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ABSTRACT 

 

Assessing the effectiveness of energy conservation 

measures (ECMs) prior to their actual 

implementation in buildings is critical. There is an 

increasing tendency to employ calibrated building 

energy models to quantify energy savings that could 

be achieved by ECMs to justify their implementation. 

However, there is empirical evidence that reveals 

noticeable discrepancies between simulated and 

measured performances of ECMs in buildings. One 

possible reason for such discrepancies is that actual 

building occupancy, which is a critical factor that 

determines the total and peak loads of building 

systems and related energy consumption, is not 

represented accurately in most energy models. This 

paper specifically examines the impact of actual 

building occupancy on the assessment of ECMs. Two 

energy models of an office building were built and 

calibrated with the same audit data following the 

same procedure, except that one used assumed 

occupancy and the other used actual occupancy. Both 

models were used to assess an ECM, which adjusts 

indoor air temperature set points based on the time 

of the day. Statistically significant differences were 

observed in the energy consumptions reported by the 

two models through paired t-tests. The results 

highlighted the importance of integrating actual 

occupancy in the assessment of ECMs. 
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1. Background 

Assessing the effectiveness of energy conservation 

measures (ECMs) prior to their actual implementation in 

buildings is critical for optimizing the ECM designs and 

providing a baseline that can be used later to gauge their 

actual performance. With the increased use of building 

energy simulation for evaluating the effectiveness of 

various ECMs, one of the most important factors for 

simulation is to substantiate how well the models 

represent the characteristics of real buildings [1]. 

However, there is empirical evidence that reveals 

discrepancies between simulated and measured 

performance of the ECMs. One possible reason for such 

discrepancies is that actual building occupancy, which is 

a critical factor that determines the total and dynamic 

loads of building systems and related energy 

consumption, is not represented in most energy models. 

This paper examines the impact of building 

occupancy on the assessment of ECMs. Two energy 

models of an office building were built and calibrated 

with the same audit data following the same procedure, 

except that one used assumed occupancy and the other 

used actual occupancy. Both models were used to assess 

the same ECM, which switches the heating, ventilation 

and air conditioning (HVAC) system in the building 

between on and off modes based on the time of the day. 

Described below are our research motivation, research 

methodology and our findings, followed by our 

conclusions.  

 

2. Research Motivation 

There is an increasing tendency to employ calibrated 

building energy models, believed to accurately reflect 

the physical characteristics and internal dynamics of 

buildings, to quantify expected energy savings that could 

be achieved by different ECMs and justify their 

application [2]. ECMs are virtually implemented in 

modified models, and simulations are performed to 



examine the expected building energy performance 

given these new changes. Moreover, simulations in 

building energy models are essential in many cases to 

the design of ECMs. Buildings are complex and unique 

systems. In order to achieve maximum energy savings, 

ECMs need to be designed on a case-by-case basis and 

in the context of specific physical and functional 

characteristics of buildings, where building energy 

models can play a pivotal role. Repeated simulations can 

be performed to investigate potential opportunities for 

energy savings [3], identify optimal strategies for daily 

building operations [4], and select among competing 

energy retrofit plans [5].  

The performance of ECMs in simulations usually 

lays the basis of their design and implementation. 

However, because of the discrepancies between actual 

buildings and their virtual representations, the optimality 

and expected energy savings of ECMs as reported in 

simulations are not met in practice. In fact, there is 

empirical evidence that reveals noticeable discrepancies 

between simulated and measured performance of the 

ECMs [6,7]. 

Occupancy could be one of the reasons why 

simulated performance of ECMs is not always accurate 

and realized in practice [8]. Occupancy is a critical factor 

that determines the total and peak loads of building 

systems and related energy consumption. Most building 

energy models built in prior research relied on assumed 

or simulated building occupancy, which inevitably 

deviates from actual occupancy. Such simplification 

might overlook the impact of the occupancy on building 

energy usages and, more importantly, cannot reflect the 

energy implications from interplays between occupancy 

patterns and the changes to building performance 

introduced by ECMs. For instance, occupancy (the time 

an occupant spends in a space) affects interior loads 

through activity and the use of other systems like 

lighting and equipment/appliance, which has an impact 

on the cooling or heating demands that is not accounted 

for in building energy simulations. Such implicit impacts 

of the occupancy on building energy usage is not 

observable when assumed occupancy is used, 

highlighting the need for using actual occupancy in 

assessing the effectiveness of ECMs. In fact, building 

occupancy detection itself is an area that has been 

actively researched in the past decade. Despite the large 

volume of research in occupancy, large-scale occupancy 

detection has remained a challenging task, and has rarely 

been deployed at a building scale for evaluating ECMs. 

To address the above challenge, this paper introduces 

and tests the following hypothesis: Using actual 

occupancy data as opposed to assumed occupancy data 

improves the reliability of calibrated building energy 

models as a tool for predicting the performance of ECMs. 

For the validation of this hypothesis, two calibrated 

models for a test bed building were built. Model #1 was 

built based on assumed occupancy schedules available 

in the simulation software. Model #2 was built based on 

actual occupancy schedules observed in the building. 

For collecting the actual occupancy data, an occupancy 

detection system proposed by the authors, was used [4]. 

High-resolution occupancy data of the test bed building 

was collected and used in the modeling process. Both 

models, after developed and calibrated with the same 

procedure and the same audit data (except for the 

occupancy data), were used to predict the energy 

consumption of the building after an ECM was 

introduced. Their respective prediction accuracy was 

compared to test the hypothesis. The tested ECM was 

designed for the HVAC system. Therefore, this paper 

focuses on HVAC energy consumption only. 

 

3. Test Bed Building 

The test bed building modeled in this paper is the 

Ralph & Goldy Lewis Hall (RGL), a typical office 

building on the University of Southern California (USC) 

campus near downtown Los Angeles, California. The 

RGL is a three-story building with a footprint of 3,735 

m2 with 89 mechanically ventilated rooms that have 

spaces of varying sizes and functions. Most of the rooms 

in the building are enclosed single occupancy offices; 

other rooms are classrooms, conference rooms, and 

auditoriums. The indoor environment of the building is 

monitored by 64 wired temperature sensors and 50 

wireless sensor units. Each wireless sensor unit has a 

stand-alone single-board microcontroller with integrated 

support for wireless communications, and is comprised 

of the following sensors: a light sensor, a sound sensor, 

a motion sensor, a CO2 sensor, a temperature sensor, a 

relative humidity sensor, a PIR sensor, and a door switch 

sensor. Data is automatically queried every one minute, 

time stamped, and stored in an SQL database. The 

energy consumption by various building systems such as 

HVAC, lighting, receptacle and mechanical is metered 

and recorded in a building energy management system 

(BEMS).  

The test bed building is equipped with state-of-the-

art BEMS and central HVAC system with air handling 

units (AHU) serving a total of 64 variable air volume 

(VAV) boxes and 3 fan-coil units (FCU). A VAV box is 



responsible for regulating the ventilation in the thermal 

zone with conditioned air, and reheating the air with hot 

water supplied by boilers if the zone needs heating 

instead of cooling. The conditioned air is supplied to 

VAVs by air handler units (AHUs) using fans and 

ductwork. There are two AHUs in the building, each 

servicing one side of the building with similar sizes of 

service areas. AHUs take in outside air, mix it with 

returned air from the building, and cool down the mixed 

air to 12.8 oC with chilled water supplied by chillers. The 

HVAC energy consumption in the building can be 

decomposed by fuel type to heating and cooling energy 

consumption, used by chillers and boilers to generate 

chilled and hot water, respectively, and ventilation 

energy consumption, used by AHUs and their embedded 

fans to distribute conditioned air in the building. The 

HVAC control implemented in the test bed building runs 

at an on-hour mode during the daytime (6:30 - 21:30 on 

workdays, and 7:00 - 21:30 on weekends). All thermal 

zones in the building are assumed to be always occupied 

under the on-hour mode, and a constant temperature set 

point (22.8 oC) is maintained on the demand side, which 

dynamically adjusts the airflow damper and reheating 

valve of each zone. The control has an off-our mode 

during the nighttime, where the HVAC system is shut 

off during the nighttime, and no cooling or heating 

services are provided. Only minimum airflow is 

maintained to satisfy the ASHRAE compliance. 

 

4. Methodology 

4.1 Occupancy Modeling 

For real-time occupancy modeling, the fundamental 

principle the authors adapted is that occupancy regularly 

influences and interferes with the ambient environment. 

By mathematically or statistically bridging occupancy 

ground truth and ambient factor variation through 

supervised learning using historical data, future ambient 

data can be analyzed to output corresponding occupancy 

outcomes. A total of 11 ambient sensor variables were 

used in occupancy modeling. These variables could be 

categorized into three types of instant variables, count 

variables and average variables. Specifically, instant 

variables show the instant output of a sensor at the time 

the data is queried, including light level, binary motion, 

CO2 concentration, temperature, humidity, binary PIR, 

and door status (open/close). Count variables that sum 

number of times a sensor's output changes in the last 

minute, including motion count net, PIR count net, and 

door count net. Average variables that show average 

value of a sensor's output over a certain period of time, 

including sound average. Several machine-learning 

algorithms were tested. It was found that pruned decision 

tree had the best performance in solving the 

classification problem for occupancy modeling, 

demonstrating the relationship that each ambient factor 

was responsible for classifying part of the instances and 

occupancy classes were determined by the sequential 

consideration of ambient factors. The occupancy of a 

specific thermal zone was determined by integrating the 

occupancy of the associated rooms. Only if all the rooms 

within one zone are vacant, the zone was considered as 

vacant. By following the above methodology [4], 

occupancies of 28 rooms (16 zones) were calculated for 

a period of four months with three-minute granularity. 

 

4.2 Building Model Calibration 

The aforementioned two models were generated and 

calibrated following the procedure described below. 

First, the geometry of the test bed building was created 

in SketchUp [9] and 64 thermal zones representing the 

physical building structure. The geometry was then 

imported to OpenStudio [10], in which most model 

parameters were set. The model was then saved as an 

IDF format, and imported to EnergyPlus [11] for setting 

advanced parameters and simulating the energy 

performance of the building in a given period. Energy 

consumption ground truth data were collected from Jan 

1 to Feb 10, 2013 (a total of 41 days) for calibrating the 

energy model, and the data from Feb 11 to Feb 21 and 

from Apr 1 to Apr 31, 2013 (a total of 41 days) were 

used for evaluation.   

The guideline used for setting the types and values of 

model parameters is summarized as follows. Parameters 

related to construction layers and materials were defined 

based on as-built architectural, structural and mechanical 

drawings, and site surveys. Parameters related to thermal 

loads associated with lighting and electrical equipment 

were defined based on recommendations in OpenStudio. 

In addition, there were 560 parameters, whose values 

could not be determined based on available audit data. 

The values of these parameters were set based on the 

modeler’s best guesses and tuned later in the calibration 

process. The outside weather profile was linked to 

typical meteorological year (TMY) data [12] for Los 

Angeles. Assumed occupancy schedules based on the 

default occupancy schedules in EnergyPlus were used in 

model #1, and actual occupancy schedules based on the 



occupancy modeling approach explained in section 4.1 

were used in model #2. 

When a complete model was developed, it was 

calibrated following a typical calibration process [13]. 

First, a sensitivity analysis was carried out to identify the 

top influential parameters among the aforementioned 

560 parameters on thermal loads of the building. For 

performing the sensitivity analysis, each parameter was 

assigned a value domain, based on its definition in 

EnergyPlus input/output reference guide [14], and a 

probability distribution of its value, based on the 

following guidelines: (1) A normal distribution was 

assigned to parameters that have preferred values but no 

specific value domains in the reference guide, such as 

“central cooling design supply air humidity ratio”; (2) A 

uniform distribution was assigned to the parameters that 

have specific value domains but no preferred values in 

the reference guide, such as “cooling minimum air flow”; 

(3) A triangle distribution was assigned to parameters 

that have both preferred values and specific domains in 

the reference guide, such as “fan efficiency”; and (4) A 

discrete distribution was assigned to non-numerical 

parameters, such as “boiler flow mode”. A total of 8000 

models were then generated, by randomly sampling the 

above parameters within their respective domains using 

the commonly adopted Latin Hypercube Sample (LHS) 

technique. 

All models were then simulated in EnergyPlus using 

parallel computing. Since the parameters were sampled 

independently without considering the relationships 

between them, the integrity of some models was violated, 

causing errors in simulation. For around 50% of the 

models simulations were completed and valid HVAC 

energy consumption data were gathered. The parameter 

values of the models, and their corresponding HVAC 

energy consumption data were then analyzed by using 

the analysis of variance (ANOVA) method, which 

provided an assessment of the impact of each parameter 

on HVAC energy consumption.  

Based on the ANOVA analysis results, the top 

influential parameters were identified and assigned with 

random values within their value domains. Additional 

simulations were then run and the results were compared 

with the actual energy consumption. A genetic algorithm 

based method was applied to update the parameter 

values with better fitness for matching actual energy 

consumption through crossover and mutation. Two 

tolerances were used to evaluate the deviations between 

simulated energy consumption and actual energy 

consumption data. One was the mean bias error (MBE) 

and the other one was the root mean squared error (CV 

(RMSE)). Table 1 summarizes the tolerances used in the 

literature. However, since the energy consumptions of 

different ECMs have significant variations on a daily 

basis and are not sensitive on a monthly basis, the energy 

consumption estimation and prediction were done on a 

daily basis in this paper, for which a tolerance does not 

exist in literature. Hence a daily tolerance was 

introduced in this paper, based on existing monthly and 

hourly tolerances, as 8% for MBE and 20% for CV 

(RMSE). 

 

Table 1. Existing tolerances for building energy model 

calibration 

 Monthly (%) Hourly (%) 

 MBE  CV 

(RMSE) 

MBE CV 

(RMSE)  

ASHRAE 5 15 10 30 

IPMVP 20 - 5 20 

FEMP 5 15 10 30 

 

5. Findings 

After calibration, the estimated actual occupancy 

based on ambient sensor data were compared with 

assumed occupancy in order to evaluate the 

discrepancies between the two. It was found that the 

average discrepancy between assumed and actual 

occupancy profiles was 17% considering the weekends 

and the winter break, or 20 % without considering the 

weekends and winter break, indicating that assumed 

occupancy was deviated from reality. The comparison, 

including the weekends and winter break, is shown in 

Figure 1 

 

Figure 1. The similarity between assumed and actual 

daily occupancy profiles 
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and #2, and tolerances were used for evaluating the 

simulation performance. Daily MBE and CV (RMSE) 

were calculated for each week during the test period. The 

results are shown in Table 2 and Table 3. 

 

Table 2. Daily MBE and CV (RMSE) of model #1 and 

model #2 

Model #1 (MBE %) 

Feb 11-

17 

Apr 1-

7 

Apr 8-

14 

Apr 15-

21 

Apr 22-

28 

4.0 7.9 8.1 7.7 7.9 

Model #2 (MBE %) 

Feb 11-

17 

Apr 1-

7 

Apr 8-

14 

Apr 15-

21 

Apr 22-

28 

-4.5 -5.1 -4.9 -5.4 -5.0 

 

Model #1 (CV(RMSE) %) 

Feb 11-

17 

Apr 1-

7 

Apr 8-

14 

Apr 15-

21 

Apr 22-

28 

12.3 15.8 16.3 16.9 17.7 

Model #2 (CV(RMSE) %) 

Feb 11-

17 

Apr 1-

7 

Apr 8-

14 

Apr 15-

21 

Apr 22-

28 

12.5 11.8 13.1 12.0 12.4 

 

Table 3. Comparisons of daily MBE and CV(RMSE) 

between model #1 and #2 

 MBE (%) 
CV(RMSE) 

(%) 

 Average SD Average SD 

Model #1 7.1 1.6 15.8 1.9 

Model #2 -5.0 0.3 12.5 0.5 

Significance 

Level 
0.034 0.025 

Confidence 

Level 
0.05 0.05 

 

The results show that model #2 was likely to 

underestimate the energy consumption, while model #1 

had the trend to overestimate it. One of the reasons could 

be the fact that using actual occupancy information 

might lead to less internal loads and therefore less 

conditioning demands in a cooling-dominant climate 

zone (e.g., Los Angeles). The energy consumption 

prediction of model #2 was generally more accurate, 

with a lower MBE (absolute value), and consistent, with 

a lower CV (RMSE) value. The average and standard 

deviation of MBE for model #1 were 7.1% and 1.6%, 

while those for model #2 were -5.0% and 0.3%. There 

were absolute 29.6% difference in MBE average and 

81.3% difference in MBE standard deviation of model 

#2 compared to model #1. Similarly, the average and 

standard deviation of CV(RMSE) were 15.8% and 1.9% 

for model #1, and 12.5% and 0.5% for model #2. Paired 

t-tests were performed to compare the means of MBE 

and CV (RMSE) of two models. The results (two-tailed 

Sig.0.034<0.05 (predefined confidence level) for MBE 

and two-tailed sig.0.025<0.05 for CV(RMSE)) show 

that the five MBE values and CV (RMSE) values from 

model #1 are statistically different than those from 

model #2, and because the average and standard 

deviation of MBE and CV(RMSE) of model #1 are 

larger than those of model #2, it could be demonstrated 

that model #1 is less accurate. The findings support the 

hypothesis presented in section 2. 

Moreover, it needs to be pointed out that the list of 

top influential parameters, identified in the sensitivity 

analysis during model calibration, largely differed 

between the two models. The top influential parameters 

for model #1 were mostly related to the zone level 

HVAC configurations and load distributions, while 

some of the top influential parameters for model #2 were 

related to thermal related material properties. Such 

difference adds to the evidence that the use of actual 

occupancy in the modeling process led to essential 

changes to attributes of the calibrated model. 

In addition, the predictions in February were less 

accurate and consistent than those in April, especially for 

model #1. One cause of such discrepancy could the 

occupancy pattern in the test bed building, which 

differed between January and April, which was the 

beginning and middle of the spring semester. Since 

occupancy is closely related to internal thermal loads 

caused by the use of lighting and appliances, building 

energy models should be calibrated using actual 

occupancy, so that the model is adaptive to changes in 

occupancy and would yield better predictions of energy 

consumption and therefore better assessments of ECMs. 

 

6. Conclusions 

This paper examines the impact of building 

occupancy on the assessment of ECMs. Two energy 

models of an office building were built and calibrated 

with the same audit data following the same procedure, 

except that one used assumed occupancy and the other 



used actual occupancy. Both models were used to assess 

an ECM, which adjusted indoor air temperature set 

points based on the time of the day. The results showed 

that the use of actual occupancy data in the modeling 

process led to essential changes to attributes of the model, 

especially its top influential parameters on HVAC 

energy consumption.  Moreover, noticeable variation in 

model performance, in terms of both accuracy and 

consistency in predicting HVAC energy consumption, 

was observed when the model was calibrated using 

actual occupancy. These findings suggest that the 

traditional way of assessing ECMs is inherently biased, 

and could be possibly improved by integrating actual 

occupancy in the model calibration process. 
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