
Automated Code Compliance Checking Based on

 a Visual Language and Building Information Modeling

Cornelius Preidela and André Borrmanna

a Chair of Computational Modeling and Simulation, Technische Universität München, Germany

E-mail: cornelius.preidel@tum.de, andre.borrmann@tum.de

ABSTRACT

One of the most important issues during the

planning of a construction project is to maintain the

quality of the design planning constantly at a high

level. Therefore this quality must be checked

continuously in terms of accuracy and compliance to

the applicable codes and guidelines throughout the

duration of a project. Nowadays this checking process

is laborious, cumbersome and error-prone since it is

mostly performed manually based on two-

dimensional planning and iteratively at each planning

change by the responsible planning consultant.

Recently, various approaches attempted to automate

this highly relevant process with the help of digital

methods, such as Building Information Modeling, in

order to reduce the amount of work and increase the

quality of the planning at the same time. Although this

Automated Code Compliance Checking has been

implemented using a variety of different methods,

most of the existing approaches fail because they

represent the information of rules in an insufficient or

overly complex manner.

In this paper a short analysis of the pros and cons

of selected existing approaches is given and

subsequently minimal requirements for a successful

automation of this process are defined. To counteract

the lacks and insufficiencies of existing approaches, a

new method is introduced which enables an

automation using a flow-based, visual programming

language, which we call Visual Code Checking

Language (VCCL). Finally the practical imple-

mentation of a semi-automated compliance check

concerning an exemplary German fire code

demonstrates the viability of the approach.

Keywords –

Automated Code Compliance Checking; Building

Information Modeling; Visual Language; ISARC

2015

1 Introduction

Standards and guidelines in construction industry are

used for standardization of requirements and secure the

technological standards in order to guarantee the

structural stability, reliability, quality of material and not

at least the safety of the user. Therefore the compliance

check of the design planning concerning the applicable

rules and regulations represents an essential process

during the execution of a construction project. Due to the

variety of disciplines and subject areas in the building

industry a large amount of codes and regulations have to

be taken into account by the planning consultant, from

who a high level of expertise, experience and care is

demanded accordingly.

Case examples and requirements in guidelines, as

shown in Figure 1, can be presented in many different

ways, ranging from simple and clearly structured tables

with limiting values over graphical representations to

flow-text written descriptions.

Figure 1. Top: Illustration of a spatial case of fire

according to the German standard DIN 18232-

11:2007 [1] Bottom: Excerpt of the Norwegian

accessibility guideline, NS 11001-1.E:2009 [2]

Nowadays the checking process is performed to a

large extent manually based on two-dimensional

technical drawings and textual documents by the

responsible planning consultant as well as the building

permission authorities. Due to the low level of

automation the common checking procedure is time-

consuming, tedious and error-prone. This is particularly

evident when unwanted iteration cycles become

“The access route for pedestrians / wheelchair users

shall not be steeper than 1:20. For distances of less

than 3 metres, it may be steeper, but no more than

1:12. The access route shall have clear width of a

minimum of 1,8 m and obstacles shall be placed so

that they do not reduce that width.”

necessary due to modifications demanded by the

respective authorities or errors in the construction

processing. As a result, checking the code compliance of

the building design can be a major cause of delays and

cost increases in construction planning. Recently

significant delays of several major projects in Germany

have shown the impacts of a wrong execution of

checking processes. Therefore the public and political

interest has grown and have contributed to an increased

demand for an optimization of construction processes

with the help of modern digital tools [3].

Due to the continuing development of new

technologies in the recent years, the construction industry

is undergoing a fundamental transformation, which was

initiated in particular by the methodology of Building

Information Modeling (BIM). By means of new digital

methods and the rapid crosslinking of increasingly

powerful computers new practices and research areas

arise offering a range of new approaches to make

building processes more efficient [4,5]. As a result the

construction industry has gained the necessary resources

to automate and thereby optimize the checking process in

terms of effort, time and cost. During the BIM planning

process all information is stored in a central digital

building model, which in turn provides all the current

information for all project participants throughout the

entire life cycle of the building. It is recommendable to

use these already bundled data for a full- or semi-

automatic review of a model for compliance with

standards, so that finally the overall process achieves a

higher level of efficiency.

2 State of the Art

In the recent years various efforts were undertaken in

order to develop a method for Automated Code

Compliance Checking. In this paper some important

representatives of such methods are presented, and

subsequently the challenges and difficulties are discussed.

In Figure 2 chronological sequence of the treated

approaches is shown.

1995 2000 2005 2010 2015

CORENET BP-Expert CORENET ePlanCheck

Fornax

Solibri Model Checker

BERA

Figure 2. Representative approaches for

Automated Code Compliance Checking in the

recent years (inspired by [6])

2.1 CORENET & FORNAX

In 1995, the Singaporean building construction

authority (BCA) started the platform “Construction and

Real Estate Network” (CORENET) with the intention to

optimize the collaboration and interaction between all the

participants of a building project with special emphasis

on incorporating the responsible authorities [7].

Accordingly, the quality control of the design,

including code compliance checking, is of particular

importance for CORENET and was introduced as a

separate module called “CORENET e-Plan Check” in

2002. The provided checking functionalities focus on the

national applicable codes in the areas of building control,

barrier-free access und fire safety [8].

The main component of the code checking system is

the FORNAX library which has been developed and

maintained by a private company [9]. As a consequence

the correctness of the implementation is not verifiable

since the hard-coded checking routines are not

transparent for the user. Therefore this checking

functionality is called a black-box method [10,11].

Nevertheless CORENET represents one of the most

comprehensive approaches in the area of Automated

Code Compliance Checking since it covers a large part

of the Singaporean guidelines and is used in over 2500

companies of the AEC sector [9].

At this point it should also be mentioned that the

introduction of CORENET was heavily promoted by the

Singaporean government and accompanied by

appropriate legislation. As a consequence construction

companies in Singapore were brought to the use of

CORENET as they may otherwise not receive a building

permit for the construction projects. Taking the special

political, economic and demographic structure of this

country into account, it remains doubtful that such an

approach would prevail in the same way in a European

country.

2.2 Solibri Model Checker (SMC)

In the year 2000, the Finnish software company

Solibri introduced the Java-based Solibri Model Checker,

which was intended to be a validation and optimization

tool for digital building models stored in the Industry

Foundation Classes (IFC) data format. In the Rule

Manager component, the SMC provides a library of rules

and guidelines, from which the user can select and build

up an individual review process according to his

requirements [9].

Next to basic rules, which check the quality of the

imported IFC model, the manager provides mainly

geometry-oriented rules e.g. in the field of space

management and accessibility. The rule sets within the

SMC are implemented as hard-coded functions, which

access the information of the data model via a native

programming interface. Since this interface is not

available to the public, also the SMC implements a black-

box method, which makes no information of the process

visible for the user. An external development of new or

custom rule sets is only possible in cooperation with the

company Solibri.

2.3 Building Environment Rule and Analysis

Language (BERA)

Next to the to many directly implemented black box

methods, there are approaches that introduce a language-

based Code Compliance Checking. A significant

representative is BERA, a domain-specific programming

language, which has been developed not only for

querying but also for the formulation of checking

processes for digital building models [12]. Since this is a

language-based approach, which grants much more

manoeuvrability for users, it distinguishes itself clearly

from the methods discussed above. The transparent

description of procedures and the direct influence of the

user result in a higher potential to encode more complex

rules. As a proof of concept, BERA has already been

applied for first evaluations of buildings circulation and

spatial programmes. To this end the language provides a

set of spatial operators for the definition of rules in the

context of these application areas [9].

In summary BERA shows the high potential of

language-based methods and that this can be an important

point of departure. Nevertheless this approach lacks a

generality in the logic base, which is necessary to achieve

a higher versatility especially to define more complex

structures.

3 Challenges of an Automated Code

Compliance Checking

3.1 Common Structure

In order to demonstrate the challenges of the technical

implementation of an Automated Code Compliance

Checking the basic structure of the overall process has to

be identified first. Although each of the presented

approaches is characterized by its individual features, a

common structure of the compliance checking process

can be found. Eastman [9] defines the overall process as

a flow and interaction of four single process steps, shown

in Figure 3.

The main requirement and first step of any

compliance review is the translation of rules into a

machine-interpretable language. The idea of the

digitization of language in oral or written form exists

since the early days of computer science and is still a

highly relevant topic in the various application areas.

Basically it is about to translate the content of spoken or

written word as precisely as possible into binary code

[13]. Since guidelines and standards describe the

contented information usually in many different ways, it

is a major challenge to standardize this process.

Rule Interpretation

Building Model

Preparation

Rule

Execution

 Report

Checking

Results

Figure 3. Common structure of an Automated

Code Compliance Checking process (inspired

by [9])

In a next step the digital rules are read from an

executing instance, interpreted and processed on base of

information, which is provided by the digital building

model. Various investigations have shown that this step

can be a major error source due to inconsistencies,

contradictory, false or non-existent information in the

building model [14]. A direct use is therefore not

recommended, but to prepare the required information

separately and in a pre-processing step.

In a last step, the results of the review are finally

processed and retained for the user. In the more modern

approaches of an Automated Code Compliance Checking

this process step is designed primarily graphically.

3.2 Major Challenges

As shown in Section 2, there are a lot of different

approaches for an automation of the compliance

checking. Nevertheless several factors can be found,

which relativize this already reached degree of

automation:

Most of the existing approaches lack because of the

insufficient transparency and visibility of the processing

steps for the user. Many methods focus too much on the

automation of the checking process and do not consider

the incorporation of the user and therefore the practical

applicability. The correctness and accuracy of a

compliance checking is the responsibility of the reviser

and cannot be transferred to a machine because of legal

reasons. Therefore in building practice it is common to

manually verify and validate the results with

simultaneous or trailing plausibility checks, e.g. by rough

calculations by hand or comparison with empirical values.

Such a validation based on the experience of the reviser

is not possible if the transparency of each single process

step is not given. Because of its hardcoded machine-rules

the SMC represents such a black-box method and so it

fails in this point [8]. As a result an automated checking

must be a dynamic and semi-automated process that

moves the user into the focus and incorporates him into

the process. Although the reviser has usually no

programming skills, the human-readability of the

translated codes must be maintained. Such a method is

called white box and is schematically shown in Figure 4.

Input Output

Input Output

Black-Box

White-Box

Figure 4. Schematic representation of a black-box

and a white-box method (inspired by [11])

Furthermore, many of the approaches focus on

comparatively simple and straightforward rules. A

transfer of this method to a higher level of complexity

will be probably difficult, since the hard-coded and fixed

implementation of rules cause a rigidity, which inhibit

the formulation of complex rules. As a representative for

language-based approaches, BERA has shown that the

problem can be solved by creating a larger space of action

for the translation step. According to the modular

principle, complex structures can be build up by

composing simple elements with a low degree of

complexity, which are already well-defined and can be

reused by the user. For this purpose it is necessary that

the individual elements of the language are defined

within a fixed logic frame, in order to implement a formal

rigidness at the base.

4 Visual Code Checking Language

The approaches in Section 2 have shown, that there

are a lot of ways to automate the compliance checking,

but there are still a lot of inadequacies. To overcome

these insufficiencies we introduce a new approach, which

uses a visual language for representing the Code

Compliance Checking process.

4.1 Methodological Basis

In general a visual language can be defined as a

“formal language with a visual syntax and visual

semantics”, which means that it represents a modular

system of signs and rules using visual elements instead

of textual ones on the semantic and syntactic level [13].

Information systems, which are described by a visual

language can be interpreted much faster and easier by

humans. Visual languages are often also called flow-

based, since they display the complicated structures as a

flow of information. The reason for the higher

interpretation capability can be found in cognitive

psychology, which states that visual information can be

processed with two instead of only one hemisphere of the

human brain in parallel. Schiffer [13] performs a detailed

discussion of the advantages and disadvantages of visual

languages. In recent years visual languages, which are

also known as Visual Programming Languages (VPL),

have been established particularly in the field of control

and modification tools of digital information systems.

Known software products in the context of building

design are in particular the plug-in Grasshopper for

Rhinoceros3D [15] or Dynamo for Autodesk Revit and

Autodesk Vasari [16].

By adapting such a visual language to the specific

needs of the Code Compliance Checking, the presented

insufficiencies discussed in Section 3 can be overcome.

The approach focusses in particular on the human-

machine-communication, which represents a previously

defined, mandatory requirement for the success of an

automation of the Code Compliance Checking. At any

time and degree of completion of the visual processing

system, the user is able to understand and inspect every

single processing step, what is particularly important,

since the reviewer is responsible for the accuracy and

correctness of all compliance check results. If errors are

identified in the processing chain, the system can be

adjusted very quickly and simply according to the user’s

requirements. With the help of such a visual language, it

is possible to describe any compliance check without

sacrificing the transparency for the user.

Figure 5. Schematic illustration of the

principles of the VCCL

As shown in Figure 5 the VCCL follows three

principles: genericity, finest granularity and maximal

flexibility. The genericity describes the property of the

VCCL that all elements must be defined as generic as

possible regardless of the level of complexity. As a result

each elements can be used in any situation and on any

point of a desired structure. At the same time it must be

possible to break down each element to its lowest level.

This property of the VCCL is called finest granularity.

These two features cause a maximum of flexibility for the

user, who can formulate the desired content. Furthermore,

a visual language is ideal for building a library of simple

base elements, as it was introduced in Section 3.2. A

schematic structure of such a library for the VCCL is

shown in Figure 6.

VCCL

Genericity

Finest
Granularity

Maximal
Flexibility

O

Base Graph

Complex
Graph

Base GraphBase Graph

Complex
Graph

Complex
Graph

0

2

n

1

Operators Objects
Other

e.g. Table

VCCL Node Library

VCCL Graph Library

Basic Ops
Relation Op*

Iteration*

Data objects Relation*

set

d
e

g
re

e
 o

f
co

m
p

le
xi

ty

*planned

Figure 6. Schematic illustration of the VCCL node

library and its resultant VCCL graph library with

its ascending degrees of complexity

The principle behind it is to make the overall process

of compliance checking visible, by structuring this

process in a compilation of composite process steps.

Each of these elements is a single white box, which can

be considered as a small module of the whole process.

Therefore we introduce a modular principle, which can

be used by any user even without profound programming

skills. In this way we allow that any engineer can bring

his professional skills and his experience into the process.

4.2 Elements of the VCCL

To define a new language, both base aspects -

semantics and syntax - need to be defined. In the

following, the elements of each level and their graphical

representation are presented for the VCCL.

Object Node : datatype

label description label datatype

Figure 7. Illustration of an object node on VCCL

All elements of the semantic level are represented as

nodes. The object node, as shown in Figure 7, describes

an object that can be individually and clearly identified

in a real-world system. Therefore it must be of a

particular, unambiguously data type. For a better

interpretation, attributes of objects can also be visualized

as single elements (see Figure 8). The visualization of

attributes is not obligatory and is only intended to let the

user capture a complex flow of information.

Area : Float

Room X : Room

Height : Float

Walls :

set<Wall>

Wall 1

Wall 2

Wall n

set

<Wall>

Figure 8. Illustration of an attribute and set node

A special form of an object node is a set of objects. In

this node multiple objects of the same type can be stored.

Principally it represents thus a special data type for an

object node. An example of a set object is shown in

Figure 8.

Operator Node

label description

Figure 9. Illustration of an operator node on

VCCL

For the description of processes between object nodes

the VCCL uses the operator node (see Figure 9). Such a

node describes a well-defined operation on a specified

number of input variables - the operands - and generates

a corresponding result.

Input-Port Output-Port

Figure 10. Illustration of a generic node and its

interfaces (called ports) and directed edges

The elements of the syntactic level are represented as

edges and interfaces. A directed edge links two VCCL-

nodes and thus builds up a processing chain. By defining

the unambiguously direction of the edge, the

representation of the information-flow is specified (see

Figure 10). To describe the connection between VCCL-

nodes precisely, each semantic object has a certain

number of interfaces (called ports) defining which

information can be passed. In this way, the transmission

of information across the processing chain is given a

fixed frame and inconsistencies can be prevented. A port

on the left side of a VCCL element is responsible for the

incoming information and therefore is called Input-Port.

Accordingly, ports on the right side are responsible for

outgoing information and therefore called Output-Port. A

schematic illustration of the different types of ports is

shown in Figure 10.

4.3 Application of the VCCL

With these elements, it is possible to build up a VCCL

graph, which describes a certain checking procedure. At

the same time the process remains transparent and each

process step visible as a single element of the information

system.

Set :

set<Wall>

Get

Access

set<Wall>

Building Model :

Model

 Wall :

String

String

Wall 1

Wall 2

Wall n

set

<Wall>

Model

Figure 11. VCCL graph describing the access to a

certain data member

An example of the VCCL for accessing wall

components of a building model is illustrated in the

following example, shown in Figure 11. In this example,

both initial object nodes hold certain information of a

defined data type and transfer it via the ports and the

edges to the operator node. Inside of this operator the

information of both elements is processed according the

instructions that were assigned to the operator node. In

this case, the model instance is accessed for the filter

criteria “Wall”, which means that the operator extracts all

building elements of type “Wall” from the building

model. This is a common procedure, which can be

applied for any attribute which is stored in the respective

object. The result is finally transferred to the resulting set

node.

Figure 13. Excerpt of the data table for the

required smoke ventilation area in m² [1]

Since this is a very simple example, the application

will now be shown for a more sophisticated case. In order

to demonstrate the potential and versatility of the

approach, a semi-automated compliance check regarding

an applicable German standard is shown. A central

regulation of the DIN 18232-2:2007-11, a German

standard for the design of buildings in terms of smoke

and fire protection represents a spatial case of fire (see

Figure 1). Depending on the height of the room, the

height of the smoke layer and the fire classification, the

guideline requires a minimal smoke ventilation area that

is listed in a data table, which is shown in Figure 13. The

translation of this central regulation is shown in Figure

12 as a VCCL-graph. In this processing graph a single

room is identified and afterwards its attributes are used to

capture both values “Target area” and “Actual area”. The

final result of this check is the comparison of these values,

to check whether the limit value is met or not.

Get
Float(*)

Building Model :

Model

Area : Float

Access

 Room X :

String

Room X : Room

Model

Room
Height : Float

Get

Room

 Height :

String String

Necessary smoke

ventilation area

(**)

Float

 Opening :

String

Get
Room

String

Openings :

set<Opening>

set

<Opening>

 Area :

String

Area : Float

String

set

<opening>

Actual area:

Float

Target area :

FloatFloat Comparison
Float

Float

Result : Bool
Bool

Fire classification :

String

String

Height smoke layer :

Float

Float

String

Opening X

Opening Y

set<Opening>

(*)

Automatic sum up of all

Float-attributes of the

elements, which are stored

in the object node

(**)

Special node, which can

access a datatable and

search for limiting

boundary values according

to certain criteria

Figure 12. VCCL graph describing the central regulation of the DIN 18232-2:2007-11

4.4 Proof of Concept

In order to validate the concept of the VCCL a

practical implementation of this language-based method

was carried out and is presented in this section.

Figure 14. User interface of the bim+ viewer [17]

The application of the VCCL was developed and

designed in close cooperation with the German software

vendor Nemetschek [17]. As basis for the VCCL serves

bim+, which is a standardized central platform for

building information exchange. Next to a large number

of basic functionalities, such as a web project

management and a web viewer (see

Figure 14), the platform provides an open REST-API,

which enables developers to use the platform for their

own purposes, such as the building information handling

by the VCCL.

We developed the CodeBuilder plugin, which allows

the user to build up a VCCL graph using a library of

elementary nodes. Since bim+ is used as a database,

which allows a fast loading and switching of different

models, especially the principle of generality of a VCCL-

graph comes into effect. Each graph, which was built up

by the user, is valid for any building model stored on the

platform. Therefore the model can be changed on the fly

and the graph can be re-processed immediately.

Furthermore the CodeBuilder focuses particular on the

incorporation of the user in the checking procedure. Most

of the nodes are able to display intermediate results of the

processing procedure. As an example, relevant building

elements, which fulfil or fail a certain check can be

highlighted directly in the geometry view as shown in

Figure 15. In this way, the user is able to check, if the

processed result meets his expectations and requirements.

The developed tool was examined for its practical

applicability. To this end the central regulations of DIN

18232-2 discussed above were translated into VCCL and

successful semi-automated. Exemplarily, the user

interface as well as a result of a geometric checking,

which stated an intermediate result of the VCCL

processing, is shown in Figure 15.

5 Conclusion and Outlook

The large number of existing approaches have shown

the extraordinary relevance and importance of an

Automated Code Compliance Checking for the

construction industry. The introduction of VCCL has

demonstrated that it is possible to automate the

compliance checking of a building information model

using a visual language and BIM. At the same time

various requirements that were not met adequately in

previous research approaches can be fulfilled. By

implementing the VCCL within the CodeBuilder plugin,

we proved the practical viability of the approach.

In building practice, there is a variety of codes and

many different ways of presenting information.

Therefore it is necessary to develop more VCCL

elements, which are able to represent this information

within a node and in a VCCL graph. Based on an analysis

of other standards, these representations can be identified

and serve as a basis for further development. In this way,

a library of VCCL elements progressively grows, which

captures more different applications.

The introduction of a visual, flow-based language for

Figure 15. Left: User interface of the CodeBuilder plugin in bim+ [17] Right: Visualized result of a check:

Automatic identification, which building elements contain an opening and belong to a certain Room

Automated Code Compliance Checking creates the basis

of a new genre for the automation of processes in

construction industry. This approach opens up a variety

of opportunities for other developments in the field of

construction. An example is the bidding process for a

construction project, which is subject to individual

company rules and specific guidelines for the quantity

take-off.

In summary it can be stated that the introduction of

the VCCL represents a step towards the automation of

many processes in construction industry and can serve as

a base for several following approaches.

Acknowledgements

The authors gratefully acknowledge the support by

Nemetschek Allplan GmbH for the presented research.

References

[1] DIN 18232:2007-11 - Smoke and heat control

systems - Part 2: Natural smoke and heat

exhaust ventilators; design, requirements and

installation, 2007.

[2] NS 11001-1, issue date: 2009, Universal design

of building works - Part 1: Buildings open to the

public, 2009.

[3] K. Kammholz, So werden Baudesaster wie der

BER künftig vermieden, Die Welt. (2014).

http://www.welt.de/politik/deutschland/article12

7986675/So-werden-Baudesaster-wie-der-BER-

kuenftig-vermieden.html (accessed January 13,

2015).

[4] S. Mihindu, Y. Arayici, Digital construction

through BIM systems will drive the Re-

engineering of construction business practices,

Proceedings - International Conference

Visualisation, VIS 2008, Visualisation in Built

and Rural Environments. (2008) 29–34.

[5] N.W. Young Jr., S. Jones, H. Bernstein, The

business value of BIM: Getting building

information modeling to the bottom line,

Bedford, MA: McGraw-Hill Construction.

(2009) 51.

[6] J. Dimyadi, R. Amor, Automated Building Code

Compliance Checking – Where is it at ?, in:

Proceedings of CIB WBC 2013, Brisbane,

Australia, 2013: pp. 172–185.

[7] T.A. Lin, Building Smart - A Strategy for

Implementing BIM Solution in Singapore,

Synthesis Journal 2006. 5 (1995) 117–124.

[8] R.X.R. Xu, W. Solihin, Z.H.Z. Huang, Code

Checking and Visualization of an Architecture

Design, IEEE Visualization 2004. (2004) 10p–

10p.

[9] C. Eastman, J. Lee, Y. Jeong, J.-K. Lee,

Automatic rule-based checking of building

designs, Automation in Construction. 18 (2009)

1011–1033. doi:10.1016/j.autcon.2009.07.002.

[10] N. Nisbet, J. Wix, D. Conover, The future of

virtual construction and regulation checking, in:

P. Brandon, T. Kocatürk (Eds.), Virtual Futures

for Design, Construction and Procurement,

Blackwell Publishing Ltd, 2008: pp. 241–250.

[11] L. Von Bertalanffy, The History and Status of

General Systems Theory., Academy of

Management Journal. 15 (1972) 407–426.

[12] J.K. Lee, Building environment rule and

analysis (BERA) language and its application

for evaluating building circulation and spatial

program, Georgia Institute of Technology,

2011.

[13] S. Schiffer, Visuelle Programmierung -

Grundlagen, Potentiale und Grenzen, Addison-

Wesley, 1998.

[14] J. Beetz, B. de Vries, J. van Leeuwen, IfcOWL:

A case of transforming EXPRESS schemas into

ontologies, Artificial Intelligence for

Engineering Design, Analysis and

Manufacturing. 23 (2009) 89–101.

doi:10.1017/S0890060409000122.

[15] Robert McNeel & Associates, Rhinoceros3D,

(2014). http://www.rhino3d.com/ (accessed

April 29, 2015).

[16] Autodesk Inc., Autodesk Homepage, (2015).

http://www.autodesk.com/ (accessed April 29,

2015).

[17] Nemetschek Allplan Deutschland GmbH, bim+,

(2015). http://www.bimplus.net/ (accessed

January 13, 2015).

	1 Introduction
	2 State of the Art
	2.1 CORENET & FORNAX
	2.2 Solibri Model Checker (SMC)
	2.3 Building Environment Rule and Analysis Language (BERA)

	3 Challenges of an Automated Code Compliance Checking
	3.1 Common Structure
	3.2 Major Challenges

	4 Visual Code Checking Language
	4.1 Methodological Basis
	4.2 Elements of the VCCL
	4.3 Application of the VCCL
	4.4 Proof of Concept

	5 Conclusion and Outlook
	Acknowledgements
	References

