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ABSTRACT 
 

Construction companies suffer huge losses due to 
labor fatalities and injuries. Since more than 70% of 
all accidents are related to human activities, detecting 
and mitigating human-related risks holds the key to 
improve the safety condition of construction industry. 
Many research reveals the psychological and 
emotional conditions of workers could contribute to 
the fatalities and injuries. More recent observations 
in the area of neural science and psychology suggest 
inattentional blindness is one major cause of 
unexpected human related accidents. Due to the 
limitation of human mental workload, labors are 
vulnerable to unexpected hazards while they are 
focusing on complicated construction tasks. 
Therefore, detecting the mental conditions of workers 
could indicate the hazards level of unexpected injuries. 
However, there is no available measurement can 
monitor construction workers’ mental condition and 
related hazards. This proposed research aims at 
proposing a measurement framework to evaluate 
such hazards through a neural time-frequency 
analysis approach. At the same time, the researchers 
also developed a prototype wearable 
Electroencephalography (EEG) safety helmet to 
enable the neural information collection.     
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1 Introduction 

Construction is one of the most dangerous industrial 
sector in every country. In Hong Kong, the construction 
industry has one of the worst safety records compared to 
all other industries. In 2013, there were 3,332 injuries and 
37 fatalities in the construction industry in Hong Kong, 
which accounts for 19.68% of fatalities across all 

industries [1]. Most of these accidents (including injuries 
and fatalities) were related to labor activities (75%), 
including slipping (24.0%), lifting (14.7%), falling 
(13.1%), striking against stationary objects (9.3%), 
operating tools (2.8%) and other human-related activities 
(10%) [1]. If the safety hazards are properly detected and 
reported, the workplace safety can be significantly 
improved [2]. However, the biggest challenge of 
identifying hazards and recording accidents are the 
dynamic environment of construction jobsites and 
workers’ unpredictable behavior patterns [3]. Many 
research suggests through a safety analysis or safety 
climate analysis, the potential safety hazards could be 
identified [4]; together with proper safety programs, the 
safety condition could be significantly improved [5]. 
Although safety programs, such as training, inspections, 
motivation, enforcement, and penalties, are successfully 
implemented in the construction practices, there still are 
a great amount of unexpected accidents happened on job 
site. However, risks cannot be assessed, controlled and 
avoided if managers are not aware of the hazards in the 
first place [6]. Since preventing these unexpected 
accidents merely through safety programs is impossible, 
identifying and protecting vulnerable individuals instead 
of finding out all possible hazardous events provide us an 
alternative option to further improve on site safe 
conditions. 

Every worker on site has the ability to perceive 
hazards, this ability could help them escape from 
dangerous events, sometimes results in near-miss 
accidents. The classic psychological theories suggest 
people’s decision on risk-taking behavior is negatively 
correlated with their risk perception [7]. Thus, 
individuals who are weak in risk perception or tend to 
misestimate the risks are vulnerable to safety hazards. 
Therefore, if the risk perception ability of workers can be 
monitored, the vulnerable individual could be identified 
and protected.    

Many factors could impact people’s perception 
ability, mental condition is the most important one 



among them. In psychological research, mental workload 
has been proved as one of the best indicator of people 
perceptional ability [8, 9], especially for people who 
usually conduct complicated tasks. Therefore, the 
measurement of individuals’ mental workload could help 
to assess their perception ability and then to find out 
vulnerable workers in a construction job site. This 
research aims to propose an approach to quantitatively 
estimate mental workload, and then vulnerability of 
construction workers.    

 

2 Background 

2.1 Psychological Issues and Construction 
Safety 

In the labor-intense industry like construction 
industry, the psychological condition plays an extremely 
critical role in safety issues. Construction work is an 
inherently dangerous occupation and exposure to various 
psychological stressors, such as constraint schedule, 
complicated tasks, and physical and chemical hazards. 
Tixier  et al. (2014) conducted an experiment on 69 
construction workers and observed that the emotionally 
negative group (sad, unhappy, fearful, anxious and 
disgusted) subject to more risks than the positive group 
(happy, amused, joyful and interested) [10]. According to 
Endsley’s findings (1995) [11], there is a three-step 
process for people who experience dangerous events, 
including (1) detection of hazardous signals, (2) 
perception and comprehension of risks, and (3) 
projection of the consequences associated with decision 
options. Many psychological researchers conclude that 
emotions greatly influence signal detection, rick 
perception and process of risk-based decision [12, 13]. 
Different from other industry, in construction, risk 
perception is more important because even if the hazards 
are identified, workers still have to involuntarily behave 
unsafely, since most of construction tasks inherently 
associate with various level of risks [14]. Due to the tight 
project budgets and schedules, construction personals are 
predominately production-oriented and suffer huge 
physical and mental pressures [15], which will 
exacerbate the level of danger and increase the possibility 
of injury. 

 

2.2 Risk Perception and Mental Workload 

Mental workload or cognitive load refers to the total 
amount of human mental effort or memory that being 
used for task operation. When a person place too much 
attention on one task, he or she will have less attention to 
focus on other stimuli. One classic example is talking 
phone calls while driving, when driver’s attention is 

mostly allocated to the phone conversation, less attention 
is used for driving and results in higher accident rate [16]. 
Therefore, when some tasks consume too much attention, 
people expose to the danger of inattentional blindness 
[17]. Inattentional blindness is a psychological 
phenomenon that an individual fail to identify stimuli due 
to the lack of attention. One of the most well know study 
demonstrates inattentional blindness is the Invisible 
Gorilla Test, designed by Daniel Simons [18]. In the test, 
the subjects are request to count the number of ball passes 
in a video, while there will be a men wearing a full gorilla 
suit wall through the scene. After watching the video, the 
subjects are asked that if they saw a gorilla. In most of 
tests, 50% of subjects did not report of seeing the gorilla. 
The failure of seeing the gorilla attributes to the high 
mental engagement of counting task and results in 
inattentional blindness. 

One direct result of inattentional blindness in 
construction industry is when the workers focus too much 
on their work, they have less risk perception ability and 
vulnerable to dangers. Also, when a work has too less 
mental workload, for example he or she is repeating a 
daily work, which can also lead to the person to missing 
the unexpected accidents. Another possible issue that 
affect the risk perception is the hazard expectation. When 
workers conduct certain construction activities, they 
expect certain things to happen and tend to block out 
other possibilities. For example, when a worker installs a 
building roof, knowing from the training, he or she may 
assume fall is the major thing need to be worried, 
however, they may fail to predict the possibility of hitting 
by some random objects.  Such imperfect predictions or 
expectations can also lead to inattentional blindness. This 
could explain why even if safety trainings are performed, 
workers are still injured in various accidents.  

Another issue that related to the mental workload is 
work complexity [19]. Workers have to face rising 
cognitive demands with increasing complexity in task 
operations where cognitive skills are more important than 
physical skills. In construction industry, workers obtain a 
consideration portion of information directly from the 
cognitive task, while workers have to perform physically 
demanding work concurrently. Such as the task of 
electrical installation, workers not only need to 
accurately attach wires together, sometimes also need to 
perform all the tasks on the top of a ladder and hold up 
their arms for long time periods. Under such situations, it 
is necessary to determine how the physical works may 
impact the mental workload, and then estimate the safety 
condition of the worker of performing these tasks. 
However, due to the differences between individual 
workers, it is extremely difficult to predict the risk level 
purely from the task complexity and workers’ 
proficiency. Therefore, a quantitative and direct 
monitoring approach that can estimate the mental 



workload of workers could help project managers to find 
the vulnerable workers and implement safety policies or 
approaches to avoid accidents.      

 

2.3 Quantitative Neural Time-frequency 
Analysis 

In order to develop a measurement of mental 
workload, various behavioral and physiological tests has 
been developed since 1980s. Although subjective and 
inaccurate, such measurements can provide a relatively 
continuous data record over time without obstructing the 
primary task performance. In recently years, new 
neuroimaging techniques, such as functional magnetic 
resonance imaging (fMRI),  electroencephalography 
(EEG), and etc. provide a direct and quantitative 
alternatives for the assessment of mental workload [20]. 
Among these methods, EEG is the best candidate for 
construction implementation, since it can be applied 
outside of specialized laboratory; other methods require 
massive devices, large medical team and immobile 
subjects. Many research has found the correlation 
between brain rhythms that collected by EEG and mental 
workload  [21]. 

One popular quantitative analysis for brain rhythms 
of mental workload is Event-Related Potentials (ERPs). 
ERPs is a valid approach because it requires less 
assumptions or parameters, possesses higher temporal 
precision and accuracy, has been well studied, and 
provides a fast and easy computational results. However, 
ERPs is difficult to interpret the results and link the 
continuous data to physiological mechanisms. Adopted 
from the digital signal processing theory, a time-
frequency-based analysis has been introduced in then 
analysis of brain rhythms [22]. In this research, both 
approach will be adopted to analysis the mental workload 
of subjects when they focus on their tasks. A preliminary 
experiment is conducted to collect the brain rhythms of 
workers, and then estimate their mental workload and 
their vulnerability to unexpected accidents. 

 

3 Research Methodology 

3.1 Electroencephalography (EEG) 

In recently years, there are many research of 
collecting workers physiological information to enhance 
the safety condition of construction. Jebelli et al. 
employed inertial measurement unit to detect the body 
motion of steel works to protect them from fall accident 
[23]. Gatti et al. measure two physiological parameters 
(heart rate and breathing rate) to monitor the health 
condition of construction worker  when they conduct 
various constructing activities [24]. In this research, EEG 

will be introduced to assess the mental workload of 
workers. There are several advantages of EEG to study 
neurocognitive process: as suggested by Cohen (2011) 
[25] for the reasons of: 

(1) EEG can capture cognitive dynamics in a time 
frame. Most cognitive events occurs in a temporal 
sequence and in a scale of milliseconds or seconds.  High 
temporal-resolution techniques such as EEG is suitable 
to capture these fast and temporal information.  

(2) EEG is a direct measurement of neural activities. 
The voltage fluctuations detected by EEG are the most 
direct observations compare to other measurement 
devices. Although the mechanism is not fully known by 
researchers, the oscillations patterns of EEG signals are 
well studied and can be modelled fairly accurately.    

(3) EEG signal is multidimensional. Different from 
regular time series data, EEG signals is multidimensional, 
since it includes time, magnitude, frequency, power and 
phase. Such multidimensionality provides a plentiful data 
resources and possibilities for sophisticated data analysis.  

 

3.2 Data Processing 

The data collected and analysed in this research is 
brain rhythms that grouped into bands based upon their 
center frequencies and frequency widths. These brain 
rhythm frequency bands include delta wave (1-3 Hz), 
Theta wave (4-7 Hz), Low Alpha wave (8-9 Hz), High 
Alpha wave (10-12 Hz), Low Beta wave (13-17 Hz), 
High Beta wave (18-30 Hz), Low Gamma wave (31-40 
Hz), and High Gamma (41-50 Hz). Such grouping is not 
arbitrary but results from neurobiological mechanisms of 
brain oscillations, such as synaptic decay and brain signal 
transmission [26]. 

The EEG data analysis involve computation of power 
spectral densities (PSD) of above frequency bands. These 
rhythms can be used to identification and classification 
of cognitive states such as mental workload, engagement, 
execution, and verbal or spatial memory [27]. In this 
research, the engagement index developed by Prinzel et 
al. will be introduced [28]. The calculation of EEG-
engagement index (EN) is based on beta power (13-30 
Hz) divided by alpha power (8-12 Hz) plus theta power 
(5-7 Hz) and can be represent in following equation: 

 

ENሺtሻ ൌ
Pஒሺtሻ

Pሺtሻ  Pሺtሻ
 (1) 

 
Where ENሺtሻ is the EEG-engagement index at time t ; 
Pሺtሻ, Pஒሺtሻ, and P	ሺtሻ	are the power of alpha rhythm, 

beta rhythm and theta rhythm at time t. 
Another useful mental workload assessment 

framework is based on a hybrid brain–computer interface 
(BCI) model that characterized by the temporal and 
frequency information of EEG data. Suggested by Zhou 



et al. (2007), eight quantitative features can be derived 
from EEG raw signals based upon their bispectrum, since 
bispectrum has been proven a useful tool for EEG signal 
classification and filtering [29]. These features are: 

1. Peak frequency of the power spectral density (PSD), 
Hଵሺtሻ 

2. Peak value of the PSD, Hଶሺtሻ 
3. The first order spectral moment of the PSD at time 

t: 
 

Hଷሺtሻ ൌ  ω ∙ Hଵ,னሺtሻ


ன	ୀଵ

 (2) 

 
Where ω is the frequency of the power spectrum; N 

is the maximum frequency to be considered. 
 

4. The second-order spectral moment of the PSD: 

 

Hସሺtሻ ൌ ሺω െ Hଷሺtሻሻଶ ∙ Hଵ,னሺtሻ



னୀଵ

	 (3) 

 

5. The sum of logarithmic amplitudes of the 
bispectrum at time t: 

 

Hହ ൌ  log	ሺ|Bሺωଵ,ωଶሻ|ሻ
னభ,னమ∈

 (4) 

 

6. The sum of logarithmic amplitudes of diagonal 
elements in the bispectrum  

 

H ൌ  log	ሺ|Bሺω,ωሻ|ሻ
ன∈

 (5) 

 

7. The first-order spectral moment of the amplitudes 
of diagonal elements in the bispectrum 

 

H ൌk ∙ log	ሺ|Bሺω୩,ω୩ሻ|ሻ



୩ୀଵ

 (6) 

 

8. The second-order spectral moment of the 
amplitudes of diagonal elements in the bispectrum: 

 

H଼ ൌሺk െ Hሻଶ ∙ log	ሺ|Bሺω୩,ω୩ሻ|ሻ



୩ୀଵ

 (7) 

 
Where,  
 

	Bሺwଵ,wଶሻ ൌ 

  Eሾxሺkሻxሺk  mሻxሺk  nሻሿ
ାஶ

୬ୀିஶ

ାஶ

୫ୀିஶ

∙ eି୧ଶሺ୫னభା୬னమሻ 

(8) 

 
Bሺwଵ,wଶሻ  is the bispectrum of the 2D Fourier 

transform of the third-order cumulant of	ሼxሺtሻሽ, which is 
a non-Guassian third-order stationary random process. 

 

3.3 Preliminary Test and Equipment 

A preliminary experiment is designed to validate the 
feasibility of mental workload measurement. Five 
subjects was invited to wear an EEG monitoring helmet 
to perform an installation task. The subjects were 
requested to relax for 5 seconds, then walk onto a ladder 
(1 meter tall, cost 3-4 seconds to climb), conduct 
installation works (4-5 minutes), climb down the ladder 
and have a rest. The installation task requests each 
subject pickup suitable nuts and fasten bolts with a 
screwdriver and the subjects have to do so at height. The 
subjects have to repeat the task for three times. The task 
includes four types of activities: idling, ladder climbing, 
nuts selections and bolts fastening. During the 
experiment, the monitoring helmet was connected to a 
laptop via Bluetooth to stream data. At the same time, a 
camera was placed in scene to synchronize and record the 
activities and events. Then, the event tags was associated 
with EEG raw data based on video analysis.  

The research team developed a EEG monitoring safe 
helmet with Neurosky TGAM [30] model. Since 
Neurosky TGAM only has one channel for raw data 
collection, the research team expanded it to four channels 
by stacking four TGAM boards and connected them with 
a DFRduino UNO R3 and a blue tooth module. Also, a 
Electrocardiography(ECG) sensor, PulseSensor [31], 
also attached to the microcontroller for reference, but will 
not be discussed in this paper. Following Figure 1 shows 
the developed monitoring helmet.  

 

 
(a) Micro controller and pulse sensor 



 
(b) NeuroSky Board and Electrodes 

 
Figure 1. Design of the wearable EEG monitoring 
safety helmet 
 
Four sensor sites are selected refer to the 10-20 

system or international 10-20 system, which is a method 
that describes the application locations of scalp 
electrodes. Four selected locations in this research are left 
ear (TP9), left forehead (FP1), right forehead (FP2) and 
right ear (TP10). These locations are presented in the 
Figure 2. The FP1 location is related to logical attention 
and other brain functions, such as interactions planning, 
decision making, task completion and working memory. 
The FP2 location relates to emotional attention and other 
brain functions, such as judgement, sense of self and 
restraint of impulses. TP9 and TP10 serve as the 
references for further comparison. 

 

 
 

Figure 2. Electrodes installing locations refer to 10-
20 system 

 
Since the raw data has rich information with 

unavoidable noise, it is extremely important to find out 
the right signal for mental load estimation. Comparing 
through the spectrum of all frequencies, alpha wave (8-
12 Hz), beta wave (13-30 Hz), and gamma wave (31-50 
Hz) are the best candidates. Alpha brainwaves are present 
when people have quietly flowing thought; they associate 
with relax wakefulness and aids mental coordination, 
calmness, and alertness. Beta brainwaves dominate our 

normal waking state of consciousness when people 
engage in tasks; they associate with attentiveness, 
selective attention, concentration and anticipation. 
Gamma brainwaves are the high frequency waves relate 
to simultaneous information processing involves 
multiple brain areas; they associate with higher mental 
activities, perception, problem solving, fear and 
consciousness.  

 

4 Experimental Results and Mental 
Workload Assessment 

To simplify the data analysis for the preliminary 
experiment, this manuscript only discuss the signal 
pattern of FP1 and focus on the first 13 seconds of the 
experiment, which includes three type of activities (idling, 
climbing, and installing). Figure 3 presents the spectrum 
of brainwaves of four different locations during the 
preliminary experiment.  

 

 
 

Figure 3. Raw singles form FP1(above) and 
FP2(below) 

 
The raw data displayed in Figure 3 shows clear 

distinctions in signal magnitude and frequency among 
three activities.  To visualize the difference between 
activates in the target rhythms, the data is projected into 
the frequency domain as shown in Figure 4.   

 

 



Figure 4. Signal spectrogram from FP1 with 
Hanning window (above) and rectangular window 

(below) 
 

There are clear single spikes in Alpha, Beta and 
Gamma rhythms when the subjects begin to climb the 
ladder and start to fasten the bolts. These spikes is 
directly associate the mental workload. Through 
estimates the spike magnitude the mental workload could 
be quantitatively estimated.  

 

 
 

Figure 5. PSD Spectrum for activities 
 
Above Figure 5 is the PSD spectrum, which show the 

power distribution in various frequency bands. It is clear 
that most of the power concentrates on the low frequency 
bank, which suggests the estimation could be improved 
and simplified by filtering out the high frequency part. 

 

 
 

Figure 6. Bispectrum magnitude (below) and 3rd order 
cumulant (up) of idling (left), climbing (middle) and 

installing (right)  
 

As discussed before the bispectrum analysis could be 
applied in the pattern recognition on the level of mental 
workload under different activities. Such differences in 
3rd order cumulant also not only can help us to 
quantitative assess the attention level of the worker, but 
also could server as the features of activity detection for 
workers.   

 

5 Safety/Vulnerability and Mental 
Workload  

Data from the preliminary experiment suggests that 
EEG is an effective measurement to monitor the dynamic 
fluctuation of the mental load when workers engage in 
construction tasks. Since there are obvious distinctions 
between data pattern, EEG could be a novel approach to 
estimate the mental workload in various construction 
activities. More specifically, the metrics proposed in this 
research is able to differentiate the activities through a 
series of quantitative features. The estimated level of 
mental workload is good indication of the vulnerability 
of individual worker, since many psychological research 
[32, 33] shows when people subject to heavy mental 
workload could cause inattentional blindness and results 
in sever accidents. Therefore, by knowing who is 
concentrating on works, project managers are able to 
identify vulnerable employees and provide sufficient 
protection. Combining with positioning technologies, 
project managers can create a protection zone for workers 
who expose to hazards and restrict machineries’ 
interference. 

Also, another potential usage of the EEG data is 
activity detection. Observing from the experiment results, 
when the subjects conduct different types of jobs, the 
signal pattern of brain waves are varied. Through 
utilizing pattern recognition and unique combinations of 
the frequency bands, the EEG data could be helpful in 
activity detection and productivity measurement, since 
each type of task has its own mental load and cognitive 
requirements. Therefore, the proposed measurement in 
this research could supplement other activity detecting 
metrics through various sensors, such as IMUs [34, 35], 
camera [36], Kinect [37, 38], and etc.  

 One limitation of current injury reporting system 
required OSHA is that all accidents are self-reported after 
the accidents occurred. However, there are a great 
amount of near-miss accidents also can help project 
managers to improve the safety management practice but 
neglected because these accidents are extremely difficult 
to detect and monitor. The EEG monitoring system 
provide an innovative perspective to realize near-miss 
accidents by monitoring the mental condition when 
people percept danger. Some frequency bands of EEG 
signal, such as gamma wave, could indicate the mental 
condition of workers when they are experiencing 
accidents. Together with other sensors, such as IMU, 
camera or RFID, an automatic near-miss accident 
recording system could be created and dramatically 
increase the accident database for project managers to 
refer to.                

 



6 Conclusion and Limitations  

Measurement of workers’ mental workload provide 
an alternative source of information about the safety 
condition on site. Instead of detecting hazards, the EEG 
assessment enable project managers find out the 
vulnerable individuals from a unique and innovative 
perspective. This research demonstrates how to utilize 
EEG data to indirectly measure the vulnerability of 
workers based on mental load when they conduct various 
construction tasks. The preliminary experiments suggests 
it is feasible of using brain waves to quantify and 
differentiate the mental workload of activates in 
construction. Since this research is a preliminary study, it 
still subject to several.  

First, the experiment scale is not large enough. Since 
the equipment designed by the research team is still a 
prototype. Thus, the experiment cannot be conducted in 
a large and practical scale. In future research, the research 
team will try to improve the equipment design and data 
quality to testify the validity of the assessment model in 
a larger scale.   

Second, the data collected from the system still yield 
to random errors. Although filters have been applied to 
eliminate the white noise in the retrieved data, the 
reliability of the sensing system still need to be tested and 
specific filers need to be designed. 

Third, the electrodes placement need to be optimized. 
There are more than 30 potential applying locations for 
EEG electrodes suggested by international 10-20 system, 
each of them indicate different brain functions. To 
optimize the detecting accuracy and wearing 
convenience, the hardware need to expanded and 
optimized. In future research, the research team will 
connect more electrodes and sensing channels to resolve 
this limitation.  
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