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Abstract 

Human motion analysis and tracking are a significant research area in the domain of computer vision. 
Existing systems of today focus on detection of human targets by analyzing their movements in order to 
recognize the different activities performed by them. Our research work mainly focuses on using detection 
and tracking of human targets using a 3D range image camera [1] for surveillance purposes in order to 
ensure the safety of construction workers and also to monitor their posture and movements for heath related 
purposes in an active work zone. For this purpose the tracking algorithm proposed performs the 
segmentation of a human target (i.e. construction worker) from a range image video sequence and then 
models and tags them in order that their location can be continuously monitored. Unlike most other 
available systems, our system focuses on using the range or distance information since they indicate how far 
(in terms of meters) a human target is located away from the camera and more importantly because they are 
capable of generating a 3D perspective of the human target (i.e. by method of 3D point clouds). The range 
video sequence is obtained by using a special range image camera, which is an optical imaging system which 
offers real time 3D image data.  Furthermore, the segmented human target is modeled by image 
skeletonization using a star skeleton structure [7]. This model in future research can be used in conjunction 
with HMM’s (Hidden Markov Models) for human activity recognition. The system designed calculates the 
angles between different body parts to analyze the posture of a construction worker. It also incorporates the 
use of a particle filter [2] to trace the path of the construction worker in order to classify different work-
related activities. Our system is also capable of detecting multiple people and tracking each of their paths 
separately in a given work environment. 

 
Keywords: Range Image Processing, Real-Time, Safety, Detection, Tracking, Surveillance, Star-Skeleton 
Model, Construction Work Zone. 

1.     Introduction 

In the field of civil engineering, safety is becoming a growing concern on account of the numerous 
accidents occurring in construction work-sites. As per the Census of Fatal Occupational Injuries released by 
the U.S Department of Labor [13], out of the total of 5,448 fatal injuries which occurred in the year of 2007, 
1,152 accidents occurred in the Construction industry while 1,423 occurred in the Transportation industry. 
This data clearly signifies the importance of increasing safety and detecting and avoiding fatal accidents 
before they occur in work-sites. In addition to safety, the health of construction workers is also an important 
issue, owing to the physical stress they are subject to while handling heavy equipment. Head injuries, spinal 
injuries, slip-discs, dislocations and fractures are some of the most common injuries which occur in 
construction sites. Most of these injuries can often result chronic health problems or in some cases even 
death if overlooked at construction sites. 

With the help of computer vision technology we propose to device a real-time monitoring system to 
assist in providing safety of construction workers and monitoring the their posture while working in order to 
determine whether they are subject to physical health related issues due to an incorrect posture.  Managing 
safety in construction work-sites often require an in-depth analysis of real time visual data. Although, this 
can be done with the help of a human operator, the chances of error and wrong analysis increases manifold 
as the number of workers and the area of the site increases. With the advent of real-time intelligent systems, 
the complexity of analyzing safety in construction sites can greatly be reduced. It is important to note that 
the development of real-time monitoring systems is not to replace human operators (i.e. safety officers) but 
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instead to assist them to manage the safety of workers more efficiently and quickly with a lower rate of error 
especially in large construction sites with many workers performing various tasks simultaneously. 

The system proposed is capable of detecting, tracking and monitoring construction workers using 3D 
Range Imaging technology [1]. The proposed system performs a series of steps which include background 
modeling, background subtraction, automatic threshold selection, noise removal [denoising], contour 
formation, centroid detection and tracking a human target using a particle filter [2]. The system then 
proceeds to form a star skeleton model which can be used to analyze the motion and posture of construction 
workers in a work zone site. The angles between the different segments of the star skeleton model are 
calculated for the purpose of motion analysis in order to detect the activity being performed by the 
construction worker.  

2.     Background Review and Range Imaging Technology 

The primary purposes of tracking algorithms are to automate the process of segmenting and tagging 
objects from real-time video sequences. The objects which are to be tracked span a wide range including 
humans, vehicles, etc. Along with segmenting and tagging objects, many of the new generation tracking 
algorithms are also capable of analyzing the path traced by the detected objects. Our focus is mainly on 
developing and using tracking algorithms in civil engineering for monitoring the location of construction 
workers and interpreting the different activities performed them in active work zones for safety and health 
related issues.  

Fujiyoshi and Lipton [7] developed a star-skeleton model in order to represent the human body structure. 
The star-skeleton model technique involves extracting the contour of the segmented object and then 
connecting the centroid of target object to extremities of the contour. Using this model they analyzed two 
motion cues namely cyclic motion and posture of the human star-skeleton model. Haritaoglu and Harvood 
[9] presented a method which used both shape analysis and tracking to locate humans and their body parts 
(head, hands, feet, and torso) and also created corresponding models in order so that they could be tracked 
even in presence of occlusions. The shape model used for their algorithm was the Cardboard Model [9], 
which represents the relative positions and size of body parts. However it is important to note that the 
cardboard model can be used only for upright people [straight posture]. Pfinder [3] is a real-time system for 
tracking a person which uses a multi-class statistical model of color and shape to segment a person from a 
background scene. It finds and tracks people's head and hands under a wide range of viewing condition.  
Yamota and Ohya [5] presented a human action recognition method based on a hidden Markov model 
(HMM). It is a feature-based bottom-up approach that is characterized by its learning capability and time-
scale invariability. Yu and Aggarwal [8, 11] also incorporated the use of HMMs in their algorithm for 
detection of fence climbing from monocular video. To analyze the resulting time series, they built a block 
based discrete Hidden Markov Model (HMM) with predefined action classes {walk, climb up, cross over, 
drop down} as the state blocks. The detection was achieved by decoding the state sequence of the block 
based HMM. Many tracking algorithms try to solve problem in video analysis to track moving objects during 
a video sequence in presence of occlusions. Conte and Foggia [4] used a method of tracking objects through 
occlusions that exploits the wealth of information due to the spatial coherence between pixels, using a graph-
based, multi-resolution representation of the moving regions. Bregler [12] uses many levels of representation 
based on mixture models, EM, and recursive Kalman and Markov estimation to learn and recognize human 
dynamics. 

Range Imaging technology brings together a combination of obtaining the amplitude, intensity and the 
range (i.e. distance) information at every pixel of a two-dimensional sensor array of a range camera. Range 
Image cameras make use of ASP (Active Sensor Pixels) data of entire scene field-of-view in one frame. 
Range Image cameras operate on the TOF (Time of Flight) principle using phase shift measurement [1]. The 
camera uses conventional light emitting diodes (LED’s) to actively illuminate a scene by emitting sinusoidal 
modulated (spatial or temporal) near-infrared light. The time the light needs to get to and to return from an 
impinged object in a scene back to the sensor is then measured using a practical synchronous sinusoidal 
demodulation. Focused through a lens and within the 3D range camera, a CMOS/CCD sensor chip is 
positioned to receive the incoming wave front. It then calculates the amplitude, intensity, and range values 
based on the TOF principle. Both the detection and the complete demodulation are performed in the 
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thresholded array. Initially the thresholded array was subjected to median filtering. This was done in order to 
eliminate the salt-and-pepper noise present in the array. The array was then converted to a binary array 
(white representing the foreground pixels and black representing the background pixels). Erosion was then 
applied to the binary array. Erosion is one of the two basic operators in the area of mathematical 
morphology, the other being dilation. It is typically applied to binary arrays, but there are versions that work 
on grayscale arrays. The basic effect of the operator on a binary image is to erode away the boundaries of 
regions of foreground pixels (i.e. white pixels, typically). Then a fast binary connected component operator is 
applied to find the foreground regions and smaller regions are eliminated [9]. The largest blob (i.e. 
component) is then selected thus achieving 100% elimination of the noise pixels. After this process, all the 
small holes in the foreground region are filled. The position of the centroid and the dimensions of the 
bounding box are then calculated for the foreground regions (i.e. the segmented blob/human target). 
Boundary detection was applied on the segmented foreground pixels using Canny-Edge detection. This gives 
the resulting contour or boundary of the segmented blob/human target. 

3.4 Centroid Location 
Once the contour is formed, in order to achieve real time tracking of the blob/ human target in the range 

video sequence, the first step is to locate the centroid of the blob/ human target. The centroid is used to 
represent the human target moving in the range video sequence. The centroid calculated specifies the center 
of mass of the blob/human target. The centroid of the human target extracted is calculated by using the co-
ordinates of the pixels on its boundary. Note that the first element of centroid is the horizontal coordinate 
(or x-coordinate) of the center of mass, and the second element is the vertical coordinate (or y-coordinate). 
The centroids are calculated for each person(s) in the range video sequence and are used as an input to the 
Particle Filter. This process serves as a primary step for tracking. 

3.5 Tracking [Particle Filter] 
In order to achieve tracking of the people in the range video sequence a particle filter was used. The basic 

idea of a particle filter [2] is to use a number of independent random variables called particles, sampled 
directly from the state space. In order to represent the posterior probability, and update the posterior by 
involving the new observations; the particle system is properly located, weighted, and propagated recursively 
according to the Bayesian rule. They are usually used to estimate Bayesian models and are the sequential ('on-
line') analogue of Markov chain Monte Carlo (MCMC) batch methods and are often similar to importance 
sampling methods. If well designed, particle filters can be much faster than MCMC. They are often an 
alternative to the Extended Kalman filter (EKF) or Unscented Kalman filter (UKF) with the advantage that, 
with sufficient samples, they approach the Bayesian optimal estimate, so they can be made more accurate 
than the EKF or UKF. The centroids of the human target are extracted from each frame (using the process 
outlined in 5.4). The sequences of centroids over the entire sequence are then given as an input to the 
particle filter. The particle filter analyzes the shift in the position of the centroids over the entire video 
sequences and then accordingly tags and associates each blob/human target with a label. In this manner the 
algorithm can track when (i.e. at which frame sequence number) the human target enters and exits the range 
video sequence. 

 
Figure 2: Algorithm Overview 
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3.8 Angle Detection 
Once the star-skeleton model is designed, angle detection between the various parts of the star-skeleton 

model is performed. The angles are calculated between the head with the left arm, the left arm with the left 
leg, the left leg with the right leg and the right leg with the right arm. The angle calculation is then repeated 
for each frame in the entire range video sequence. The angles calculated are stored in a data-structure for 
motion analysis. Motion analysis is a technique which is used to determine the type of motion activity which 
is performed by an object by analyzing the variation in the change of its path traced over a sequence of 
frames. The particle filter is then used, to trace the motion path of the person. However to get a more 
detailed view of the activity being performed by the worker, we incorporated the use of angles for motion 
analysis.  

4.     Experiments  

The tracking algorithm was run on six different types of experiments which involved a worker 
performing various tasks in an indoor environment. The experiments included lifting a box, waving a flag to 
indicate warning, crawling, side-walking, sit-ups and normal straight walking. For each of these experiments, 
five different sets of range video sequences were recorded using a 3D range image camera. All of these 
experiments were recorded at a rate of 25 frames/sec. The pixel array resolution of the range image camera 
was 176 x 144 pixels. The output of the range camera contained the intensity, amplitude and range 
information of each of the pixels on the camera’s sensor (176 x 144) on a per frame basis.  The experiments 
were taken in an indoor environment due to the maximum distance constraints of the range camera.  

5.     Results and Analysis 

From the results in Section 7, we analyze the output of our algorithm for different test cases. Experiment 
1 involves a worker performing a sidewalk experiment, in which the worker moves from left to right and 
vice versa. Experiment 2 involves a worker performing a crawling experiment on the ground again from left 
to right and vice versa. As seen above the worker has clearly been segmented from the scene and all 
associated noise has been cleaned from the input. The bounding box and centroid superimposed on the 
video sequence can be used to detect the real-time position of the worker.  The star-skeleton model is in 
perfect conjunction with the position of the body parts of the worker as seen in the results. Once the star-
skeleton model and centroid position of the worker is determined, then the motion path is traced with the 
particle filter designed.  The plots of the tracked workers indicate the direction of motion as well as the 
change in the centroid position of the moving worker. 

Experiment 3 involves a worker waving a flag up and down to indicate warning in a construction site. As 
seen in the results section, each of the body parts of the star-skeleton model are labeled successfully by our 
algorithm, starting with the head and then moving clockwise. From the calculations we observe that for this 
particular test case, the angles between [1-2], [2-3], [3-4] remain almost constant with a little variation. This is 
in accordance with our experiment since the relative position of the worker’s head with the left arm, the left 
arm with the left leg and the left leg with the right leg remain almost constant in this experiment. The plot of 
the variation of angle between the different segments of the star-skeleton model is as shown in figure 5. 

Experiment 4 taken involved a worker lifting a box. In this particular experiment all the angles between 
the segments of the star skeleton model vary as the worker bend down to life the box. Based on the angle of 
bending we can determine whether the worker is bending down in the right posture while lifting the box. 
The plot of the variation of angle between the different segments of the star-skeleton model is as shown in 
figure 6.  

In experiments 3 and 4, we use the angle variations to determine if the worker is performing the activity 
in a correct posture. In experiment 3, where the worker is waving the flag to indicate a warning, the angle 
between the leg and the hand needs to reach at least 90 degrees to indicate a warning message. It needs to be 
observed that arm waving the flag is properly outstretched without bending. In case of experiment 4, if there 
is no angle between the back of the knees while bending down to lift the box, then it indicates incorrect 
posture. Another important observation to check is whether all the angles are varying while bending down. 
This is done to verify that the worker bends his back properly and does not maintain a straight back posture 
while picking the box 
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Figure 7: Plot of centroid variation of the star-skeleton model for the box experiment 

 
 

6.     Conclusions and Future Work 

We present a real-time system for the tracking and surveillance of construction workers in a work-site for 
safety and health monitoring purposes. The safety of the worker is monitored continuously by tagging the 
target using a particle filter and then following it in the work-site. For extending the use of our system for 
health related issues, we modeled the worker using a star skeleton structure and then performed motion 
analysis to determine the variation in angles between the various segments of the model. On basis of this 
variation we can determine if the worker has performed the task maintaining a correct posture.  Our system 
designed uses a 3D range image camera to segment a given target from a scene using distance based 
information thus providing segmentation in 3D space. We also were able to detect multiple workers and 
track and monitor each of them independently in the work-site. The algorithm is computationally 
inexpensive on resources making it a fast and robust real-time tracking system. Our system if used in 
conjunction with neural network training algorithms would certainly help to avoid fatal accidents as well as 
physical health related issues which are an important concern in the construction and transportation 
industry. Due to the maximum distance constraint imposed by the 3D range image camera we limited the 
scope of our experiments to an indoor work environment. In future we will extend our system to outdoor 
environments where several issues which include dynamic change in the environment and higher levels of 
noise will occur. Also we also plan to incorporate the use of an automated neural network system for making 
the training process of the system more robust.  
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