11.28 8.84 

0.3 x 0.3 8.23 7.01 14.94 11.58 

0.46 x 0.46 13.41 11.28 25.91 21.64 

0.6 x 0.6 19.51 16.46 34.44 30.48 

Image Resolution 640 x 480 1280 x 960 

Focal Length 850 pixels 1731 pixels 

Processing Rate 20 Hz 5 Hz 



4.2 Prototype Experiments 

As previously mentioned, a multiple-camera 

multiple-marker articulated machine pose estimation 

prototype has been implemented with the application of 

estimating an excavator's bucket depth in a project 

frame, which could be used for automatic excavation 

guidance and grade control. 

 

 
(a) Setup 

 
(b) Different configurations 

 

Figure 12. Prototype and experiment setup 

 

 
 

Figure 13. Prototype error vs. configuration 

 

The top row of Figure 12(a) shows the camera 

cluster of the prototype in Figure 1, and different 

experiment configurations to test the depth estimate's 

accuracy. The experiments were setup by observing the 

two markers in the bottom row of Figure 12(a) using the 

two cameras in the cluster respectively. Then the depth 

difference between the two markers was estimated using 

the proposed method, while the ground truth depth 

difference between the two marker centers was 

measured by a total station with 1 mm accuracy. Figure 

12(b) illustrates the configurations of different sets of 

such experiments, for comprehensive tests of the 

method's accuracy under several system and design 

variations. The first set varies one of the marker's pitch 

angle (top row of the figure). The second set varies its 

height (bottom-left). The third set varies its distance to 

the camera (bottom-middle). And the fourth set varies 

the number of tags used in that marker (bottom-right). 

Figure 13 shows the absolute depth errors comparing 

the ground truths with the results from camera marker 

network pose estimation, in the above mentioned 

different sets of prototype experiments, using the box 

quartile plot. Note that all errors are less than 2.54 cm, 

even when observed from more than 10 meters away. 

Further experiments showed that the system worked up 

to 15 meters. 

This prototype is then tested on a real excavation site 

for grade control as shown in Figure 1 (D) and (E). The 

resulting trench depth differences between the manual 

grade and the guided grade (by the prototype) are less 

than 1 inch, which fulfils the need of many construction 

applications. 

5 Conclusion and Future Work 

This paper proposed a vision based pose estimation 

solution for articulated machines using a camera-marker 

network. The uncertainty of the network pose estimation 

is analyzed through backward propagation of 

measurement covariance matrix. Based on this, an 

efficient approach of evaluating such a pose estimation 

system's uncertainty at any given state is introduced and 

applied to the basic single-camera single-marker system 

to find some important relationships between system 

states and corresponding system uncertainty, which is 

useful to guide more complex design. The conducted 

experiments and a working prototype proved the 

proposed solution's feasibility, robustness, and accuracy 

for real world construction applications. 

The authors’ current and planned work in this 

research direction is focused on continuously improving 

the estimation accuracy such as taking the uncertainty of 

calibrated parameters C into consideration, and also 

analyzing uncertainty versus system configuration for 

more complex camera-marker networks. 
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