
Semantic As-built 3D Modeling of Buildings under 
Construction from Laser-scan Data Based on Local 

Convexity without an As-planned Model 
 

H. Sona, J. Naa, and C. Kima* 

 
aDepartment of Architectural Engineering, Chung-Ang University, South Korea 

E-mail: hjson0908@cau.ac.kr, jongchulna@cau.ac.kr, changwan@cau.ac.kr 
 
 
 
ABSTRACT 
 

As-built building information models (BIMs) 
need to be represented with the composing building 
elements having their own functional semantic 
information. In order to generate such as-built BIMs 
with composing building elements, it is necessary to 
recognize each of the semantic elements and separate 
them from each other. In addition, the as-built BIM 
needs to be generated and updated during or after 
each major construction activity because most of the 
structural elements and nonstructural elements 
(especially for mechanical, electrical, and plumbing 
(MEP) components) are covered by other objects as 
the construction phase progresses. This study aims to 
propose a method for generating a semantic as-built 
BIM from laser-scan data acquired during the 
construction phase, especially for structural works. 
A field experiment was performed to validate the 
proposed method by acquiring and processing laser-
scan data from the construction site. The 
experimental result shows that the proposed method 
can be used for semantic as-built BIMs without any 
prior information from as-planned models. 
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1 Introduction 
As-built building information models (BIMs) need 

to be represented with the composing building elements 
having their own functional semantics [1–4]. Building 
elements consist of structural and nonstructural 
elements. Structural elements include foundations, 
floors, columns, walls, girders, beams, and slabs, and 
nonstructural elements include mechanical, electrical, 
and plumbing (MEP) components (mechanical 
equipment, piping, duct work, and electrical equipment), 
architectural components (such as exterior walls, 
interior partitions, ceilings, canopies, stairways, and 
freestanding walls), and other finishes (doors and 

windows). All of the building elements are connected 
and networked with each other to realize their functions. 
For example, a girder is supported by two or more 
columns. For this reason, in order to generate an as-built 
BIM with the composing building elements, it is 
necessary to recognize each of the semantic elements 
and separate them from each other. In addition, these 
building elements are constructed as planned work tasks 
during the construction phase. As the construction phase 
progresses, most of the structural elements and 
nonstructural elements (especially for MEP components) 
are covered by other objects, such as architectural 
components and other finishes, which are installed later. 
For this reason, in order to generate an as-built BIM 
with the composing building elements, it needs to be 
generated and updated during or after each of the major 
construction activities, such as structural, MEP, 
architectural, and finish works for use in project 
management purposes. 

Few research studies have been conducted to 
propose methods for recognizing semantic elements in 
buildings during the construction phase [5–11] as well 
as during occupancy [1,2,4,12,13]. These research 
studies performed as-built data acquisition using spatial 
survey technologies that are based on photogrammetry 
[8] and laser scanning [5,6,1,7,9,2,4,12,13]. From the 
acquired as-built data represented in the point cloud 
format, research studies that focused on the construction 
phase proposed methods to recognize and model the 
structural elements by utilizing the as-planned model 
[5–9]. However, such a scan-to-BIM approach can be 
generally not effective where discrepancies are observed 
in the as-built and as-planned conditions. Such 
discrepancies are due to construction errors (human 
errors) and changes related to constructability issues 
made in the field. Although a recent study by Bosché et 
al. [10,11] tackled this problem by integrating scan-
versus-BIM and scan-to-BIM approaches for as-built 
modeling of MEP work, this method also primarily 
depends on the as-planned model. 
 



Research studies that focused on the occupancy 
phase have shown that the structural elements that are 
exposed, as well as architectural elements, can be 
recognized and/or modeled [1,2,4,12,13]. However, 
such methods are applicable to planar and non-
volumetric elements, such as walls, doors, and roofs in 
an outdoor environment and walls, floors, ceilings, 
windows, and doorways in an indoor environment, 
because these methods are basically based on the plane 
extraction process. In other words, these methods 
require additional processes to recognize volumetric 
elements that consist of several planes or even 
nonplanar surfaces, such as columns, girders, beams, 
and MEP components. For example, in order to 
recognize a column, additional processes of finding a 
few different planes comprising the column and 
combining them into a unified entity are necessary 
[14,15]. In summary, to our knowledge, there are 
limited methods available to generate a semantic as-
built 3D BIM during the construction phase without an 
as-planned model. 

The ultimate goal of this study is to develop a 
method for generating and updating as-built BIMs 
during or after each of the major construction activities, 
such as structural, MEP, architectural, and finish works, 
for use in project management purposes. To achieve this 
goal, this study aims to propose a method for generating 
semantic as-built BIMs from laser-scan data acquired 
during the construction phase, especially for structural 
works. This paper is organized as follows: Section 2 
provides an overview of the proposed method and basic 
principles. Section 3 provides an explanation of the 
methodology. Section 4 provides the results of field 
experiments. Finally, Section 5 provides a summary and 
recommendations for future research. 
 

2 Overview of the Proposed Method and 
Basic Principles 

This study proposes a method for scene 
segmentation, a process of partitioning laser-scan data 
acquired during the construction phase into meaningful 
parts that consist of different types of building elements, 
for example, floors, columns, walls, girders, beams, and 
slabs. The main idea is that most objects are themselves 
composed of connected and enclosed convex surfaces 
and are separated from other objects by concave 
boundaries [16]. From this point, each of the structural 
elements can be recognized by merging areas having 
convex properties enclosed by concave boundaries. 
Convex and concave properties can be simply 
differentiated as follows. Two adjacent surfaces of an 
object have a convex property (see Figure 1(a)). On the 
other hand, two adjacent surfaces of different objects 

have a concave property (see Figure 1(b)). Such convex 
and concave properties are proven as unique and 
powerful features for scene segmentation from 3D point 
clouds [17,16]. 
 

 
(a)                                        (b) 

Figure 1. (a) Convex areas (in blue); (b) Concave areas 
(in red) 

 
Figure 2 illustrates the main steps of the proposed 

method. The proposed method is initiated by the region-
of-interest (ROI) detection process. The laser-scan data 
acquired during the construction phase contains building 
elements to be modeled as well as other objects, such as 
stacked materials. For this reason, the first process is 
proposed to distinguish 3D points of corresponding 
building elements to be modeled, such as structural 
elements. Then, the process is followed by scene 
approximation using an adjacency graph, which utilizes 
spatially connected surface patches. In the adjacency 
graph, the convex and concave properties of the edges 
are computed based on a local criterion. Then, locally 
connected subgraphs with convex properties are 
identified through the region-growing process, which 
represents building elements. The details of the 
proposed method are as follows. 
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Figure 2. Proposed method for semantic as-built BIM 



3 Methodology 

3.1 Region-of-Interest (ROI) Detection 
The laser-scan data acquired during the construction 

phase comprise 3D points’ coordinates (x, y, z) and the 
(R, G, B) color values of the corresponding 3D points. 
In order to distinguish 3D points of the corresponding 
building elements to be modeled, structural elements in 
this case, an ensemble classifier proposed by Son et al. 
[18] was employed. This method uses a color value as a 
feature to distinguish ROI from laser-scan data. The 
ensemble classifier uses a voting scheme that internally 
makes use of base classifiers (support vector machine, 
C4.5, and k-nearest neighbors) and combines them in an 
effort to produce better results. By applying the 
ensemble classifier, 3D points corresponding to the 
structural elements comprising construction materials 
such as concrete, steel, or wood are classified. 
 

3.2 Graph Building of Connected Linear 
Patches 

After the ROI detection is completed, 3D points’ 
coordinates (x, y, z) are used to segment the resulting 
data into semantic parts that consist of different types of 
building elements. As the first step, a graph of 
connected linear patches is generated. This step is based 
on the supervoxel algorithm proposed by Papon et al. 
[19]. The supervoxel algorithm is designed for edge-
preserving segmentation where each of the supervoxels 
in an adjacency graph is regarded as a linear patch, and 
their normal vectors are computed. Here, a normal 
vector is defined as the facing outward following the 
right-hand rule, which means the vertices comprising 
each faces are arranged counter-clockwise. This 
approach specifies the normal vector to be unique. 

The supervoxel algorithm has advantages of 
efficiently processing the huge 3D point cloud by 
achieving substantial data reduction [16]. By employing 
this algorithm, the adjacency graph is built from the 
ROI detection result, that is, neighboring voxels are 
those that share a face, edge, or vertex. This is 
computed within the octree structure by searching and 
determining the neighboring leaves in the voxel grid. 
Details of the supervoxel algorithm can be found in 
Papon et al. [19], Stein et al. [16], and Stein et al. [20]. 
 

3.3 Convexity Graph Creation 
Once a graph of connected linear patches is built 

from the ROI detection result, a convexity graph is 
created by classifying edges of the graph of connected 
linear patches. Here, in order to determine whether a 
connection between patches has convex or concave 

properties, two criteria proposed by Stein et al. [16] are 
employed, that is, convexity and sanity. 

The convexity is defined by an angle threshold in 
order to compensate for errors in the normal vector 
estimation. In addition, adjacent patches having small 
concave properties can be ignored by regarding 
connections between adjacent patches whose normal 
difference is less than the angle threshold as having a 
convex property. The sanity is defined in order to 
identify connections where adjacent patches are only 
connected in a singular point. 
 

3.4 Convexity Graph Segmentation 
From the created convexity graph, each of the 

elements connected by convex edges is found. This 
process considers the way elements are connected and 
also consequences of the connectivity between patches. 
Convexity graph segmentation is achieved by a region-
growing process. By selecting arbitrary seed supervoxel, 
it starts region growing, which propagates the seed-
patch to those patches having convex edges until a 
concave property is reached. 

For the selected seed supervoxel and propagated 
supervoxels, segment label is assigned. Then, the 
region-growing process is started again with another 
seed supervoxel that has not been labeled. This process 
continues until segment llabels have been assigned to all 
supervoxels. Through this region-growing process, 
convex-connected patches are found around the concave 
edges. As a result, it leads to an enclosing concave 
boundary that segments the convexity graph. 
 

3.5 Post-processing 
In the resulting segmented 3D point cloud, small 

segments can be found at the edge. These are caused by 
normal vector estimation, which is based on the local 
neighborhood. As the first step of the post-processing, 
such small segments are discarded with filters as 
minimal segments. Here, simple filter using the pre-
defined filter size is implemented. This filtering step 
repeated until no segments smaller than the filter size is 
present in the 3D point cloud. 

As a result, each of the columns is segmented from 
the other structural elements. However, beams and 
girders need to be further segmented into each element 
because the bottoms of the connected beams and girders 
do not have concave properties. In order to separate 
each of the beams and girders, connectivity is used as a 
criterion. For example, a girder is attached to or 
supported by a column or a wall. A beam is attached to 
two adjacent girders. By using this connectivity 
criterion between the column and girder, each of the 



girders is segmented first, and then each of the 
remaining beams is clustered. Finally, over-segmented 
walls, floors, and slabs are merged again by considering 
their locations in 3D space. 
 

4 Field Experiment 

4.1 Experimental Setup 
In order to evaluate the capability of the proposed 

method, as-built data were acquired during structural 
works using ScanStation C10 by Leica Geosystems, Ag. 
For this purpose, laser scanning was performed from 16 
scan positions at the 1st floor of a new building 
construction project. Following laser scan data 
collection, all 16 scan point clouds were registered in a 
common coordinate system. 
 

4.2 Results and Discussion 
Figure 3 shows the result of the region-of-interest 

(ROI) detection from the registered 3D point cloud. In 
this case, 3D points corresponding to concrete structures 
were targeted and detected by employing the ensemble 
classifier proposed by Son et al. [18]. Through this 
process, the stacked materials and fence having different 
color values from the concrete structures, were 
distinguished and discarded. After the ROI detection, 
there were 2 floors (each of having different heights), 9 
columns, 2 walls, 13 beams, 18 girders, and 2 slabs of 
having different heights. 
 

 
Figure 3. Result of ROI detection 

 
Figure 4 shows the result of the graph building of 

connected linear patches, convexity graph creation, 
convexity graph segmentation, and filtering processes. 
In this figure, different segments are displayed using 
different colors. This figure shows the proposed method 
based on the convexity and concavity properties, 
dividing the 3D point cloud between floors, columns, 
beams and girders, and slabs. The segmented elements 
are as follows: 3 floors, 9 columns, 2 walls, 3 beams, 6 
girders, 5 beam-girder composites, and 21 slabs 
connected by walls, beams, and girders. Here, 5 beam-
girder composites indicate that they are under-
segmented, as the bottoms of the connected beams and 

girders do not have concave properties, and beams and 
girders are under-segmented, for example, the 3D points 
colored in purple. Therefore, post-processing was 
performed to separate each of the beams and girders 
using a connectivity property with adjacent columns and 
walls. 
 

 
(a)                                        (b) 

Figure 4. (a) Result of convexity graph segmentation 
and filtering; (b) Magnified portion of (a) 

 
Figure 5 shows the result of the segmentation 

between beams and girders. The 3D points colored in 
purple (see Figure 4) were segmented into different 
beams and girders, as shown in Figure 5. As a result, 5 
beam-girder composites were re-segmented into 10 
beams and 12 girders. 
 

 
(a)                                        (b) 

Figure 5. (a) Result of the segmentation between beams 
and girders; (b) Magnified portion of (a) 

 
Finally, the last step of the post-processing was 

performed on the result shown in Figure 5. As shown in 
Figures 4 and 5, floors and slabs were over-segmented. 
In the case of the floors, they were over-segmented 
because holes were produced since the stacked materials 
on the floors were distinguished and discarded in the 
ROI detection process. By merging the segments having 
similar height values, 3 floors were merged into 2 floors. 
In addition, in the case of the slabs, they were over-
segmented because each part of the slabs was connected 
by adjacent walls, beams, and girders. By merging the 
segments having similar height values, 21 slabs were 
merged into 2 slabs (see Figure 6). As a result, a total of 
45 structural elements were successfully segmented 
with respect to their own functional semantics. 
 



 
(a)                                        (b) 

Figure 6. (a) Final result of the proposed method; (b) 
Magnified portion of (a) 

 

5 Conclusion 
This study presented the method for scene 

segmentation, the process of partitioning laser-scan data 
acquired during the construction phase into meaningful 
parts that consist of different types of building elements, 
for example, floors, columns, walls, girders, beams, and 
slabs. By using local convex and concave properties of 
the structural elements, the proposed method segments 
the laser-scan data into semantic building elements. The 
capability of the proposed method was evaluated with 
the laser-scan data acquired through the field 
experiment. The experimental results showed that the 
proposed method could be used for semantic as-built 
BIM without any prior information from an as-planned 
model. In addition, computational efficiency was 
achieved by employing the supervoxel algorithm. 

Future research will be devoted to the quantitative 
evaluation of the proposed method in various building 
environments. Moreover, the proposed method will be 
expanded to develop a method for generating and 
updating as-built BIM during or after each major 
construction activity—not only structural works but also 
MEP, architectural, and finish works—for use in project 
management purposes. 
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