
Iiu(oniauun anu Koouucs to t_.onstrucuon A

G.H. Watson, R.L. Tucker and J .K. Walters (Editors)

1993 Elsevier L,.11. n rights reserved.
93

GENERIC CRANE AND HOIST AUTOMATION WITH TIIE APPLICATION OF
ADVANCED CONTROL ARCHITECTURES

N.A. Armstrong , P.R. Moore and R.H. Weston
Modular Systems Research Group

Department of Manufacturing Engineering
Loughborough University of Technology

Loughborough , Leicestershire
LEI I 3TU, United Kingdom

Synopsis

Crane and hoist systems can potentially benefit from contemporary advances made in
electronics based enabling technologies and control systems engineering. This paper describes
the design and implementation of a modular distributed control system for crane and hoist
automation in manufacturing and construction. The distributed control platform has been

realised using the FIP-Fieldbus and the open machine control integration platform UMC

(Universal Machine Control). The technology is evaluated on a gantry crane 'demonstrator'

which embodies control features such as; anti -swing, condition monitoring, tele-operation,
automatic load coupling/decoupling, and automatic cycling. The project has successfully
proven the applicability of modular distributed control systems for industrial automation and
has substantiated the benefits of designing, implementing and maintaining control systems
using an open machine control platform.

1.0 Introduction

A three year research programme entitled MACHINE (Monitoring And Control of Hoists in

INdustrial Environments) started in September 1990 with the objective of applying innovative
and cost effective improvements in the control, monitoring and mechanical design aspects of
hoist and crane technologies. The desired outcome being semi-autonomous mechanical
handling systems for diverse industrial sectors which demonstrate enhanced functional
performance and improved efficiency and working conditions of operators. This collaborative
research venture between six European partners was sponsored under the BRITE-EURAM

initiative to a value of some 2 million ECU [1,21.

Principal aims of the research programme were to produce representative mathematical
models of typical crane and hoist dynamics for subsequent use in designing improved crane
control schemes; advance the performance of crane drive systems and hoist mechanisms; to
establish a method of automatic or semi-automatic coupling of crane end-effectors to

specified loads, and to demonstrate a reliability of coupling of up to 98%; to demonstrate

guaranteed vertical lifting so as to eliminate swing at pick up by at least 90%, and to reduce

the over swing of the load during traversing motions; develop a prototype performance record
and condition monitoring system for cranes - useful for the production and maintenance
planning; demonstrate operation with reduced personnel; provide real-time position data for
operators, and demonstrate the efficient integration of the various sub-systems.

A control architecture was required which would integrate the control of crane axis drives and
input/output hardware and support the collection of crane monitoring and collision avoidance
data. provided a platform for swing control regimes, operator interface functions and partial



94

autonomous operation. The control architecture needed to be sufficiently flexibility to enable
such features to be developed independently and added, modified or removed; and allow the
addition of, as yet unspecified, features which may be required in the future. For these
reasons a distributed implementation of a control system based on the Universal Machine
Control (UMC) architecture was chosen [3,4].

2.0 A Reference Architecture for Machine Control

The specification and design of Reference Architectures for machine and process control has
been the subject of the ongoing research of the Modular Systems Group at Loughborough
University of Technology. This research has produced the Universal Machine Control (UMC)
system, which is an open systems methodology and software suite from which custom control
systems can be designed and built from largely standard software modules; implementation-
specific software is used to customise the application, but this is a significantly reduced
amount compared with a specifically written software solution [5,6]. The current UMC run-
time system is implemented on the Motorola 68XXX family of processors using the
Microware OS9 real-time operating system. Run-time UMC machines typically use
networked, diskless, rack based, single board computers with VME and/or G64 parallel
backplanes. A machine's control system based on the UMC Reference Architecture (see
Figure 1.) can be built quickly, simply and cost effectively from a range of re-usable software
modules. Such machines can be simple or complex determined specifically by the application.
The complexity of the control system reflects this and can be easily modified to accommodate
updated hardware/software or for the system to be reconfigured or expanded to provide
additional functionality as and when required.

Configuration tools allow the machine's structure to be defined in terms of the device
hardware/software used and the user specific software which customises the control system
for a particular application. Machine configuration data can also be used by associated
modelling and simulation tools for offline development and testing of application code; these
are useful for evaluating and emulating machine performance before it is used for a 'real-
world' control system. An interface to higher level factory automation systems is also
available through the CIM-BIOSYS open systems integration platform [7j.

Run-time data associated with the machine and its hardware is stored in global data-areas
which permits excellent data visibility for machine monitoring, diagnostics and error recovery
strategies. Software modules (called handlers) provide a virtual interface through which the
control system can access a range of devices. As a result of this uniformity, devices from
different vendors can be seamlessly integrated in a single solution. The user's application
software calls a set of 'standard' UMC functions which provide the interface, via handlers, to
the machine hardware; as such the author of application software is freed from writing this
often complex and hardware specific code and can concentrate on the task's primary purpose,
namely, the user requirements: UMC architecture is hierarchically structured thus:

2.1 Machine Level

The machine level defines the overall format and structure of the control system. Utilities are
provided for creating and modifying machine data (edit files which describe the machine in
terms of number of axes, ports, tasks, events, device specific data etc) and location files. At
run time a machine configuration utility creates the actual machine from these data files.
Utilities exist for monitoring and dynamically modifying the functioning of a UMC machine
during execution.



Factory
Interface

Machine
Level

Task
Level

Handler
Level

No Current Specification (other than through CIM-BIOSYS)

Machine Utilit

Machine Information
module

achine Information Utilit

Tasks may be hierarchically/ Additional
heterarchically arranged as desired Location ' " "- tasks as

"utility tasks" or may Task ;mo-Task and location information
be application specific mOd' modules are optional

Tasks may be standard Task; Info requirednfo" d• ------'

External
Device
Controllers

Local processing
for intelligent
Tools/Sensors

Figure 1. Universal Machine Control Hierarchy

n' DOF igital I/O
Motion ontroller

Controller

Analogue
1/0

ontroller

v set
actual

U

2.2 User Tasks

Application specific programs (referred to as user tasks) are currently written using the C
language. A library of 'standard' functions provides all the necessary links to the UMC control
system. Users are then free to write Whatever code they need, specific to their requirements,
with access to all the UMC machine hardware and data that the task may require. Library
functions include calls for reading input and writing output channels, single and multi-axis
constant velocity and trapezoidal velocity moves, mapping and profiling of multiple axes,
velocity control, teaching positions and moving to predefined locations. Library functions are
also available for reading and setting parameters, general error recovery and status reporting,
inter-task synchronisation and communication 181.

A machine will typically be made up of groups of devices, ie, the associated axes constituting
a robot arm. Axis positions can be defined off-line using a dedicated editor or on-line using a
specially written task. These locations are stored, at run-time, in a data module and can be
saved as edit files (on disk) for re-use each time the machine is run. A user task might
specifically control one group of axes with different tasks supervising other groups or
performing other duties of the machine. A natural decomposition of the application is easily
supported. Occasions may arise where a device is associated with two or more groups or user
tasks, ie, an axis passing parts between work stations, in which case both tasks can share
access of a single device. User processes may monitor the status of a handler at any time,
without being the controlling task, by reading data from the device's global data module.

The UMC architecture imposes no constraints on the content or structure of the application
code, linking to the library is necessary only if access is required to UMC functions.
Proprietary (non-'MC) software modules will run alongside UMC processes, functioning



96

completely autonomously or communicating using some form of proprietary inter-process
protocol with UMC tasks.

2.3 Virtual Devices

A handler provides a 'virtual' software interface between user programs and specific hardware
devices. By using a generalised set of commands and responses passed to the handler, a task
can control a device or groups of different devices without being concerned with their specific
operating or communication mechanisms. In this way a user defined task process can
communicate easily (uniformly) with many types of manufacturer specific, class specific and
device specific hardware. Replacing or upgrading the hardware and device-software used by
a machine is simple and straightforward as task code should not be effected.

The handler is a state machine which acts as a translator, converting standard data and
commands to device specific calls, receiving device specific responses and converting them to
a standard format available to any user-task. The handler also monitors device status,
reporting to the user any error conditions and provides a mechanism for taking corrective
action.

Handler processes are only active for short intermittent periods, monitoring and processing
changes in the device or task instructions; they then 'sleep', giving CPU time for other
processes to run. If a task requires some special service from a device, ie, one which is not
supported by the general command set, it can accomplish this via the UMC function 'specific'
call, so making full use of a particular devices' specialist attributes.

3.0 Industrial Distributed Control Networks

Around 1984, standards bodies and industrial collaborative groups, in America and Europe
began work on the creation of open standard digital communications networks for low level
industrial devices (Fieldbus). This resulted in three distinct variations: the Instrument Society
of America (ISA) Fieldbus, FIP from France and Profibus from Germany. The International
Electrotechnical Commission (IEC) decided that the ISA fieldbus would form the basis for
the international standard, although elements from FIP, Profibus and other factions will also
have been included in the final standard.

In an attempt to hasten the realisation of an open standard, groups such as the International
Fieldbus Consortium (IFC) and Inter-operable Systems Project (ISP) have formed to provide
early 'Fieldbus' solutions, however, it is unlikely that devices with IFC or ISP fieldbus will be
available before 1994. Meanwhile, the FIP and Profibus groups have continued to form
national standards, vendor and user bases; and now see a broad, and increasing, use of their
respective 'fieldbuses'. Network systems from different industrial sectors have also been
proposed as suitable for the requirements of process, manufacturing and construction industry
automation, Eg. MIL-STD-1553B a military standard and ARINC 629 an aviation standard;
SERCOS from the machine-tool industry and CANBUS from the automotive industry.
Proprietary networks from major PLC, motor-drive and instrumentation manufacturers and
specialist networking companies have also become prominent, including Intel's Bitbus,
Rosemount's Hart, Echelon Lonworks, and Pheonix contact's Interbus-S. These lists are by no
means comprehensive, but serve to indicate the interest shown and potential market for such
SwsteIllS.

From the criteria for a simple digital replacement of an analogue standard, the draft Fieldbus
standard now contains many (sometimes disparate) options in an attempt to provide a solution
satisfactory for use in many diverse industrial application domains. It is hardly surprising



97

therefore, that there would be a certain amount of procrastination and, at times, acrimony
between the major players and that the formation of the IEC standard has been overdue. It is
expected that the Physical-layer standard will be finalised very soon, and that the Datalink-
layer is expected to become a draft standard by the middle of the year. There seems to be little
progress towards an Application-layer specification which is acceptable to all the members of
the associated working group 191. At various times a (real-time) subset of Manufacturing
Automation Protocol (MAP)'s Manufacturing Message Specification (MMS) services 1101,
global-object services similar to those offered by FIP and an application layer based on
Profibus services have been suggested.

Potentially of greatest interest to a user of fieldbus is the 'User-layer'; a proposed additional
tier in the hierarchy, although not part of the original ISO model 1111. The User-layer
essentially 'hides' all networking functionality from the user by providing a set of virtual-
device services which appear to directly interface the user's software with the remote device.
For example, virtual-device function blocks would exist for instigating one of a standard set
of PID loops on a remote device, what the fieldbus actually does to achieved this is of no
concern to the user, other than wether is has been successful or not. As with the other layers,
various classes of conformance, from completely defined (genuinely Open) to
manufacturer/device specific have had to be included. NB: the UMC user-task library is
analogous to the proposed IEC User-layer in providing a set of functions by which a user can
control a specific device in a virtual manner.

3.1 Selection of A Distributed Control Network

An international standard fieldbus would have been desirable for this project, but would not
have been available within its life span. However, a system which offers features close to
those likely in the IEC standard is appealing as it would then offer an easy migration path for
future developments or applications arising from the project.

A 'distributed real-time database' was recognised to suit the global data-sharing aspect of a
distributed version of the UMC architecture. The only Open System currently offering
guaranteed real-time distributed-object services, for which multi-vendor hardware and
software is available is the FIP fieldbus contender [121. The implementation of FIP used also
offers an acyclic messaging (and file transfer) facility; multiple physical media, speed and
intrinsic safety options; (potentially) some MMS like services; ready availability of hardware
from various sources; and an Open (French) national standard.

4.0 Distributed Control Implementation of UMC

The approach adopted for a modular distributed control system employs many of the concepts
and attributes of the 'centralised' form of UMC. The users application code is defined within
task programs which access the system via a library of standard functions. To convert a task
written for a centralised UMC machine to one suitable for a distributed application should
require little more than relinking it with the appropriate library. Task and Handler processes
communicate in a consistent manner, whether they are situated on the same or different
processors. Machine and device global data is accessible to any process that requires it, via
the 'distributed data-base' maintained by the network. Distributed processes use a software
interrupt mechanism for processing network service requests, this gives a fast response to
aperiodic requests and allows the normal program-flow of tasks and handlers to be
maintained.

Where centralised UMC uses a system of OS9 events, signals and shared data areas, the
distributed form has network functions which globally mimic or locally reproduce these



98

interprocess communication mechanisms . Attempts have been made to optimise the
performance of distributed - system calls in-so - much as frequently used data is stored locally
rather than repetitively requesting it from the network . However , some of the 'internal'
functionality is not directly transferable between the two approaches , Eg. storing device data
module addresses (pointers ) in the machine data module of a centralised system is simple and
efficient but not applicable in a distributed environment; in this instance the data module
addresses will be different at each node and are therefore stored locally by each process.

The distributed implementation of UMC uses both the FIP synchronous object - variable 'data-
base' and asynchronous message transmission services . Fip variables are used for maintaining
a global copy of the real-time machine and device data . Messaging is used for the remote
setting of OS9 events and signals and consumer to producer variable update requests. A
combination of FIP variables and messaging is used for a global event mechanism.

Special distributed control utilities have been written to support local configuration of the
data-modules (which define the access of networked global data ), loading of task location
modules, creation of application tasks, handler and network processes , and monitoring and

resetting of global event and data-values.

The FIP implementation of distributed Universal Machine Control was first publicly

demonstrated on a five axis modular 'robotic machine at a United Kingdom Department of
Trade and Industry 'Fieldbus Open Day' at Loughborough in November 1992.

5.0 Implementation of the Demonstrator Crane Control System

5.1 Hardware Architecture

The demonstrator uses a suitably designed overhead-travelling (gantry) crane. The control-
hardware architecture uses three FIP network nodes linked by a shielded twisted pair cable
operating at a raw data-rate of 1 Mbit/s. One node is mounted on the trolley (crab), this
controls two variable-speed vector drives (for the cross-travel and hoist motors) via closed-
loop motion controllers, plus an I/O module which supports digital and analogue channels.
One node is mounted on the bridge, this controls the long-travel via a motion controller and
vector drives and an associated I/O module; it also provides a 'gateway' between the FIP and
proprietary-radio networks. The radio link is used to connect a data-logging node (for
condition-monitoring), tele-operator and a collision avoidance system. The third node is
mounted on the crane grab and provides the various I/O functions. Figure 2 depicts the
control system hardware architecture.

5.2 Software Architecture

UMC is used to provide a control architecture for the fundamental crane control system and
set of basic networking functions for communication between this and the proprietary, ie,
non-UMC applications - data-collection, tele-operator and grab-control software (Figure 3).
A UMC single-axis handler is used to control each drive, along with a UMC binary-analogue
handler for each block of I/O.

The application code is split into three tasks. The first task (taskl) provides the interface
between the control system 'core' and the peripheral systems. It passes crane position data to
the radio nodes and provides the man-machine-interface - importing commands via keyboard
and tele-operator; these are processed and executed directly for grab I/O commands or
exported as gross crane demand-position data / move-commands to the other tasks. These
tasks use the gross commands and data to drive the crane hardware via UMC function calls to



99

the handlers . The second task (task2 ) uses an anti - swing control algorithm to process the

'move ' commands , and drives the handler/hardware in a low -level-UMC velocity control

mode . The third task (task3 ) processes the same commands using high -level-UMC, multi-

axis trapezoidal move functions . By switching between task2 and task3, the same gross
command can be executed with or without the anti - swing control algorithm.

1 Mbit/second FIP NETWORK shielded, twisted- air cable

TROLLEY NODE LONG-TRAVEL NODE

G64 based 68030 processor G64 based 68030 processor
on board FIP interface on board FIP interface

2 off motion control cards 1 off motion control card
1 off I/O interface card 1 off I/O interface card

4 off serial ports 4 off serial ports

HOIST
DRIVE

I/O
MOD.

iW4
RADIO
COMMS

GRAB NODE
68H0001 processor

on board FIP interface
I off digital I/O module

I off analogue input module
off analogue output module

radio network

GRAB
ARE

C/T
DRIVE

L/T
DRIVE

I/O
MOD.

swing-angle
measurement
and general

,hoist I/O cross- long-

motor / travel travel
gearbox motor / motors /

gearbox gearboxes

Figure 2. Demonstrator Hardware Architecture

DATA-LOGGING NODE
8031 processor

TELE-OPERATOR NODE

68XXX processor

global data -- FIP variables FIP NETWORK command & control -- FIP messag ing

TROLLEY NODE
I

LONG-TRAVEL NODE

TASK1
interface to USER, GRAB
DATA-LOGGING AND

TELE-OPERATOR

c
ASK2 TASK3
7

T
wine- ' call'

control UMC
al<gorithm trapezoidal

JMC velocity
fns.

move
fns.

I
GRAB NODE

L y

I/O
proprietary

software

DATA-LOGGING NODE

proprietary software

TELE-OPERATOR NODE

HOIST
axis

handler

proprietary software

Figure 3. Demonstrator Software Architecture



100

By splitting the control requirements into discrete elements, each part can be written,
debugged and tested in isolation. Furthermore, piecemeal changes can be made without
forcing a major re-write of the software. ie, changing the drive hardware might require a
different handler but the rest of the software would remain unchanged. Likewise, changing
the anti-swing control algorithm would require modification of task2, but nothing else. This
approach also applies to the integration of proprietary systems which can be installed,
modified or removed in a similar fashion.

6.0 Conclusions

A consistent machine control reference architecture and associated modular software can
offers cost-savings and other benefits in the design, implementation, service, modification and
re-use of a wide range of machines, including those found in the construction industry. The
ongoing MACHINE project will demonstrate how diverse crane-hoist technologies can be
integrated successfully using modern, modular control methods to provide improved
mechanical handling systems.

7.0 Acknowledgements

The authors gratefully acknowledge the contributions of other members of the Modular
Systems Group and in particular those of Robert Harrison and Alan Booth in the foundation
UMC research.

8.0 References

1 Anon. (1991), 'MACHINE: Monitoring and Control of Hoist Technology in Industrial
Environments', BRITE EURAM programme synopses of current projects 1990-91 second
edition, CEC. p238.
2 Dodman K (1991), 'Crane Automation', Cranes Today, March, p41-44.
3 Weston R H, Harrison R, Booth A H and Moore P R (1989), 'Universal Machine
Control System Primitives for Modular Distributed Manipulator Systems'. International
Journal of Production Research, vo127, No3, p395-410.
4 Weston R H, Harrison R, Booth A H and Moore P R (1989), 'A New Approach to
Machine Control'. Computer-Aided Engineering Journal, February, p27-32.
5 Harrison R, Wright C D, Carrott A J, Booth A H and Armstrong N A (1992), 'UMC
Conceptual Specification', dept. Manufacturing Engineering, LUT. Loughborough, UK.
6. Glad A S (1987), 'Software Engineering Guide for Real-Time Control Systems
Development', Sixth Control Engineering Conference, Rosemount, IL. USA, May, p188-199.
7 Coutts I A, Weston R H, Murgatroyd I S and Gascoigne J D (1992), 'Open
Applications Within Soft Integrated Manufacturing Systems'. International Conference on
Manufacturing Automation, University of Hong Kong, August, p800-805.
8 Booth A H, Carrott A J (1992), 'UMC Version 2.0 Implementation Specification',
dept. Manufacturing Engineering, LUT, Loughborough, UK.
9 Goodwin B (1993), 'Communication discord', The Engineer, 28 January, p18-19.
10 Anon. (c 1992), 'MMS Open Systems in Manufacturing', dept. Trade and Industry,
London, UK.
1 1 Lasher D (1992), 'A User's Standard - Why Is There An Eighth Layer?', Fieldbus '92,
Institute of Measurement and Control and ISA International - England Section, London,
November, (no page numbers.).
12 Anon. (c1991). TIP technical description', Club Fip, 3 his, Rue de la Salpetriere,
Nancy, France.


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

