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ABSTRACT 

 

Optimizing and improving energy performance 

of buildings while maintaining occupants’ comfort 

are primary goals for building managers. In order to 

analyze a building’s energy performance and make 

informed retrofit, maintenance, or operational 

decisions, decision-makers need access to credible 

real-time data illustrating how building systems are 

being used by its occupants at a floor and room level 

granularity. Traditionally, such data has been 

collected in buildings using wired or wireless systems 

by installing a dense array of sensors in every 

building location that needs monitoring. This is an 

effort and cost-prohibitive approach, especially in 

existing older buildings where instrumentation and 

integration with existing building systems is 

challenging. This paper introduces a novel concept of 

using autonomous mobile indoor robots for 

monitoring various occupant comfort and energy 

parameters inside an existing building, and discusses 

how the collected data can be utilized in various 

analyses. The research evaluates the hypothesis that 

a single multi-sensor fused robotic data mule that 

collects building energy systems performance and 

occupancy comfort data at sparse locations inside a 

building can provide decision-makers with a rich 

data set that is comparable in fidelity to data 

obtained from pre-installed and fixed sensor systems. 

In order to demonstrate the effectiveness of the 

proposed approach, an experiment was conducted 

using a tele-operated robot outfitted with thermal 

comfort data collection sensors and a localization 

camera in a multi-occupancy space within a large 

university building. The data collected by the mobile 

robot was statistically compared with data obtained 

from the building’s pre-installed Building 

Automation System. Experimental results 

demonstrated the proposed method’s promise and 

applicability in collecting dense actionable data in 

large spaces using only a sparse set of sensors 

mounted on mobile indoor robots.  

Keywords –  

Mobile indoor robots, occupant comfort, data 

collection, and building energy monitoring.  

1 Introduction 

Buildings account for about 40% of the total energy 

consumption in US [1] with 80% of the total energy 

consumption occurring during the operation and 

maintenance phase of the facility [2]. Thus, optimizing 

and improving the energy performance of buildings and 

at the same time maintaining the occupants’ comfort are 

some of the major areas of concern for building 

managers and stakeholders. In order to properly analyze 

the building’s energy performance and make informed 

retrofit and/or maintenance and operations decisions, 

decision makers need access to credible data illustrating 

how the building systems (i.e., lighting and HVAC: 

Heating Ventilating and Air Conditioning) are being 

used by its occupants [3]. There is thus a tangible need 

to collect room and floor level data from buildings.  

Existing building energy and occupant comfort data 

collection methods consist of a plethora of wireless 

sensors as part of a building automation system. 

However, there are lot of issues with these methods (i.e., 

significant upfront investment, complex installation 

integration process of large number of sensors, skilled 

manpower requirement, highly time consuming 

installation, maintenance, and calibration process) in 

implementing this approach especially in existing 

buildings (without the Building Automation System 

(BAS)). In an effort to mitigate these issues, the primary 

objective of this paper is to introduce a novel concept of 

using autonomous mobile indoor robots for monitoring 

various occupant comfort and energy parameters inside 

a building and discuss in detail how the data collected in 

the process can be utilized in various analyses. In 

addition, the advantages of this method over the existing 

state of the art methods are discussed. The proposed 

approach is validated through an experiment that was 

conducted in an academic building with a tele-operated 

mobile robot collecting the aforementioned data and the 

results were compared with data logged by an existing 

Building Automation System (BAS). 

2 Background 

Over the last few decades, intensive research has 

been carried out on autonomous indoor robots. Some of 
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the critical components that govern the autonomous 

behavior of robots in an indoor environment are robotic 

mapping (constructing a map of the environment), 

localization (robot localizing itself in the map), pose 

estimation (the combination of pose and orientation of 

the robot in the current location), path planning (shortest 

or optimal path between its current location and next 

location), and obstacle avoidance (collision avoidance 

with humans or objects in the robot’s path). 

Localization is one of the primary and important tasks 

that caught the attention of many researchers. 

Traditionally, non-visual-sensor-based networks were 

used such as Global Positioning System (GPS) [4], 

Inertial Measurement Unit (IMU) [5], Radio Frequency 

Identification (RFID) [6,7], Wireless Local Area 

Network (WLAN) [8, 9], Ultra-Wide Band (UWB) [10], 

Global Systems for Mobile communication (GSM) [11], 

Bluetooth [12], ZigBee (IEEE 802.15.4),  

Ultrasound and Infrared. Most of the aforementioned 

techniques either suffer from accuracy problems and/or 

require complex instrumentation of the monitored space. 

Rapidly growing computing capabilities and 

advancements in cheap and robust sensor technology, 

lead to vision based systems such as, Simultaneous 

Localization and Mapping (SLAM) [13] and Visual 

Registration [14], utilizing visual sensors such as 

camera and LIght Detection and Ranging (LIDAR). 

Though SLAM and UWB positioning systems are 

accurate, they suffer from factors such as accumulated 

errors [15], inability to adapt to environmental 

conditions, and requirement of an accurate signal 

propagation model [16]. On the other hand, fiducial 

markers developed by [14] have the potential to 

accurately localize the robot’s position in an indoor 

environment (i.e., building floor level and room 

location), and are also cheap and easy to install [17].  

This research uses fiducial markers as a cheap, 

accurate and easy to deploy indoor localization method 

with relatively low computing requirements [14, 18] for 

the purpose of collecting a dense building thermal 

comfort data set. This is in contrast to the traditionally 

used localization techniques such as dead reckoning 

(estimating the current position based on previous 

position, speed and elapsed time), SLAM, combination 

of sensors such as geometry sensors, angle measurement 

sensors, and range sensors that have limitations such as 

cost, accuracy and high computing capability 

requirements.  

Previous examples of the applications of the indoor 

robots include health care services, domestic automation 

[19], intelligently programmable physical spaces for 

work life (The Robot Rooms) [20], hotel service robots 

[21], assistive robotic micro-rooms for the elderly [22] 

and many more. None of the above applications has, 

however, considered the potential use of robots to 

collect indoor building energy use and comfort 

parameter in an efficient and economical manner.  

3 Importance of the Research 

World energy use is rapidly increasing and so is the 

total energy use in buildings. The increase in energy 

demand has many environmental impacts such as 

resource depletion, climate change and ecological 

systems degradation [23]. Hence, energy efficiency 

measures have become increasingly important and 

significant research is being conducted in this area. In 

addition, literature also suggests that, by maintaining 

proper indoor environmental quality, occupant comfort, 

health and productivity can be significantly improved 

while ensuring that building consumes energy in the 

most efficient manner [24]. Thus, in the current scenario, 

occupant comfort and energy efficiency are the two 

primary goals of a building manager during the 

operation phase of any building.  

Buildings are typically designed based on certain 

design assumptions which are inputted for the building 

energy simulation models. Buildings can be energy 

efficient, if operated and maintained as per the 

assumptions considered during the design phase. 

However, the actual conditions during the operation of 

the buildings always differ from the design assumptions 

considered, primarily owing to occupants’ actions [25, 

26, 27, and 28]. Generally, computer simulations and 

energy models are used for designing and predicting the 

performance of complex building systems. However, 

these energy models are generally not used during the 

operation phase of buildings. With the emerging ability 

to seed these models with real time data, these models 

can have several applications such as operation decision, 

monitoring based commissioning, energy policy 

framework, building energy audit, and building retrofit 

analysis. The state of the art technology proposes the 

use of real-time data for better prediction capabilities 

and improved analysis through Dynamic Data-Driven 

Simulation and Analysis (DDDSA). Although DDDSA 

models have the potential to significantly improve 

building performance, they require significant amount 

of high fidelity data [29].  

The state of the art in both building energy and 

comfort parameters data collection in buildings is to use 

wired/wireless systems and instrument the building with 

several sensors (at least one set of sensors for every 

metric and location that needs to be monitored). These 

wireless or wired systems along with some actuators 

and control networks are the main components of BAS. 

Some of the many sensors that are required at every 

location are indoor and outdoor air temperature, indoor 

and outdoor humidity, CO2 (for measuring indoor air-

quality), occupancy (to detect if the space is being 

occupied), light (for measuring the indoor light levels), 



plug-load (for calculating the electricity consumption), 

and sound (to determine noise levels). The adoption of 

BAS is becoming more main stream in new commercial 

buildings, supported by building certification 

requirements and design provisions. However, this type 

of automation and dense network of sensors is not 

possible in existing old buildings because it involves 

significant amount of time, money, resources; in 

addition, to the potential complexity that might arise 

from integrating a dense sensor network with the 

existing building systems.  

In contrast, the objective of this research is to 

develop and validate the hypothesis that a single multi-

sensor fused robotic data mule, which collects comfort 

building energy, and occupancy data at every location 

by autonomously navigating the indoor built 

environment and can provide building decision makers 

with a rich data set.  In addition, the goal is also to 

eliminate the need for a dense sensor network (which is 

required by the traditional data collection methods as 

discussed) while still obtaining data at same fidelity 

level. To validate the effectiveness of the data collected 

during such a process, an experiment was carried out 

using a tele-operated robot outfitted with a thermal 

comfort data collection sensors and a camera to assist in 

the navigation and localization of the robot within the 

space considered. Using robotic data mule, data was 

collected over a period of seventeen days in a multi 

occupancy space. This data was then compared with 

data obtained from the building’s BAS. The design of 

the robot, entire experimental process and the results 

obtained are discussed in detail in the following sections 

of the paper.   

4 Technical Approach 

One of the main contributions of this paper is the 

design of the robot and the respective algorithms which 

are basis for the robots navigation in an indoor building 

environment and thermal comfort data collection. Some 

of the crucial aspects in the design of the robot are 

determining the type of data that needs to be collected 

(accordingly the type of sensors to be placed on the data 

mule), frequency of data collection (how frequently the 

data needs to be collected at every location), waiting 

time at each location of data collection, algorithms that 

will help decide the number of data mules required to 

monitor (depending on the size of the buildings) the 

entire building, optimizing the travel time and path. 

After the robot is designed, it needs to be tested and 

validated to check the effectiveness of the design and 

improvisations would follow accordingly. Hence, the 

technical approach is divided into two sections as 

follows: 1) Design of the robot and 2) Experimental 

Test-bed.  

4.1 Design of the robotic data mule 

After careful consideration of various parameters, a 

TurtleBot robot, equipped with the iCreate base was 

chosen as the mobile data collection platform and 

sensors such as Cozir® CM 0199 (for temperature, 

humidity, and CO2 levels), HOBO U12 (for light and 

occupancy levels), Lutron (for natural light levels), 

NinjaBlocks (for air speed), Smart meters (for 

electricity consumption) was used for the data collection. 

Figure 1 shows the robot with the following components 

1) TurtleBot – For navigating the indoor environment; 2) 

On-board netbook – To communicate with the 

TurtleBot; 3) RGB Camera - For the TurtleBot to 

localize itself in the indoor environment; 4) Remote 

laptop - For tele-operating the TurtleBot); 5) Sensors – 

For monitoring and data collection of various 

occupancy comfort (as shown in Table 1) and building 

energy parameters as discussed before. The following 

section provides a detailed description of the entire 

experimental setup and process.  

 

 
 

Figure 1: Figure showing all the components of robotic 

data mule used for occupant comfort and building 

energy monitoring data collection 

4.2 Experimental Test-bed  

 The experiments conducted in the first phase of the 

research are to compare and demonstrate that the data 

gathered with the help of robotic data mule and the data 

collected using existing BAS are similar (both in quality 

and reliability) in terms of serving as input for 

subsequent analyses. Data mule gathered data regarding 

several aforementioned comfort parameters such as 

temperature, humidity, light, CO2, and Occupancy.  For 

the purpose of this paper, data comparison and 

validation is done only for temperature data, which 

plays a crucial role in determining the thermal comfort 

of the occupant and also has a direct impact on the 

energy consumption of the HVAC systems in buildings 

[31,32]. Experiments were conducted in the Ross 



School of Business at the University of Michigan - Ann 

Arbor campus. The selected building is equipped with a 

BAS that collects different types of data at the room, 

system, and the building level. For example, different 

types of data gathered by the BAS of Ross are Control 

temperature, supply air damper point, room temperature, 

hot water valve pint, damper status operation, and 

damper status operation. The basement floor comprising 

of an open study lounge (monitored by one thermostat) 

and two group study rooms (each monitored by one 

thermostat) were chosen as the test bed for the 

experiments. Figure 2 shows the locations of the 

thermostats and/or the locations in the basement where 

the temperature readings were recorded by the BAS. 

 

Table 1: Factors affecting occupants comfort in an 

indoor environment 

Category Description Units 
Refere

nce 

Thermal 

comfort 

Input air temp 

(AHU) 
°C [30] 

Return air temp 

(From room/ hall) 
°C [30] 

CO2 ppm [30] 

Ventilation 
cfm/ 

person 
[26] 

Indoor Temperature °C [31,32] 

Ventilation type and 

Air Flow 
- [31] 

Heat Loss 

Coefficient 
- [32] 

Floor Area  m2 [31] 

Air Velocity 

(Indoor) 
m/s [31] 

Humidity (Indoor) % [31] 

Mean Radiant 

Temperature (MRT) 
°C [26] 

Visual 

comfort 
Lighting  Lux [33,34] 

Acoustic 

comfort 
Noise/Sound levels dB [35] 

Thermal,  

Visual, 

and 

Acoustic  

Personal control 

over blinds, 

windows, and 

HVAC system.  

- 
[36,37,

38] 

External/ 

Outdoor 

Factors 

Wind Speed  

(Outdoor) 
m/s [39] 

Wind Direction 

(Outdoor) 
° [39] 

Outdoor 

Temperature 
°C [31] 

Humidity (outdoor) % [31] 

Solar Radiation W/m
2
 [39] 

5 Research Methodology 

In this section, the experimental procedure 

implementing the proposed idea to use autonomous 

indoor robots for building energy and comfort 

parameter data collection is discussed. The entire 

experimental process can be divided into the following 

steps, a) the robot has to localize itself in the indoor 

environment, b) navigate to the intended data collection 

locations, c) collect the respective data, and d) geo-tag 

and record the sensor data collected. Figure 3 shows the 

flowchart of the aforementioned sequential steps 

involved in the data collection process. 

 
 

Figure 2: Basement floor plan of Ross School of 

Business. Rectangular points marked on the plan 

represent the locations where the data was collected.  

5.1 Localization  

For the localization of the robot, fiducial markers as 

shown in the Figure 4 were used at every location next 

to the thermostat. With the help of the on board RGB 

camera, an image of the marker is captured. Now, using 

the marker recognition module (an algorithm which 

detects the presence of the marker), the marker is 

detected and the respective ID is recognized. The 

algorithm is based on image segmentation which 

estimates the lines precisely based on the local gradient. 

[14,18]. Every specific marker is associated with its 

respective location. This localization technique has 

better accuracy than the 2D bar coding systems and 



other prevailing techniques discussed in the introduction 

section of the paper. It is also more robust and feasible.  

 

 
  

Figure 3: Sequential steps for robotic data collection in 

buildings 

 

 
 

Figure 4: Fiducial markers used for localization at each 

location. 

5.2 Navigation to desired location  

The robot is tele-operated to move from the current 

location to the targeted location with the help of a 

remote laptop. First, all the required software such as 

ROS, ROS developer kit, TurtleBot software, and 

network connectivity are installed and established on 

the TurtleBot netbook and remote laptop. Thereafter the 

netbook is connected and placed on the iCreate base. 

Then, the remote laptop is connected to the TurtleBot’s 

netbook with the help of Secure Socket Shell (SSH) 

connection in the terminal. After establishing two-way 

connectivity between the netbook and remote laptop, 

keyboard teleoperation nodes is brought up in the 

remote laptop. Now, with the help of key presses in the 

terminal, the robot can be controlled. The shortest path 

between the data collection locations was determined 

(as shown in Figure 2) and the data collection was done 

as described in the following section.     

5.3 Data Collection 

The data is collected in different locations as shown 

in Figure 2 with one location in the student study lounge 

and in two group study rooms. The readings were taken 

every 30 minutes as the BAS samples the pre-installed 

sensors at the same rate. CM-0199 COZIR® sensor 

along with the development kit was used for the thermal 

comfort data collection. The accuracy of the sensor 

reading is +/- 1°C of the true value and the operating 

conditions of the sensor range from -25°C to 55°C (-

13°F to 131°F). The sensor was calibrated every time 

before the start of the experiment. Zero point fresh air 

calibration was performed which means that the sensor 

was placed in fresh air environment for considerable 

amount of time, for the temperature to stabilize and for 

the fresh air to completely imbue into the sensor. Echo 

of a particular command is noted with the new zero 

point reading of the sensor. Data was collected at 

different hours of the day with varied occupancy levels 

from 12/19/2014 to 12/22/2014, and from 1/5/2015 to 

1/17/2015 (for a total of 17 days). The time of the day 

when the data was collected is enumerated in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Table showing the dates and times during 

which the data was collected 

Date From To Date From To 

12/19/14 14:30 21:30 1/10/15 13:30 22:00 

12/20/14 15:30 21:00 1/11/15 13:00 18:00 

12/21/14 16:00 22:00 1/12/15 12:30 14:30 

12/22/14 13:30 19:30 1/12/15 20:00 23:59 

1/5/15 11:00 17:00 1/13/15 11:00 12:30 

1/6/15 10:30 18:00 1/13/15 17:00 23:59 

1/7/15 21:30 23:59 1/14/15 21:00 23:59 

1/8/15 10:30 12:30 1/15/15 10:00 18:30 

1/8/15 20:30 23:00 1/16/15 14:30 17:00 

1/9/15 15:00 17:00 1/17/15 20:00 22:30 

5.4 Geo-tagging 

A python program subscribes the published ROS 

data regarding the location of the robot (given by the 

fiducial marker), concatenates it with the retrieved 

sensor data along with the time stamp, and exports the 

data to an excel file locally stored in the on-board 

netbook as shown in Figure 5. From left to right, 

information regarding the location id, date, time, 

humidity, and temperature values were recorded as 

shown.  

 

 
 

Figure 5: A screenshot showing how the data is stored 

in an excel file in the local netbook. 

6 Validation  

The data collected with the help of the proposed 

methodology was verified with data collected by 

existing data collection techniques. The BAS was 

programmed to collect data every 30 minutes in all the 

locations around the clock. For example, the BAS 

collects and time stamps data samples at 10:30:00 AM, 

11:00:00 AM, 11:30:00 AM, and so on. Since the data 

collected with the proposed methodology was done with 

a mobile robot, it is not possible to sample data in all the 

locations in a time synchronized way. However, the data 

was collected at all the locations within a stipulated time 

range so that it could be compared to the BAS data. 

Also, it is assumed that there were no significant 

differences in temperature values within that time frame. 

There are many statistical methods to assess two 

types of data sets. However, given the context of 

comparing two data sets, t-statistic hypothesis testing 

was done to compare the data collected by the BAS and 

the robotic data mule. The absolute difference between 

every pair of the readings was calculated and hypothesis 

testing was performed for the resulting data set. Prior to 

the data collection using robotic data mule, experiments 

were also conducted in the same setting to find the 

difference in recorded temperature values from both the 

sensors (the sensor used on the robotic data mule and 

the thermostat in the BAS). The maximum absolute 

difference in the value observed was 0.88. Hence, for 

the statistical analysis, the null and alternate hypothesis 

was considered to be |µBAS - µData Mule| = 0.88 and |µBAS - 

µData Mule| < 0.88 respectively. The sample size of data at 

each location is 203 and hence the degrees of freedom 

are considered to be 202. The analysis and results are 

listed in Table 3. 

 

Table 3: The hypothesis t-test analysis done for 

comparing the data sets collected using BAS (1) and 

Robotic data mule (2).   

Location |µ1 - µ2|  |σ1 – σ2|  t statistic p value  

1 0.4721949 0.2491279 -23.32 1.66E-59 

2 0.7303503 0.8036509 -2.65 0.00043 

3 1.4959223 1.0150779      8.65 1 

 

Considering α=0.05 (confidence level of 0.95), it can 

be noted from the p-values in Table 3, it can be 

concluded that there is evidence to reject the null 

hypothesis and consequently the absolute difference of 

the values is always less than the threshold value (0.88°) 

for locations 1 and 2. However, there is no evidence to 

reject null hypothesis for location 3. Based on further 

investigation, we found out that the BAS sensor in the 

location is faulty. This is indeed one potential areas of 

application (finding erroneous sensors in the buildings) 

and advantage of collecting data with the robotic data 

mules. Hence, it is evident that the data collected by the 

robotic data mule is equivalent to the data collected by 



densely instrumented sensor network of BAS.           

7 Conclusion 

In conclusion, the new proposed methodology of 

indoor building energy and occupant comfort parameter 

data collection using mobile robots in comparison to the 

state of the art data collection is very effective and 

economical. In addition, this method does not require 

dense instrumentation of buildings with several fixed 

sensors and other systems that not only involve 

significant capital investment and effort, but also have 

perpetual issues such as maintenance, battery 

replacement, and sensor replacement. The sparse data 

collection method using a multi-sensory robotic data 

mule described in this paper can be easily adopted in old 

buildings, new buildings, and buildings with or without 

an existing BAS, which makes it very convenient for 

building managers and stake holders.  

Though the robot is tele-operated to collect the data 

in this experiment, it does demonstrate the feasibility of 

the proposed idea. Similarly, the data quality of the data 

collected when the robot is in tele-operated mode or 

autonomous mode is the same. In addition, the robotic 

data collection platform can also be programmed to 

actuate controls such as turning off the lights when the 

space is unoccupied, or alert the building manager if air-

conditioning or space heating is turned on in an 

unoccupied zone, and provide information regarding the 

real-time occupancy levels to the building manager to 

better control the respective areas in the building. 

Furthermore, this technique can be improvised to 

provide crucial information regarding thermal leaks, 

faulty building systems, and erroneous sensors to the 

building manager. 

8 Future work  

As part of future work, we are expanding the test-

bed and the mobile robot to monitor and compare 

additional parameters such as humidity, light, 

occupancy, and plug load. In addition, ongoing work is 

focused on  automating the process via a fully 

autonomous robot that will collect data in real-time, 

input the data collected in this manner into an energy 

simulation model of the building, and arrive at 

corrective actions and/or policy decisions for improving 

the overall energy efficiency and energy performance of 

the building.  
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