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Abstract -
Emissions from motor vehicles need to be predicted fairly

accurately to ensure an appropriate air quality management
plan. This research work explores the use of a nonpara-
metric regression algorithm known as the multivariate adap-
tive regression splines (MARS) in comparison with the arti-
ficial neural networks (ANN) for the purpose of best approx-
imation of the relationship between the input and output
from datasets recorded from on-board measurement and dy-
namometer testings. The performance of the models was
evaluated by comparing the MARS and ANN predictions to
the measured data using several performance indices. The
results are evaluated in terms of accuracy, flexibility and
computational efficiency. While MARS are more computa-
tionally efficient to reach the final model ANN are slightly
more accurate. The proposed techniques may be used to as-
sist in a decision-making policy regarding urban air pollu-
tion.
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1 Introduction
The expansion of industries, rapid economic growth

and concentrated human activities are leading to an alarm-
ing increase in air pollution levels in almost all metro
cities of the world and have thus received increasing re-
search concerns [1]. Vehicular, industrial and domestic
sources are major anthropogenic sources causing emis-
sion of air pollutants into the environment. In recent
years, a substantial growth of motorized traffic over the
years has increased the air pollution levels in urban cen-
tres [2], whereby motor vehicle emissions are the single
most significant source ([3], [4]). Rapid growth in the
number of vehicles and total vehicle kilometers travelled

makes this particularly true in cities in developing coun-
tries ([5], [6]). Further, vehicles proximity to human re-
ceptors increases the potential for exposure and the at-
tendant health effects [4]. At present, the transportation
sector accounts for more than 20% of global energy con-
sumption and road transport produces about 25% of prin-
cipal greenhouse gases (GHG), considered to be the major
factor of global climate change. Meanwhile, road traf-
fic emissions are the main source of local pollutant emis-
sions including carbon monoxide (CO), nitrogen oxides
(NOX ), total volatile hydrocarbons (THC), Carbon diox-
ide (CO2) and particulate matters (PM).

All of these emissions result not only in environmental
problems but also add to the deterioration of human health
and social welfare. The severity of the problem comes
when the traffic flow is interrupted expecially the delays
and disruptions occur frequently. These phenomena are
regularly observed at traffic intersections, junctions, and
at signalized roadways. Especially, during heavy traffic
hours, rates of traffic flow in various idle, acceleration,
deceleration, and cruise driving modes, and frequent in-
terruptions often occur. These-traffic related characteris-
tics, combined with road and vehicle characteristics, raise
emissions at traffic intersections. Improved knowledge
about the quantity of pollutants that the vehicle fleet is
emitting into the air has become a high priority research
question for authorities who are responsible for manag-
ing vehicle emission impacts on air quality, especially in
urban areas.

The estimation of vehicular emissions can be based on
emission factors obtained from actual measurements. For
example, Schipper [7] developed the fuel-based vehicular
emission inventory for the metropolitan area of Mexico
based on the emission factors obtained from remote sens-
ing data. Other methods to estimate emission factors can
include tunnel tests [8], portable emission measurements
[9], and bench test [10].

In addition to the use of emission factors obtained by



measurements, the vehicular emissions can be estimated
using models. Nesamani [11] investigated the emissions
from on-road vehicles in India using the International
Vehicle Emission (IVE) model. In Europe and Aus-
tralia, Computer Programme to calculate Emission from
Road Transport (COPERT) and The Air pollution Model
(TAPM) were widely used in the estimation of air pol-
lutant emissions from road transport ([12], [13], [14]).
Compared to the estimation using emission factors, model
calculations are more economical and easier to operate,
especially for the estimation of vehicular emissions from
various types of vehicles covering a long time period.
Models developed to estimate vehicle emission allow ex-
tension of available measurements to predict emissions
from a range of vehicle and activity combinations [15].

Traditional macro-scale emissions modelling ap-
proaches used average distance and fuel based emission
factors (EF) to estimate vehicle tail pipe emissions [16].
Emission factors are typically derived from laboratory
dynamometer testing using standardized drive-cycles in-
tended to represent typical on-road driving patterns. Cor-
rection factors are then applied to account for deviations
between laboratory and on-road conditions such as tem-
perature and average vehicle kilometres travelled. How-
ever, macro-scale approaches do not sufficiently account
for vehicle variability due to complicated vehicle dynam-
ics and their drive-cycles do not fully capturing real-
world vehicle activity [16]. Alternatively, micro-scale ap-
proaches using realistic vehicle activity data may explain
more of the vehicle emission variability than macro-scale
models and therefore reduce the uncertainty associated
with it.

Many researchers have developed micro-scale models
for predicting vehicular emissions. Oduro et al. [17] de-
veloped a model for prediction NOX vehicular emissions
using on-board measurement and chassis dynamometer
testing. Misra et al. [18] proposed an integrated mod-
elling approach to estimate micro-scale urban traffic CO
and NOX emissions. Grieshop et al. [19], proposed a
micro-scale model for predicting CO2, CO, NOX and hy-
drocarbons but the methodology was not applied to ve-
hicles. Oduro et al. [20] proposed multiple regression
models with instantaneous speed and acceleration as pre-
dictor variables to estimate vehicular emissions of CO2.
A study conducted by Sore-Hamer [21] concluded that
MARS model has better computational efficiency in pre-
dicting PM2.5 than generalized additive models (GAM).
Artificial Neural Network (ANNs) were used by Ao et al.
[22] to predict engine performance and emission levels by
utilizing engine-based data such as cetane number, den-
sity, volatility, oxygen and sulphur content. Wahid et al.
[23] developed a neural network-based metal-modelling
approach for estimating spatial distribution of air pollu-

tion levels. Tóth-Nagy et al. [24] and Joumard [25] de-
veloped an ANN based model for predicting emissions of
CO and NOX from heavy-duty diesel conventional and
hybrid vehicles. Results obtained were all within accept-
able limits and displayed the robustness of ANNs in inter-
nal combustion engines (ICE) predictive modelling.

It is important however, to note that the main issue
concerning emissions is the source-receptor relationship.
Considering urban transport, the vehicle tail pipe emis-
sions are released and the concentration is generally high
enough to damage human health. Therefore, it is crucial
for policy-makers to know the quantities and contribution
of road transport emissions to ambient air quality in or-
der to develop appropriate strategies to minimize human
exposure to harmful emissions. For this, we construct ac-
curate statistical models to forecast the concentrations of
CO based on speed, load, ambient temperature and en-
gine power, and to critically evaluate the performance of
such models. We have constructed the predictive model,
using stepwise Multivariate Adaptive Regression Splines
(MARS), in conjunction with the Artificial Neural Net-
work (ANN) model. The main reason for using ANN
was to get a better insight on the usefulness of the MARS
method, i.e., to find out whether more accurate results
could be obtained.

2 Methodology
2.1 Multivariate Adaptive Regression Splines Model

The MARS method is a nonparametric regression tech-
nique which uses a series of basis functions to model com-
plex (such as nonlinear) relationships [26]. Its main pur-
pose is to predict the values of a continuous dependent
variable, y(n× 1), from a set of independent explanatory
variables,X(n×p). The MARS model can be represented
as:

y = f(X) + e, (1)

where f is a weighted sum of basis functions that depend
onX and e is an error vector of dimension (n×1). MARS
provides a greater flexibility to explore the nonlinear re-
lationship between a response variable and predictor vari-
ables by fitting the data into piecewise linear regression
functions. It does not require a priori assumptions about
the underlying functional relationship between dependent
and independent variables. Instead, this relation is uncov-
ered from a set of coefficients and piecewise polynomials
of degree q (basis functions) that are entirely driven from
the regression data (y,X). The MARS regression model
is constructed by fitting basis functions into distinct inter-
vals of the independent variables. Generally, piecewise
polynomials, also called splines, have pieces smoothly
connected together. Here, the joining points of the poly-
nomials are called knots, nodes or breakdown points, de-



noted by t. For a spline of degree q each segment is a poly-
nomial function. MARS uses two-sided truncated power
functions as spline basis functions, described by the fol-
lowing equations:

[−(x− t)q+] =

{
(t− x)q; if x < t,

0; otherwise.
(2)

[+(x− t)q+] =

{
(x− t)q; if x > t,

0; otherwise,
(3)

where q(≥ 0) is the power to which the splines are raised
and which determines the degree of smoothness of the re-
sultant function estimate. A pair of splines for q = 1 at
the knot t = 0.5 is presented in Fig. 1.
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Figure 1. A graphical representation of a spline ba-
sis function.

The two-sided truncated functions of the dependent
variable are basis functions, that describe the underlying
phenomena. The global MARS model is defined in Put et
al. [27] as:

ŷ = β0 +

M∑
m=1

βmhm(X), (4)

where ŷ is the predicted response; β0 is the coefficient
of the constant basis function; hm(X) is the mth basis
function, which can be a single spline function or an in-
teraction of two (or more) spline functions; βm is the co-
efficient of the mth basis function; and M is the num-
ber of basis functions included in the MARS model. To
fit a MARS model, three main steps are applied. In the
first step, i.e., the constructive phase, basis functions are
added to the model using a forward stepwise procedure.
The predictor and the knot location that contribute signif-
icantly to the model accurancy are selected. In this stage,
interactions are also introduced to examine if they could

Construction phase
(input data &

Number of BFs)

Pruning Phase (Dert-
ermination of GCV
& delete redundant

basis functions)

Final MARS model
and check test-
ing performance

Check if R
closer to 1

Change number of BFsno
Use MARS model yes

stop

Figure 2. Flow chart of the MARS model approach.

improve the model fit. To improve the prediction, the re-
dundant basis functions are removed one at a time using
backward stepwise procedure, in the second stage. MARS
utilises the generalised cross-validation (GVC). The GCV
criterion is used to find the overall best model from a se-
quence of fitted models, where a larger GCV value tends
to produce a smaller model, and vice versa. The GCV
criterion is estimated by the lack-of-fit criterion [28]:

GCV =
1

N

N∑
i=1

(
yi − f̂(Xi)

)2

[
1− C̃(M)

N

]2 , (5)

where
[
1− C̃(M)

N

]2
is a complexity function, and C̃(M)

is defined as C̃(M) = C(M) + dM , in which C(M) is
the number of parameters to be fit and d is a user-defined
cost for each basis function optimization and is a smooth-
ing parameter of the procedure. The higher the cost of
d is, the more basis functions will be eliminated [27].
Finally, the third step is used for selecting the optimal
MARS model as shown in the flow chart of the MARS
model approach in Fig. 2. This selection is based on an
evaluation of the prediction characteristics of different fit-
ted MARS models.

2.2 ANN model development

In order to get more insight in the MARS model, an
ANN model was constructed to compare their predictive
capabilities. In the present study, the multilayer feed



forwarded neural network (MFFN) has been trained by
the back-propagation network (BPN) learning algorithm
which provides a procedure to update weights to correctly
classify the training pair. The Levenberg-Marquardt
(trainlm) algorithms using log-sigmoid activation func-
tion have been used to update the network weights due
to its high generalization capability [29]. It is important
to determine the optimum network architecture to achieve
reliable results. This task still relies on trial-and-error
even though several heuristic relations have proposed to
determine appropriately the number of neurons to be in-
cluded in the hidden layer [29]. Root Mean Square Error
(RMSE) was chosen as the loss function to be minimized,
as RMSE possesses properties of convexity, symmetry,
and differentiability as an excellent metric in the context
of optimization.

2.2.1 Determination of training and testing data

The same datasets which were used for MARS analysis
are employed for modelling and evaluating the prediction
performance of the ANN model. Training neural network
architecture can be seen as a nonlinear optimization prob-
lem in which the task is to find out the set of parameters
i.e. synaptic weights such that the network output is as
close as to the desired output. The same datasets which
were used for MARS analysis are employed for modelling
and evaluating the prediction performance of the ANN
model. There were 556 values in the experimental dataset
obtained from secondary emission correction by the NSW
Road and Maritime Service (RMS). Previous studies have
shown that different ratios for training and testing data
were used. In the present study, 70% (390) of total exper-
imental data was randomly selected for training the neural
network, 15% (83) for the networks cross-validation (to
avoid over-fitting) and remaining 15% (83) data has been
used for testing the performance of the trained network.
The data were first normalized as

RN =
RA −Rmin

Rmax −Rmin
, (6)

where RA is the actual value, Rmin is the minimum value
ofR,Rmax is the maximum value ofR and RN is the nor-
malized value of R which will be within the range from 0
to 1.

2.2.2 Statistical evaluation of output parameters

After normalization, data were then randomized and
the ANN was then trained and tested against the CO ex-
perimental testing data. In order to evaluate the prediction
performance of the proposed ANN model, we have con-
sidered correlation coefficient of determination R2 as a
validation criterion:

R2 = 1−


N∑
i=1

(ti − yi)
2

N∑
i=1

(yi)2

 , (7)

The performance of the ANN-based predictions is eval-
uated by regression analysis of the predicted outputs and
the target outputs. The coefficient of determination R2 is
used to assess the strength of this relationship. The value
of R ranges from -1 to +1 with values closer to + 1 indi-
cating a stronger positive linear relationship. Errors be-
tween the predicted outputs (y) and the target outputs (t)
are measured by

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ti)2, (8)

where N is the number of the data used for validation, t
is actual output and y is the predicted output value.

3 Results and Discussions
3.1 MARS model

Based on the experimental data from the on-board sys-
tem (OBS) and dynamometer (DYNMO) test a MARS
model was developed to predict CO emissions. Prediction
of CO emissions using MARS yielded impressive results
as summarized in Table 1 and 2. The results of the MARS
model computed using all the available data contained
13 and 10 basis functions for on-board and dynamometer
testing respectively. The on-board measurements and dy-
namometer testing have similar interpretations. It can be
observed that all the four predictor variables play crucial
roles in determining CO vehicle emissions. However, an
analysis of variance (ANOVA) from the MARS model in-
dicated that the two most important variables were speed
and load with ambient temperatue and humidity having
lesser contribution. From Table 1, beta factors BF1, BF2,
BF3, BF4 and BF5 account for the nonlinear effect of ve-
hicle speed in the emission model. The effect of speed
on CO emissions can be explained as follows. By us-
ing the onboard measurements method, it was observed
that if the speed of the vehicle is less than 0.85 m/s or
3.06 km/h, the CO emissions are high but as the speed
increases the emission reduced. This situation mostly oc-
curs in traffic intersections where there is a high stop-and-
go frequency. The load is also found to influence the CO
emissions as indicated by BF6, BF7 and BF8 with ambi-
ent temperature and humidity having lesser impact. The
enchanced performance of MARS results was consistent
with previous findings. A study by Hallmark et al. [30]
found that during idling or low engine speed conditions,



the throttle valves are held in a closed position, therby cre-
ating high vacuum or suction in the intake system, which
induces rich mixtures that emit higher hydrocarbons and
CO. Figs. 3 and 4 show graphs of the predicted MARS
output and the actual data points. Note that the estimated
and the predicted values generated by the basis function
follow the actual data with a sufficient good precision.

Table 1. List of basis functions of the MARS and
their coefficients for on-board measurements.

Beta Basis Value
factor function
BF1 Max(0, SPEED-0.85) 0.00941
BF2 Max(0, SPEED-6.4) 0.00784
BF3 Max(0, SPEED-16.2) 0.00524
BF4 Max(0, SPEED-17.1) 0.00389
BF5 Max(0, SPEED-18.4) 0.00785
BF6 Max(0, Load-1.2) 0.00774
BF7 Max(0, Load-2.7) 0.00246
BF8 Max(0, Load-4.4) 0.00843
BF9 Max(0, Amb. Temp.-18.1) 0.00856
BF11 Max(0, Amb. Temp.-19.2) 0.00753
BF12 Max(0, Humidity-32.3) 0.00764
BF13 Max(0, Humidity-35.1) 0.00772

Table 2. List of basis functions of the MARS and
their coefficients for dynamometer measurements.

Beta Basis Value
factor function
BF1 Max(0, SPEED-1.1) 0.00987
BF2 Max(0, SPEED-5.3) 0.00785
BF3 Max(0, SPEED-13.7) 0.00699
BF4 Max(0, SPEED-21) 0.00434
BF5 Max(0, Load-1.1) 0.00689
BF6 Max(0, Load-3.1) 0.00274
BF7 Max(0, Amb. Temp.-18.1) 0.00784
BF8 Max(0, Amb. Temp.-19.2) 0.00674
BF9 Max(0, Humidity-33.1) 0.00425
BF10 Max(0, Humidity-34.2) 0.00511

3.2 ANN model

Based on the results obtained from using the ANN
modelling, the BPN is adequate for predicting CO emis-
sions. The accuracy of neural network prediction is gen-
erally dependent on the number of hidden layers and the
numbers of neurons in each layer. To find out the optimal
neural network architecture, a number of neural network
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Figure 3. Comparison of MARS predicted with ex-
perimental data for on-board CO emissions.
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Figure 4. Comparison of MARS predicted with ex-
perimental data for dynamometer CO emissions.

Table 3. The model selection results of the ANN
model.

Hidden RMSE R2

nodes (N) OBS DYNMO OBS DYNMO
2 1.94× 10−4 2.85× 10−4 0.721 0.621
3 1.97× 10−4 2.72× 10−4 0.749 0.616
4 1.86× 10−4 2.66× 10−4 0.829 0.678
5 1.68× 10−4 2.71× 10−4 0.854 0.712
6 1.76× 10−4 2.65× 10−4 0.861 0.701
7 1.77× 10−4 2.43× 10−4 0.863 0.711
8 1.61× 10−4 2.39× 10−4 0.864 0.727
9 1.58× 10−4 2.42× 10−4 0.855 0.704

10 1.57× 10−4 2.47× 10−4 0.877 0.689
11 1.60× 10−4 2.41× 10−4 0.867 0.664
12 1.64× 10−4 2.44× 10−4 0.869 0.654
13 1.72× 10−4 2.67× 10−4 0.854 0.711
14 1.66× 10−4 2.86× 10−4 0.861 0.719
15 1.72× 10−4 2.79× 10−4 0.872 0.716
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Figure 5. Proposed ANN architecture for on-board
CO emissions (4-10-1).
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Figure 6. Propossed ANN architecture for dy-
namometer CO emissions (4-8-1).

architectures has been tested by using a single layer and
varying the number of hidden neurons from 2 to 15 and
the result is presented in Table 3. It has been observed
that the single hidden layer neural network structure with
ten (10) and eight (8) numbers of neurons gave minimum
mean square error and good correlation coefficient for the
on-board and the dynamometer respectively. Therefore
the optimal neural network structure is 4-10-1 and 4-8-1,
as shown in Fig. 5 and 6. The remaining data, set aside for
testing and validation purposes, were then used to check
the predictive capabilities of the trained model. Compari-
son of the output obtained by simulating the ANN and the
target values of the experimental data is shown in Figs.
7 and 8. In the graphs, the accuracy of the ANN pre-
dictions was evaluated by their closeness to the experi-
mental dataset. As observed from the graphs in Figs. 9
and 10, a high correlation between the predicted and the
experimental values illustrated in the graphs implied that
the model succeeded in predicting the CO emissions. The
plots yield a correlation coefficient R of 0.932 and 0.857
for both on-board and dynamometer tests. The high cor-
relation coefficient and less mean square error difference
between experimental and predicted output was an indi-
cation of better prediction capability of the ANN model
for predicting carbon momonide emissions.
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Figure 7. Comparison of ANN predicted with ex-
perimental data for on-board CO emissions.
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Figure 8. Comparison of ANN predicted with ex-
perimental data for dynamometer CO emissions.

3.3 Comparison between MARS and ANN Model

The performance of the MARS and ANN models were
compared with the experimental dataset as shown in Figs.
11 and 12. As observed from the graphs and Table 4, both
models indicated excellent prediction capability withR2=
0.86 and 0.71 for MARS and R2= 0.88 and 0.72 for ANN
in the on-board and dynamometer test respectively. The
results obtained in this research showed excellent perfor-
mance indices for both MARS and ANN based models
and were in agreement with other researchers using the
same methodology even though the measured model in-
put parameters were different ([21], [22] ). The RMSE
and R indices for on-board were 1.67 × 10−4 and 0.93



for MARS and 1.57 × 10−4 and 0.94 for ANN, while
those of dynamometer were 2.51 × 10−4 and 0.84 for
MARS and 2.39× 10−4, and 0.85 for ANN, respectively.
For both models, the results were in agreement with the
measured data as predicted and the measured data varia-
tions were much closer. However, there were few points
that make MARS slighter stronger in its predictive ability.
The MARS model was observed to be computationally
more efficient in finding the optimal model, owing to the
capability of dividing the space of predictors into multi-
ple knots and then fitting a spline function between these
knots. Hence, selecting the optimum model required less
trial and error compared to ANN. The final number of BFs
was determined by the algorithm after setting the maxi-
mum number of BFs. Finally, models’ performance and
the efficiency features are summarized in Table 5. These
results concluded that the MARS can predict CO emis-
sions effectively.
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Figure 9. Overall correlation coefficient of the de-
veloped ANN network for on-board CO emissions.

Table 4. Summary performance of MARS and ANN
model

Model RMSE R
MARS-OBS 1.67× 10−4 0.927
MARS-DYN 2.51× 10−4 0.840
ANN-OBS 1.57× 10−4 0.936
ANN-DYN 2.39× 10−4 0.850
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Figure 10. Overall correlation coefficient of the de-
veloped ANN network for dynamometer CO emis-
sions.

Table 5. Performance Comparision between MARS
and ANN model

Model Selection Process Processing Time (s) R2

MARS-OBS Less trial-and-error 6 0.861
MARS-DYN Less trial-and-error 8 0.706
ANN-OBS More trial-and-error 22 0.877
ANN-DYN More trial-and-error 23 0.723

4 Conclusion

This paper has presented a MARS and ANN modelling
approach to effectively estimate vehicular CO emissions.
The model approximates the nonlinear relationship be-
tween the CO emission which is a function of speed, load,
ambient temperature, and humidity as predictor variables.
The MARS model was implemented with 13 and 10 ef-
fective piecewise-linear BFs. The MARS algorithm was
compared with multilayer feed forward back propagation
(BP) neural networks trained and tested by the Levenberg-
Marquardt (L-M) optimization algorithm to predict the
CO emissions. Among all the neural networks tested, for
on-board measurement, one layered neural network archi-
tecture 4-10-1 (4 inputs, 10 neurons in the hidden layer
and 1 output neuron) and for the dynamometer, 4-8- 1 (4
inputs, 10 neurons in the hidden layer and 1 output neu-
ron) were found to be optimum because of better perfor-
mance in terms of RMSE during training and testing of
the CO emissions. Both models exhibited excellent pre-
diction performance with MARS showing slightly lesser
accuracy. However, MARS was more computationally ef-
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Figure 12. Comparison of experimental data,
MARS and ANN model for dynamometer CO emis-
sions.
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Figure 11. Comparison of experimental data,
MARS and ANN model for on-board CO emis-
sions.

ficient in terms of processing time and less trial and error
in the effort to find the optimal parameters. The proposed
methods could facilitate a decision-making policy forma-
tion regarding urban air pollution.
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[24] Tóth-Nagy C., Conley J. J., Jarrett R. P. and Clark
N. N., “Influence of driving cycles on unit emissions
from passenger cars”, Journal of the Air & Waste
Management Association, vol. 56, no. 7, pp. 898-
910, 2006.
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