
Automatic Detailing of Parametric Sketches

by Graph Transformation

S. Vilgertshofer and A. Borrmann

Chair of Computational Modeling and Simulation, Technische Universität München, Germany

E-mail: simon.vilgertshofer@tum.de, andre.borrmann@tum.de

ABSTRACT

In the scope of planning and realizing large

infrastructural projects, it is reasonable to create

product models as multi-scale models comprising

multiple levels of detail (LoD). To avoid

inconsistencies among the different LoDs, it is

necessary to apply parametric modeling techniques

which allow the automatic preservation of the model’s

consistency across the different LoDs in the case of

modifications. Previous research in this area has

revealed that the manual creation of consistency

preserving parametric product models is a very

complex, time consuming and error-prone task.

Therefore, research concerning the automation of the

detailing processes is necessary. This paper presents a

detailing automation approach which is based on

graph transformations. It discusses how two-

dimensional parametric geometric models (sketches)

can be represented by graphs and how detailing steps

can be realized through graph transformation. A

general approach to represent sketches by the use of

graphs and the limitations applying to such an

approach is described. It is discussed how geometric

elements and corresponding parametric constraints

of a sketch can be depicted by the nodes and edges of

a graph and their attributes. Furthermore, the

properties of the graph that are required for a non-

ambiguous representation are analyzed. Based on

those requirements a corresponding graph rewriting

system is introduced. The functional capability of the

presented theories were validated through a

prototypic implementation executing the stepwise

detailing of a sketch representing a shield tunnel

section.

Keywords –

Level of Detail; Multi-scale Modeling; Graph

Transformation; Parametric Modeling

1 Introduction

Carrying out the design and engineering of building

projects successfully is a challenging process for all the

parties involved. While even small and seemingly

straightforward projects may evoke complex issues, this

almost always applies to huge projects in which

numerous boundary conditions and constraints as well as

a vast number of experts from different domains are

involved.

Obviously, it is the case for large infrastructure

facilities like inner-city subway tracks that extend over

long distances and need to be modeled and displayed at

the right level of abstraction for an effective planning

process. This implies the necessity to comprehensibly

model project-wide overviews just as much as the lowest

details for the particular user. It leads to widely differing

scales and calls for the conception of plans and models

utilizing multi-scale modeling methods.

Such methods are either not or only rudimentary

implemented in BIM modeling tools, though already well

established in the domain of geographic information

systems by the use of multiple levels of detail (LoD).

To integrate this principle with BIM-methods,

considerations concerning the display of a product

model’s geometry in varying scales but without any loss

of consistency need to be taken into account.

A general method for the combination of semantic

and geometric aspects of such a multi scale model is

described in [1] and was used to develop a multi-scale

product model for shield tunnels. It specifies a formal

definition of five LoDs and investigates the (parametric)

relations of geometric elements in different LoDs

required for consistency preservation.

An essential part of such a product model is a

geometric model depicting an object in multiple stages of

a detailing process. The manual generation of such

consistency preserving parametric multi-scale models is

a very complex, time consuming and error-prone task.

Analysis towards the automation of this process is the

main motivation for the research outlined in this paper.

Therefore it presents a detailing automation approach

which is based on graph transformation. In this context

the paper discusses how two-dimensional parametric

geometric models (sketches) can be represented by

graphs and how detailing steps can be executed through

the transformation of this graph.

To actually utilize this concept and to prove its

functional capabilities the resulting graph data is used to

automatically draw parametric sketches in a parametric

CAD software tool. A sketch created thus is called the

evaluated sketch in our approach.

In this scope the main focus of the research process is

outlined by the following aspects:

1. Graph-based representation of parametric sketches.

2. Detailing of sketches by transformation of the

representing graph.

3. Creation of the evaluated sketch via interpretation

of the generated graph data.

The benefit of this approach lies in the possibilities

offered by graph transformation techniques which

include the definition of formal rules. Once defined,

those rules may be executed multiple times to alter or

detail sketches without the necessity of manually creating

geometry or parametric constraints. Thereby, the user can

focus on the actual design process since he does not need

to concentrate on consistent parametric modeling.

Instead, he only has to choose which rules to execute. The

created sketches can be used as a basis for extrusion

operations resulting in three-dimensional models.

To illustrate the overall approach, the detailing

process of a simplified shield tunnel section and its

corresponding graph-based representation is shown in

Figure 1. To ensure readability of the figure, parametric

constraints are neither displayed in the sketch nor labeled

in the graph-based representation.

Point LineCircle Constraint

Figure 1. Detailing process of a sketch depicting a

simplified shield tunnel section and its

corresponding graph-based representation

The paper is organized as follows: Section 2 discusses

related works and the theoretical background of the

research. The general concept and issues of the graph-

based approach are outlined in Section 3 while Section 4

describes the actual development results of a graph

rewriting system. The paper concludes with a summary

of the main findings and the discussion of future work.

2 Related Work and Theoretical

Background

2.1 Integration of Multi-Scale Modeling in

BIM

The idea of visualizing buildings or infrastructure

facilities in different LoDs has been well established in

the GIS domain for several years. For example, CityGML

an XML-based data model for the representation of 3D

city models comprises five LoDs [2]. Representations in

coarse LoDs are generated from finer ones by abstraction.

The design process inherent to construction projects on

the other hand usually starts with a very general

representation that gets refined stepwise throughout the

planning phases [1].

Another aspect of the GIS approach is the lack of

consistency preserving mechanisms in the data model -

changes in one level of detail do not automatically lead

to an update of the respective geometry in any other LoD

[3]. This is caused by an independent storage of the

geometry data in each LoD.

In [1], [3] and [4] the potential of this multi-scale

approach is developed further and was successfully

integrated into a comprehensive concept that permits the

multi scale representations of building information

models particularly directed to the modeling of shield

tunnels. The challenge of a consistent representation

throughout the multiple LoDs is addressed by the

introduction of procedural modeling.

The ideas laid out in those publications are the main

premise for the conceptual approach presented in the

paper at hand. They describe the need for an automated

detailing method to generate the geometry of the

respective product models to supersede the

disadvantageous manual generation of consistent

parametric sketches or whole models.

2.2 Parametric Modeling and Formal Graph

Theory

2.2.1 Parametric Modeling

Parametrical modeling techniques [5] are used in

many CAD applications and provide the possibility not

only to create drawings with definite dimensions but to

define the rough layout of geometric objects by using

constraints resulting in a parametrical sketch. The

geometric elements such as points, lines, and circles of a

sketch are not fixed in their location and dimension.

Instead, they are arranged by geometric and dimensional

constraints and thereby define a constraint problem [6].

This constraint problem is solved by the geometric

constraint solver (GCS) integrated in the respective CAD

application. The GCS analyses and solves the constraint

problem. When more than one solution can be found

(which is often the case) it proposes the solution most

similar to the actual user input, suspecting the user to

draw something close to his expected solution [7].

Since dimensions are not defined by actual values but

by parameters which may refer to each other, quick

alterations may be performed. Affected parameters are

updated according to defined dependencies.

This permits the rapid simulation of various drafts or

the adaption to modified boundary conditions without the

effort of manually recreating the whole model.

To prove the concept shown in this research, we

employed the parametric modeling software Autodesk

Inventor.

2.2.2 Graph Rewriting

Graph rewriting is a mechanism to create a new graph

out of an existing graph by altering, deleting or replacing

parts (subgraphs) of the existing graph. The

corresponding formal operation applied to the existing

graph is called a graph rewrite rule 𝐿 → 𝑅. It is defined

by a pattern graph 𝐿 (also called left-hand side of the rule)

and a replacement graph (right-hand side). When applied

to an existing host graph, an occurrence of 𝐿 is searched

by pattern matching in the host graph. A found

occurrence is then replaced by an instance of 𝑅 .

Depending on the definition of the rule, the search

process also works for labeled and attributed graphs. A

set of such graph rules is called a graph rewriting system.

There are several different approaches to graph

rewriting, e.g. the Single-Pushout Approach (SPO) and

the Double-Pushout Approach (DPO) which are both

algebraic approaches [8]. Alternatively, the Node Label

Controlled Mechanism [9] or the Hyperedge

Replacement Mechanism may be used [8].

The graph rewriting software tool GRGEN.NET used

in the scope of this research [10] is based on the SPO. It

allows the definition of rewrite rules and their automatic

execution on a given graph.

3 Conceptual Approach and Problem

Analysis

3.1 The Graph-Based Approach

The expected advantage of using graphs for the

representation of parametric sketches lies in the

possibilities offered by the concept of graph rewriting.

The execution of rewriting rules is supposed to

automatically alter or detail a sketch represented by the

particular graph.

It can be assumed that the presented graph-based

approach to represent a geometric model whose topology

is defined by parametric constraints is generally possible,

because:

 Mathematically graphs are net-like structures used

to formally represent objects and relationships

between those objects. Due to their formal

definition they permit consistent alterations to

change the objects and various corresponding

relations.

 Sketches may also be understood as structures

composed of basic elements (points, lines, circles,

etc.) which form a sketch through their positioning

to each other. The geometric constraint solvers

implemented in parametric modeling systems also

use graphs to model the geometric elements and the

parametric constraints composing a parameterized

sketch [6].

3.2 Main Challenges

To allow insight into the research process leading to

the findings presented in this paper an overview of the

main problems inherent to the conceptual approach is

given. Therefore, the issues listed in the introduction are

discussed in detail. Their solutions are the basis for the

properties of the developed graph rewriting system

presented in Section 4.

3.2.1 Graph-Based Representation of Parametric

Sketches

First of all, the problem of actually representing a

parametric sketch has to be addressed.

The graph needs to be able to represent the geometric

elements of a sketch as well as the parametric properties.

As the topology of a sketch should be described mainly

by the definition of parametric constraints, it is necessary

to avoid absolute coordinates to achieve a full

parametrization.

The constraint problem defined by the graph needs to

be solved by the GCS of a CAD system as described in

section 2.2.1. Unfortunately the CGS may produce more

than one correct solution when no absolute coordinates

are given. This may lead to an evaluated sketch which

does not match the one desired by the user.

In this approach a particular graph-based

representation must be interpretable unambiguously,

though. It has to be definite and its interpretation must

lead to only one evaluated sketch. Otherwise the creation

of a sketch via graph-based data may lead to wrong or

unintended results.

To satisfy both the avoidance of absolute coordinates

and the unambiguous interpretation, the involvement of

a GCS implemented in most parametrical modeling tools

is necessary. The GCS can create a sketch by analyzing a

set of geometric elements and corresponding parametric

constraints to find a solution which meets all the

requirements posed by the constraints. Unfortunately,

many sets of parametrical constraints and geometric

elements lead to various formally genuine solutions,

although only one of those solutions matches the user’s

intention. Therefore the graph-based representation

requires to comprise enough information for the sketch

to be modeled accurately. This may lead to a necessity

for coordinates describing the relative positioning of

geometric elements to each other. This problem is further

examined in Section 4.

The requirements of the graph-based representation is

summarized as follows:

1. The graph must be able to represent geometric

elements of different types.

2. The graph must be able to represent various

parametric constraints.

3. The represented sketch needs to be fully

parameterized and should include only the most

necessary absolute coordinates.

4. For an interpretation of the graph by a GCS exactly

one solution may exist.

3.2.2 Detailing of Sketches by Transformation of

the Representing Graph

In general, the detailing of a sketch is to be

understood as a process in which an initially primitive

drawing is transformed into a more and more complex

one by the alteration, replacement or addition of elements.

This process is executed in separate steps.

To illustrate this process, the detailing of a sketch

depicting the simplified cross-section of a shield-tunnel

is shown in Figure 2.

Figure 2. Detailing of a sketch depicting the

simplified cross-section of a shield-tunnel

Due to the increase of complexity in the sketch, the graph

representing the sketch has to become more and more

complex accordingly (see also Figure 1). Therefore,

methods of graph transformation need to be analyzed in

respect to their capability of representing detailing steps.

A corresponding graph rewriting system has to

incorporate a set of rules formalizing those

transformation methods. For any desired detailing

operation in a particular sketch a particular rule has to be

defined.

To achieve an automated computational execution of

those rules they need to be implemented in a graph

rewriting software tool. However, a successful

implementation requires basic guidelines for the

development of those rules. These guidelines must be

followed to ensure that the application of any rule on the

graph-based representation of any sketch will lead to a

representation matching the requirements defined in

Section 3.2.1.

In scope of the problem to detail a sketch by graph

transformation the following questions can be

summarized:

1. What are reasonable methods of graph

transformation to represent detailing operations?

2. Which requirements need to be satisfied by the

rewrite rules in order to produce only unambiguous

representations?

3. What kind of information has a certain rewrite rule

to comprise in order to allow the correct

representation of a detailing operation?

Additionally the issues described in this section go

hand in hand with the requirements listed in the previous

section. Hence, every conclusion needs to be checked

with regard to its conformity to all of the outlined

conditions.

3.2.3 Creation of the Generated Sketch via

Interpretation of the Representing Graph

Data

As described in Section 1, the data modeled in the

graph should be displayable in a parametric CAD

application for further use. As the parametric constraints

defined in the graph are also part of this model, its

dimensions can be altered manually through the

modification of the respective parameters in the CAD

application. The implementation was carried out on the

basis of the parametric modeling software Autodesk

Inventor.

The graph-based representation is generated and

transformed in a graph rewrite software tool (see Section

2.2.2). The interpretation of the resulting graph-based

data is performed by a developed programm which

accesses the API of Autodesk Inventor. It then executes

the required construction operations to create and display

the geometric elements and parametric constraints

resulting in the display of the evaluated sketch.

While this workflow is generally applicable to any

parametric CAD system, the process of interpreting the

graph data needs to be adapted to the particular CAD

system’s API.

4 Development of a Graph rewriting

system

To successfully develop a working graph rewriting

system matching the pre-defined requirements, an

iterative process was carried out. During this process, the

general properties, the metamodel and the rewrite rules

of the graph rewriting system were gradually adjusted

until the results enabled an automatic detailing of

sketches and their creation in the parametric modeling

software Autodesk Inventor.

The main properties of the developed graph rewriting

system, its metamodel and its rewrite rules are outlined

in the following sections.

4.1 General

In this section, the general definitions of the graph

and additional necessary properties are described.

The type of graph used in scope of this paper is a

multidigraph or directed multigraph with loops (edges

which start and end on the same node). It permits two

edges to have the same start and end nodes. The multiple

edges are necessary in case two of the represented

geometric elements are linked with two or more

parametric constraints. Loops are required for the

representation of constraints that apply to only one

geometric element.

As already depicted in Figure 1, nodes are generally

used to represent the geometric objects of a sketch

whereas edges are used for parametrical constraints.

4.1.1 Ports

Some geometric elements have multiple parts that a

constraint may apply to. Lines for example have a

starting point and an end point. For modeling a coincident

constraint linking a line with a point, it is necessary to

define which endpoint of the line it is referring to. To this

end, so-called ports similar to an approach in [11] are

assigned to geometric elements. They clearly define

which part of the geometric element the constraint refers

to. Depending on the particular type of geometric

element, the amount of necessary ports varies.

Conceptually, a port is part of a geometric element.

The actual port information is stored in the attributes of

the edge representing the constraint attached to the object,

though. As those edges always connect two nodes

representing the linked elements, directed edges are

essential to determine which port belongs to which

element.

Figure 3 depicts the necessity for ports by illustrating

two possible correct interpretations of a graph that does

not contain any port information.

Circle

Line

C
o

in
c

id
e
n

t

C
o

in
c
id

e
n

t

Figure 3. Interpretation of a graph without port

information may result in multiple formally

correct sketches

If the starting point of the line is defined to be

coincident with the center of the circle and the endpoint

is coincident with the arc of the circle, the interpretation

of the shown graph will clearly result in the lower sketch.

4.1.2 Temporary Coordinates

If there are multiple solutions to a given constraint

problem, the GCS chooses the solution which is most

similar to an existing geometry. As we try to avoid

absolute coordinates to create a parametric sketch, the

GCS may produce a solution that is formally correct, but

does not match the user’s intention.

In order to match the requirement of an explicit

representation, temporary coordinates are assigned to

geometric elements. Those temporary coordinates form

an approximation of the relative positioning of the

geometric elements to each other. With their help, the

interpretation of the graph-based representation by the

GCS of a modeling software will always result in the

intended sketch.

The temporary coordinates are stored in attributes of

the nodes representing the geometric elements. Their

values are calculated by the graph rewriting system

during the graph transformation process. This causes the

elements to be positioned at their temporary coordinates

when created in the modeling software and thus performs

an obvious solution for the GCS. The described method

of prearranging the geometry does now lead to the

intended solution.

4.2 Metamodel

A metamodel is a "data model that specifies one or

more other data models" as described in ISO 11179. In

terms of graph rewriting the metamodel therefore is an

upfront definition of the entities (nodes and edges) a

graph may consist of - including labels and attributes of

those nodes and edges. A graph rewriting system needs

such a definition comprising all the nodes and edges that

may be used during any rewrite operation for successful

execution of those rules [10].

The metamodel developed in scope of the presented

research is shown in Figure 4. Its structure is based on an

object-oriented approach and thereby allows the

inherence of attributes. As nodes are used to represent

geometric objects and edges are used for the

representation of parametric constraints, the metamodel

is structured accordingly.

The types of nodes and edges defined in the

metamodel were developed in response to the

requirements defined in Section 3.2.1. So far, they permit

the representation of sketches consisting of points, lines

and circles.

The types of parametric constraints that can be

represented are divided in geometric and dimensional

constraints. The supported geometric constraints

represented by different types of edges are listed below:

 Horizontal and Vertical: A line is either parallel to

the x- or y-axis of the coordinate system.

 Fixed: A geometric element is bound to remain on

its assigned coordinates.

 Collinear, Parallel and Perpendicular: Those

constraints always refer to a pair of lines. In case of

the collinear constraints the lines lie on the same

straight line. Parallel and perpendicular constraints

work as implied by their names.

 Concentric: Two circles are forced to have the same

center.

 Equal: Two lines or circles have the same length or

radius.

 Coincident: Two geometric elements are coincident

and are thus positioned at the same location in the

sketch. If one or two of the elements are lines or

circles, a port (see Section 4.1.1) has to be defined

to explicitly determine which part (center, arc,

starting point or endpoint of a line, etc.) of the

geometric element is referenced. Therefore the

representing edge needs to possess attributes

defining the necessary ports.

Dimensional constraints describe distances, e.g. the

distance between two points, the radius of a circle or the

length of a line. The size of a dimensional constraint can

either be a parameter or a numerical value. Parameters

can be defined by mathematical functions and thereby

refer to the parameters of other dimensional constraints.

Two types of edges were defined for the

representation of dimensional constraints. To describe

the length of a line or the radius of a circle,

DC_OneElement is used, as only the dimension of one

GeometricalElement

CircleLinePoint

Node Types

Constraint

Perpen-
dicular

GeometricalConstraintDimensionalConstraint

Concentric

Parallel

Fixed

Equal

Coincident

Vertical

Collinear

Horizontal

DC_OneElement

DC_TwoElements

Edge Types

Figure 4. The metamodel of the developed graph

rewriting system (without attributes).

geometric element is considered. If the distance between

two elements needs to be defined DC_TwoElements is

required. Analogously to the coincident constraint ports

must be defined for lines or circles, to define which part

of the geometric element is referenced.

Edges representing dimensional constraints need

attributes to define their value or parameter

(parametric_value). Additionally a parameter indicating

if the constraint is driven is necessary. In case of

DC_TwoElements two more attributes are required to

describe the ports.

The metamodel developed in scope of this research is

generally applicable to any sketch consisting of the listed

geometric elements and parametrical constraints. It may

be extended to allow the representation of additional

elements or constraints.

4.3 Rewrite Rules

Rules are used to automatically transform the graph-

based representation of a sketch into the representation of

a refined or altered version of the sketch. Thereby the rule

represents this particular detailing step or alteration.

Contrary to the metamodel the rewrite rules cannot be

considered generally compatible to any type of sketch or

detailing process. Hence, a rule has to be defined for each

desired transformation operation individually.

In order to define a certain rule the initial sketch has

to be compared to the desired modified sketch. The host

graph can then be derived from the initial sketch. The

desired result graph on the other hand needs to be

constructed in a way that its interpretation will result in

the modified sketch. By comparing the two graphs the

applicable pattern and replacement graphs composing the

rule can be determined. Comparison has to be performed

with regard to the structure of nodes, edges and their

attributes. This method to define a rule is illustrated in

Figure 5.

initial sketch modified sketch

host graph

represents the
modified sketch

result graph

represents the
initial sketch

rewrite rule

comparison

replacement graphpattern graph

Figure 5. Flow-chart illustration of our approach

to define a rewrite rule

To show the composition of a rule, the detailing operation

shown in Figure 6 is analyzed.

Figure 6. Exemplary detailing operation

The alteration is the addition of a line representing the

floor of a shield-tunnel. Therefore a new node

representing a line has to be added to the graph by

connecting it with the appropriate edges.

The left side and the right side of the rewrite rule are

illustrated in Figure 7.

FixPoint

Circle

Line

FixPoint

Circle

Coincident

Coincident

DC_TwoElements

Horizontal

RL

Figure 7. Rewrite rule that adds a horizontal line

to a sketch. The endpoints of the line are defined

to be coincident with the arc of an existing circle

H
o

ri
z

o
n

ta
l

D
C
_O

ne
Ele

m
en

t

FixPoint

Circle Circle

Line

C
o

in
c
id

e
n

t

Concentric

DC_TwoElements

C
o
in

c
id

e
n

t

C
o

in
c
id

e
n

t

DC_TwoElement

D
C

_O
ne

Ele
m

en
t

FixPoint

Circle Circle

Coincid
ent

Concentric

DC_TwoElements

Host Graph

Modified Host Graph

Figure 8. A graph before and after the execution

of the rule shown in Figure 7

To demonstrate the effect of executing the rule the host

and the result graph are shown in Figure 8. It should be

noted that Figure 7 and 8 only contain labeled nodes and

edges but do not show any attributes.

When executing a number of additional rewrite rules

on a graph to generate a more detailed sketch, the graph

gets more and more complicated and interconnected.

Figure 9 illustrates the outcome of a succession of

multiple rewrite rules executed on a graph representing

only a point on the tunnel alignment. Those rules

generate the representation of a sketch depicting the

shield tunnel section including the floor and two tracks.

Point

Line

Circle

Constraint

Figure 9. Comparison of two graphs representing

a sketch in different stages of the detailing process

5 Conclusions and future work

This paper presents a concept for the graph-based

representation of two-dimensional sketches and their

automatic detailing by performing graph transformation

operations using formal rules defined in a graph rewriting

system.

Main contributions are the formal definition of the

graph rewriting system composed of a largely universal

metamodel and corresponding rewrite rules. A method to

define those rewrite rules applying to specific detailing

operations focusing on cross-sections of a shield tunnel

is shown.

The functionality of this system has been validated

through the development of a software prototype capable

of creating sketches according to the represented

parametric geometry in the parametric modeling system

Autodesk Inventor.

Further research is focusing on extending the graph-

based approach from the representation of two-

dimensional sketches towards the modeling and detailing

of three-dimensional tunnel sections and the actual

possibility to represent multiple levels of details in a

consistent manner, as described in [1], [3] and [4].

Acknowledgements

We gratefully acknowledge the support of the

German Research Foundation (DFG) for funding the

project under grant FOR 1546.

References

[1] Borrmann A., Kolbe T. H., Donaubauer A., Steuer

H., Jubierre J. R. and Flurl M. Multi-scale

geometric-semantic modeling of shield tunnels for

GIS and BIM applications. Computer-Aided Civil

and Infrastructure Engineering, DOI:

10.1111/mice.12090, 2014.

[2] Kolbe T. H. Representing and Exchanging 3D City

Models with CityGML. In Proc. of the 3rd

International Workshop on 3D Geo-Information,

Seoul, Korea, 2008.

[3] Borrmann B., Ji Y. and Jubierre J. R. Multi-scale

geometry in civil engineering models: Consistency

preservation through procedural representations. In

Proc. of the 14th Int. Conf. on Computing in Civil

and Building Engineering, Moscow, Russia, 2012.

[4] Borrmann A., Flurl M., Jubierre J. R., Mundani R.-

P. and Rank E. Synchronous collaborative tunnel

design based on consistency-preserving multi-scale

models. Advanced Engineering Informatics,

28(4):499-517, 2014.

[5] Shah J. J. and Mäntylä M. Parametric and feature-

based CAD/CAM: concepts, techniques, and

applications. John Wiley & Sons, New York 1995.

[6] Fudos I. and Hoffmann C. M. A graph-constructive

approach to solving systems of geometric

constraints. ACM Transactions on Graphics (TOG),

16(2):179-216, 1997.

[7] Jubierre J. R. Analysis and coupling of a Geometric

Constraint Solver with a CAD application.

Master’s Thesis, Technische Universität München.

2009

[8] Engelfriet J. and Rozenberg G. Graph grammars

based on node rewriting: An introduction to NLC

graph grammars. In Graph Grammars and Their

Application to Computer Science, Springer Berlin

Heidelberg, 1991.

[9] Rozenberg G. Handbook of graph grammars and

computing by graph transformation, volume 1.

World Scientific, Singapore, 1997.

[10] Geiß R., Batz G. V., Grund D., Hack, S. and

Szalkowski A. GrGen: A fast SPO-based graph

rewriting tool. In Graph Transformations. Springer,

Berlin Heidelberg, 2006. S. 383-397.

[11] Helms B. Object-Oriented Graph Grammars for

Computational Design Synthesis, Ph. D. thesis.

Technische Universität München, 2013

