
HUMAN KNOWLEDGE: Al & CAD

Aart Bijl
EdCAAD, University of Edinburgh , Department of Architecture

20 Chambers Street, Edinburgh EH1 1JZ
Scotland

Perceptions of design and CAD are discussed, leading to a distinction
between human knowledge and machine representations of knowledge. A
strategy for "mechanistic" symbol processors is presented, employing
"mechanisms" of formal logic to manipulate written and drawn expressions
of designers' knowledge.

Keywords: knowledge, notions, representations, formalisms, symbols,
drawings, design.

INTRODUCTION

We have now experienced two decades of CAD. In that period, the promise of
CAD has met with obstacles presented by: firstly, the essentially idiosyncratic nature
of design practices, particularly in loosely constrained fields; secondly, the prescriptive
nature of conventional computer technology; and, more recently, the assumptions
underlying machine intelligence.

It is time to return to two fundamental questions:

1. What can we know about design that will inform our efforts in CAD?

2. What can we know about human intelligence that will inform our
efforts to link Al and CAD?

The field of CAD requires theories of design that embrace human designers. By
designing CAD systems - focusing on machine systems - we are in effect designing
designers. All CAD systems have in-built anticipations of the behaviour of designers
who will be invited to use them. The orthodox argument is that these systems relieve
designers from the routine and uninteresting tasks involved in designing. The
assumption underlying this position is that we know what is tedious to designers. To
test this assumption, consider each of us as designers and then ask whether we would
be happy to let other system designers decide what each of us finds interesting when
we design CAD systems?

A theory of design does not need to explain all that goes on within individual

414

designers when they design particular things. CAD is not committed to producing
design machines. Yet a theory does need to explain enough about the whole of design
activity in order to define intended relationships between CAD machines and human
designers. CAD is targeted at generalised representational environments that people
will find useful when they design things. The question then is how much design
knowledge needs to be incorporated within a system in order to make it useful?

Many design theories variously rest on a distinction between function and object,
in which function refers to design requirements and object refers to something that
possesses attributes or properties that satisfy the requirements. Typically, designing is
then conceived as some process of problem solving, employing problem
decompositions followed by aggregation of partial solutions. Along this same line of
thought, design is also seen as search and refinement. The effectiveness of this
approach to design appears to be related to application fields in descending order of
success:

1. Electronic Engineering: "using computers to design computers", which
has the advantage that system designers and users use (more or less)
the same language.

2. Mechanical Engineering: system designers and users have different
perceptions, but application tasks are regarded as being predominantly
functionally determined.

3. Architecture (or building design): system designers and users have
different perceptions and functionality is implicit or is subject to
apparently arbitrary redefinition.

In previous papers [1,2] I have argued that the view of design presented by
experience of architectural applications is more representative of design in general.
Design activity is different from other activities that are already amenable to
computerised techniques. Design is more a process of purposeful event generation and
event exploration which refers to individual human intuitions and judgments, with no
separate criteria for correctness of results. Good designs are decided, never proved.

This latter approach to design should condition our expectations for CAD.
Design is not problem solving, it does not decompose into discrete components
(abstract or concrete) and it is not defined by prior typing or classification of
components (as perceived in a design domain). Instead, components have a transient
existence and get redefined during instances of design activity. Design is evolutionary
in the sense that changes occur in imperceptible steps, not directed by prior goals, that
become apparent over periods of time - a normal and on-going characteristic of hun7an
knowledge.

Finally, in this brief review, the problems that need to be addressed by CAD are
not simplified by the familiar distinction between design assistants or apprentices and
automated design machines. Human design assistants share the same world as the
designers whom they serve, share too much knowledge and share the designers' ability

415

to evolve knowledge. Thus the ambition of machine assistants is not substantially
different to that of design machines. Any imposed simplification will have the effect of
redefining designers.

REPRESENTATIONS AND KNOWLEDGE

To make headway in CAD, we need to consider how people represent what they
know. Figure 1 depicts a person as a bounded human being. We attribute properties
to these beings, which we indicate by such words as intelligence and knowledge. We
think that these properties are acquired through some combination of physiological
"mechanisms" and world experience within people - without explaining how or what,
we accept that knowledge does exist within people.

The same figure also shows objects that are made by people, that exhibit some of
people's inner knowledge, or intuition. Such objects include text and drawings

executed in some medium, on paper or a computer display screen. We read such
objects as symbols and symbolic constructs, in the case of text, or more as analogic
depictions in the case of drawings. Analogic depictions here refer to objects that
exhibit properties which are the same as corresponding properties of other objects
which they depict, such as shape properties. Interpretations of symbols and analogues
within ourselves then tell us something about the knowledge which we exhibit to each
other.

Figure 1 : REPRESENTATIONS ARE NOT KNOWLEDGE
Externalised representations are artefacts which people make in order to express some part
of what they have in mind . Such artefacts , at any level of formalisation , are not the same as
human knowledge - they remain partial representations of all that humans might sense.

The key point that now needs to be recognised is that all overt expressions are
conditioned by formal systems that are employed in their execution. Their formalisms
constitute bounded worlds that limit the scope of possibilities for expressive objects.

416

We tend to lose sight of such limitations when humans exercise interpretive ability.
We forget we are dealing with objects and think only in terms of interpretations, and
somehow we adjust to differences between interpretations within each of us.

We then proceed to do something rather odd. There are people who believe that
our interpretations , our knowledge , can somehow exist separately from us within these
expressive objects . The oddity of this position becomes apparent when we consider the
possibility of symbolic objects being animate and exhibiting design knowledge that
you or I might variously know , as in the ambition of Al. Usually researchers
depersonalise this position by targeting computers at other people ' s intelligence.

For certain purposes, this belief in objective knowledge seems to be practical. It
is practical when we can satisfy ourselves that overt knowledge includes all that is
necessary to produce useful effects . Overt knowledge, as formalised thought , applies
when we believe that individual thought from people is no longer required.

EXPRESSIVE ENVIRONMENTS

Figure 2 offers a reassessment of the role of symbolic expressions related to
human knowledge and machine processes. Knowledge refers to human notions. Here,
notions are thought of as something extending beyond symbols , as part of human
being, without implying anything about the actual substance of notions . Notions can be
considered to exist as interpretations between symbols and anything else that might
occur in the human mind , including states of mind that may be shaped by the totality
of human experience (including sight, sound , touch , taste and smell). Domain
knowledge then refers to specialised knowledge that people attribute to other people.

Expressions occur as externalised physical manifestations of people's knowledge,
as representations of human knowledge . In the normal case of symbolic expressions,
prior to computers and in the familiar forms of words and mathematical notations,
expressive objects are used to evoke notions, to prod thoughts within people. We
should not expect symbolic constructs to possess notions about themselves. This
implies, for example, that mathematical notions exist not in text books but in the
minds of mathematicians and other people who write and read the books. We can
make two further general observations . Human validation of knowledge , in the sense
of knowledge receiving variously accepted meanings with reference to human notions,
cannot be contained wholly within overt expressions . As a consequence of this
dependency: on interpretations within people , symbolic representations of knowledge do
not need to be complete . For example , we do not need an overt description of the
syntax and semantics of natural language before we can know how to use it.

Worlds of symbols include relationships and functionalities that can be applied to
symbol types, constituted as formalisms for producing compositions and supporting
analyses of instances that might represent human knowledge . Processing of symbols
then employs the functionality of symbolic logic, with mathematics as a highly
developed example . Such processing is commonly executed by people who are literate
in the symbolic language. When this processing is executed autonomously within

417

DOM DOM
KNO KNO

USERS

11
HUM HUM
NOTI NOTI

Linte inte

DOMAIN
KNOWLEDGE

HUMAN
NOTIONS

interpretation J

EXPRESSIONS

o

interpretation

MACHINE
SYSTEM

C
SYMBOL
BASE

associated with
a person

informed through
all human senses

between notions
and expressions

text and drawings

between expressions
and symbol types and operators

representation scheme
- entities and relationships
- transformations

temporary (what if) and permanent
store of evaluable expressions

Figure 2: SYMBOL PROCESSORS
Normal literacy is illustrated in the upper half of the diagram . Domain knowledge associat-
ed with individuals and like-minded people is exercised through human notions and is made
overt in externalised expressions . These expressions evoke notions within the same or other
people . Computers , in the lower half of the diagram , offer functionality that is directed at
the form of expressions , supporting the formal environments in which expressions can be
generated and manipulated.

machines, we have computers.

As a general strategy for computers, we should try to differentiate between
knowledge required to process symbols, and people's domain knowledge that might be
represented by instances of symbolic expressions. This is not an easy distinction, and it
is confused by the use of highly evocative words to indicate abilities of computers,
such as artificial intelligence and knowledge engineering. To redress the balance, we
should think of computers more as mechanical devices for operating on symbolic
objects. The position that I am advocating appears to be in tune with criticisms of Al
by Dreyfus [3] and Searle [4] but, in our case, we are not seeking to resolve the debate
in Al. Instead we are looking for advances that might be appropriate to CAD. Such

SYMBOL
PROCESSOR

418

advances should employ formal logic to provide the "cogs and levers " for manipulating
symbols , as an extension of the kind of functionality provided by "dumb" word
processors . What is being suggested here is that we should maintain a clear distinction
between the internal structure or syntax of a system and a user ' s semantics for
expressions that are processed by the system . The system's semantics should be
limited to interpretations of the user's demands for edits to its current syntactical
representation of the user ' s expressions . Users, knowing the syntax of the system,
might then be able to use it to construct and manipulate expressions of their own
design knowledge.,

WE ALL USE FORMALISMS

The upper part of figure 3 illustrates a familiar formalism that each of us uses
every day. This formalism consists of a symbol type, and aggregations of instances
that each have a single uni -directional "next to" relationship. Aggregations are related
by empty spaces and special symbols that have meanings like and and stop, to form
compositions . Further relationships can be identified by matching similar instances of
symbols.

The lower part of this figure reveals this formalism to be the basis for a "writing
machine", or word processor . This is not a natural language system ; it deals only with
those parts-of-speech that occur as parts -of-writing . The basic symbol type is a
character and aggregations of instances form written words that approximate to spoken
words . Special symbols occur as punctuations only in writing and are not spoken,
though they might be implied by intonations or pauses in speech. The ability to
translate between spoken utterances and written expressions , plus the ability to make
further interpretations into meanings within other forms of knowledge representation, is
the goal of natural language systems - an ambitious goal, beyond our present
consideration of CAD.

A writing machine deals only with written objects. Thus, in the illustration,
THINGS that appears as a character string is very different to the thing that is a
character. We can use the writing machine to manipulate characters to produce words
to signify different things that are not words. Examples of writing machines are pen
and paper, mechanical typewriters and electronic word processors. This spread
indicates a progression from artefacts that embody very little knowledge about writing
objects, to artefacts that represent quite a lot of knowledge about writing objects. In
all cases, they stop short of knowing what is being signified by any instance of
writing. This lack of interpretive responsibility , and their obvious dependence on
humans for any interpretation of expressions passing between people, makes these
machines widely useful to many people.

The virtue of writing machines is that they share a common formalism which
consists of few symbol types and relationships . We have learned to employ this
formalism to construct partial representations of a vast range of human knowledge,
from scientific methodologies and problem solving techniques to the rich ambiguities
and contradictions of evocative poetry. This full range is important to all interactions

419

A FAMILIAR SYSTEM
composition

thing instances aggregation
1 / / \ \

. .. 00 000000 0000000
next to separate from / \ and stop

A WRITING MACHINE

OXF) (TXHXIXN

things (objects) ... abstractions (in mind) ... mappings (to things)

Figure 3 : FORMALISM OF A WRITING MACHINE
The formalism shown in the upper part of the diagram consists of characters and instances
of characters held together by a next to relationship. Aggregations, which we recognise as
words , are differentiated by a separate from relationship. Punctuations identify further rela-
tionships between parts of compositions . Words that are instanced in writing then are
different things to the constituents of written expressions - they receive interpretations in
human language outside the writing system.

between people, and to CAD.

Writing machines illustrate the meaning intended for symbol processors in figure
2. The question that now presents itself is: Can we envisage a development of
writing machines that will handle more varied and multi-directional relationships
between words, and can we link them to drawing machines ? Can such a development
preserve the generality of these machines and what new kind of literacy will they
require from people?

420

V

AN EMERGING FORMALISM

Figure 4 shows the structure of expressions supported by the MOLE logic
modelling system [5,6] - a tentative and modest extension of a writing machine which
supports multi -directional relationships between symbols . The MOLE system forms
part of a theoretical exploration of fundamental CAD strategies which is being
undertaken at EdCAAD and is supported by the UK Science and Engineering Research
Council.

The concept that is being developed here sees words as symbols that stand for
things and parts of things in the minds of people, and sees other symbols as standing
for relationships between words , which can be used to model descriptions of things.
These relationships have general definitions for users and they have interpretations
down into machine procedures , giving the system its ability to manipulate descriptions.
The form of expressions generated by the system and its users is the same, with
special (non-verbal) symbols alerting users to system functions. All expressions
generated by users can be read as being declarative, telling the system what it has to
do, and expecting the system to produce intended results.

Expressions consist of three basic symbol types : kinds (K, for any kind of thing);
slots (s, denoting a part of the thing); fillers (F, referring to any other thing that
instances a part). This representation has an affinity with frame systems [7], but
without any definition of frames as distinct from arbitrary collections of slots; and it
also has an affinity with semantic networks [8], but without the system reading
significance in names of arcs. Any instances of MOLE's symbol types can be
indicated by any user-declared words, and the system 's functionality is applied only to
instances of types , without reading significance in the words that instance them. The
further special symbols denote the relationship of a slot as being a part of a kind, and
a slot 's filler as an inheritance relationship to something else . Punctuation of
composite expressions occurs in a similar manner to normal writing.

A kind name (in upper case characters) refers to something that a user has in
mind. A slot label (in lower case) attached to a kind denotes a part of that kind. A
filler (may include references to further kinds and slots , as path names) attached to a
slot denotes something else that instances a part, which may be matched to another
kind name. Matching has the effect of linking expressions , to form virtual hierarchies
of parts into composite descriptions oP things. Through inheritance relationships,
descriptions can include views of payts of other things, resulting in interconnected pails
hierarchies.

The central idea here is that we should be able to devise a machine for processing
symbols so that expressions can be read by people as being meaningful , and so that
expressions make the functionality of the machine visible to users . Words that form
parts of expressions remain the responsibility of users, and relationships between
words are maintained by the system . We should then be able to make the system do
things with words and, if we can satisfy ourselves about mappings of words to other
things (such as parts of drawings), we should then expect the system to perform useful

421

ENTITIES & RELATIONSHIPS

Kind slot Filler

i ^ I
part of inheritance and stop

HIERARCHIES

K

K- K- K-

/' (s' IsN\'F s, F
K "F F

e,IS,
F F

LINKING PARTS

thing its part part instance

INTERLINKED HIERARCHIES

Figure 4 : PARTS HIERARCHY
MOLE's representation scheme employs three main symbol types that are instanced by
user-declared words, which are kinds (for any kind of thing), slots (for their parts) and
fillers (for instances of parts). Triples of these types are held together by system -defined re-
lationships selected by users, which determine matching across triples to build up hierar-
chies of parts that describe things . Inheritance results in interlinked hierarchies.

tasks on other things.

SOME SYMBOLS KNOWN TO THE MOLE SYSTEM

<+ slot filled by a new instance of F.

+> slot filled by F.

>> slot filled by view of F.

whatever follows instances a part-of K.

expands to a path through a sequence of part-of instances of K.

? denotes queries and identifies search space for candidate answers.

{ } denotes queries and sets conditions on candidate answers.

I exclusive not conditioning answers.

<= description of K gets replaced by description of F.

This is a fairly comprehensive sample of system-defined symbols included in the

422

system as presently developed. The first three referring to inheritance relationships are
the most critical. Each qualifies how a kind sees a part through its slot, where a part
is likely to be some instance of a previously declared kind, and each also qualifies how
a change to a part may be declared from a kind.

Instance inheritance , <+, makes the part a new instance of its former self, which
continues to inherit its previous description, but subsequent changes to sub -parts have
the effect of masking corresponding inherited sub-parts. Reverse inheritance, +>,
makes the part the same as the inherited instance (of some other kind), and subsequent
changes to sub-parts will be seen by all kinds that are partially described by the same
instance . Indirection, >>, serves as a read-only instruction , to view an instance of a
part of another kind.

The penultimate three symbols are used to express queries to the system, to find
out what is already stored in the knowledge base and incorporate answers as parts of
further assertions declared by users . Question marks at the end of path names are used
to control the extent of search space for answers, and curly brackets contain conditions
that have to be matched by answers.

WHAT MOLE KNOWS OF PARTS OF DRAWINGS

Expressions can include words which map onto drawing parts, and relationships
that represent the general structure of line drawings . They refer to drawing parts as:
construction lines with angle values , construction points at the intersections of
construction lines, drawing line segments as portions of construction lines delimited by
construction points, shapes as chains of segments (open or closed), and compositions
as connected shapes (under varying conditions of attachment).

MOLE' s symbolic representation of drawings includes no coordinate point values,
yet this representation is sufficient to regenerate instances of drawings - a logical
representation of the general structure of drawings , attachments and transformations, is
being developed as a PhD by Szalapaj [9]. The chosen drawing primitive is a
construction line, more in keeping with conventional uncomputerised drawing practice.
Coordinate values might be a property of a drawing space (gridded paper or a
computer display), in which case they need to come into play only to locate a drawing
on a particular drawing space.

A separate drawing machine, a computer (or a person), then passes symbolic
representations of instances of drawn objects to MOLE, and these can reflect edits and
transformations applied to drawings. Representations of drawings can be linked to
further representations of other things that they depict, so that drawings can form parts
of descriptions of other things. Similarly, changes made to representations in MOLE
can have the effect of driving the drawing machine, to result in changed drawings.

423

A WORKED EXAMPLE

To illustrate how MOLE expressions can be used to make and change
descriptions, we can return to earlier experience of integrated CAD systems [10] and
consider the example of walls and junctions between walls. We might want to avoid
the condition of orthogonality, as shown in figure 5 below.

/7/

-- 1 Join-pct

B

F ./
(A)

B

(c)

Figure 5 : PROBLEM OF JUNCTIONS
Drawings of wall components, stored with square ends , need to be modified when walls are
brought together to form junctions . Faces and ends have to be rotated and stretched, to
result in continuity of wall parts , for any angle of junction.

DESCRIBING JUNCTIONS

JUNG END:
[join-pt +> fix_wall:join_pt,
Opp-pt:

[conline l +> join-wall: face?: If conpt? [origin)): bearer,
conline2 +> fix-wall: face?: If conpt? [join-pt }):bearer].

junction:
[dwg:

[segment:
[conptl +> join-pt,
conpt2 +> opp_pt,
style <+ DOTTED]]],

change:
[join-end +> join_wall:end?: {conpt?{origin} }:

[move-pt +> join_end:conpt?I { origin):
[move-to +> move_pt<=opp_pt]],

fix-end +> fix-wall:end?:(conpt?[join-ptJ):
[move-pt +> fix_end:conpt?I{join_pt}:

[move-to +> move_pt<=opp_pt]]]].

424

This is a composite MOLE expression which describes the general case of wall
end-on junctions. It expects that walls and their drawings, and the fact that two walls
are going to take part in a junction, have been or will be described. We then declare a
junction to be a kind of thing, giving it any name: JUNC_END. The junction is
described by any number of parts, indicated by slot labels . These parts are a join point
an opposite point, a junction part, and a change part. Each of these parts inherit
descriptions of other kinds indicated by the slot fillers.

Thus the join point has a reverse inheritance relationship with the kind that fills
the join point part of the kind that fills the fixed wall part of something that is not as
yet identified in this description. The filler of this junction description's join point is,
in effect, a path name to some other kind. The reverse inheritance means that this
description can effect changes to the other kind.

The opposite point part is filled by an un-named kind that is further described by
two construction line slots that are filled by kinds that are identified by the following
conditions. The first construction line is filled by the same kind that fills the bearer
part of any face of a joining wall, provided that it does not include within its
description any construction point that is the same as the origin part of the joining
wall. Notice, once more, that the joining wall is a slot label indicating a part of
something that is not as yet identified in this description . The second construction line
is treated in similar fashion.

We have now described the join point and opposite point of any junction as
shown in figure 5.

The junction component part identifies the mitre at the junction as a component
that is separate to the two wall components - this might not be necessary, but follows
the earlier precedent . One might want to attach further information to the junction,
independently of the walls. The description of the junction component says that it has
a drawing part which has a segment part which is described by two construction points
(the same as the join point and opposite point described earlier) and its line style is
dotted.

The change part propagates changes to the descriptions of the adjoining walls, to
complete the junction. The change part has a joining end and a fixed end. The joining
end part is filled by the same kind that fills any end of the joining wall, that includes
within its description any construction point that is the same as the origin part of the

joining wall. The change part's joining end's inherited description then receives a

move point part which is filled by the same kind that fills any construction point of the

joining end part, provided that the construction point is not the same as the origin part

of the joining end. The move point part then receives a move to part which is filled by

the same kind as fills the move point part, and the description of that kind gets

replaced by the description of the opposite point part (declared earlier) using the <=

change operator. The change part's fixed end part gets treated in a similar fashion.

These paragraphs have given a conversational interpretation of the composite
MOLE expression describing end-on junctions , using far more words. All these

425

conversational words are needed to express this knowledge about junctions, if we want
to do so conversationally. If we then want a machine to represent this knowledge, we
have to re-express it in terms of system-defined relationships. Notice that the words
included in MOLE expressions can refer to anything that a user might have in mind, to
objects, events or tasks. None of the words included in these expressions have any
meaning to the system, other than to signify different instances of kinds and slots. Yet,
by using system-defined relationships to link words, the system can be made to exhibit
behaviour as though it knows what it is doing, by effecting changes to drawings of
walls in order to form junctions.

MOLE does things by evaluating descriptions, by using a left-to-right, depth-first
search procedure (working on virtual tree structures implicit in composite expressions,
as illustrated in figure 6). As indicated at the beginning of this explanation, this
description of junctions includes references to parts that are not yet identified within
the description. Something more has to happen before the system can produce
instances of junctions.

INSTANCES OF JUNCTIONS

JUNC_END_AB:
[join-wall +> WALL_A::dwg,
fix-wall +> WAL1,_B::dwg,
join <+ JUNC_END].

If we want to join two particular walls, say walls A and B, then we have to
declare a kind name for this instance, any name: JUNC_END_AB. We can then say
that an instance of junction has three parts. These are a joining wall part, a fixed wall
part and a join part. The kind that fills the joining wall part is declared to be the same
as the kind that fills the drawing part of wall A. Similarly, the fixed wall part is filled
by the kind that fills the drawing part of wall B. The join part then is filled by an
instance of the JUNC_END kind, inheriting all the description of that kind. The fixed
wall and joining wall parts referred to in the earlier general description of junctions
can now be found as kinds included in the description of this instance of junction.

With this description of an instance of junction, the system is able to evaluate the
description and effect changes to the drawings of walls, to produce the completed
junction. This approach to describing junctions can then apply to all cases of end-on
junctions at any angle and for walls of unequal thickness (with the exception of a
straight end-on junction between walls of different thickness) as shown in figure 6
below.

What has been shown by this example is the use of MOLE to model a perception
of parts of buildings (not necessarily a correct perception). This has been done by
using words that map onto those parts, plus words that map onto drawings of those
parts, and by using system-defined symbols to declare relationships between parts and
effect changes to descriptions. The example of wall junctions has been chosen because,
in previous experience of CAD, it presented severe problems . Previously , we were

4? 6

(a) (d)

(i)

(e)

(;)

Figure 6: JUNCTION CONFIGURATIONS
Configurations for any angle of end-on junction between pairs of walls of equal and
unequal thickness.

constrained to orthogonal arrangements of walls, in plans of buildings. This was
especially true in those cases where a system was expected to interpret drawings in
order to evaluate the effects of junctions on construction materials, and on other
aspects of designs for buildings. Now this case of junctions is no longer particularly
difficult. The point of the example is that it illustrates a use of a system which does
not rely on domain knowledge being held in some prior and separate way within the
system.

CONCLUSIONS

MOLE can be regarded as being on a path towards computer literacy, a
development of our familiar written language. It offers logical constructs for
composing expressions without requiring prior domain knowledge - no prior definitions
for part/whole distinctions, discreteness of parts, typing of parts and correctness of
results. However, this flexibility is gained at the expense of users having to know and
work within the logic of the system. In effect, users have to construct their own
definitions of objects and tasks which they see as being relevant to their own
applications. The ability to do so is what is meant by computer literacy.

More generally, by differentiating between human knowledge, symbolic
expressions that emanate from such knowledge, and logic systems that support
manipulations of expressions, we can then conceive that human knowledge exists only
within human beings - not in expressions, nor in logic systems. This position admits
that knowledge can be represented symbolically, but that a representation is not the
same as knowledge within people. A representation can be validated only by people.
A representation may come to be accepted by many people, thus acquiring the status
of conventional knowledge, but even then it is not the same as human knowledge. It

427

remains subject to validation within people.

The effects of this position are not very different to those of the more orthodox
assumption that knowledge has an objective existence. It does, however, focus
responsibility for knowledge on people. More importantly for CAD, it provides scope
for an understanding of symbolic environments and logic systems as devices that are

defined. in terms of their use by people.

Figure 7 returns to the question of intelligence, knowledge and symbols. When
we think of understanding symbols we should draw a distinction between symbols
understanding us, and our understanding of symbols. The former suggests fascinating
and deep problems, and poses valid goals for Al researchers, but outcomes may not be
accepted by other people who are invited to use computers. The latter appears more in
keeping with our established tradition of human knowledge, predating computers, and
is likely to prove more acceptable to people.

Figure 9: UNDERSTANDING SYMBOLS
We employ human notions to understand symbols, but should we expect symbols to under-
stand us? Perhaps the ambition of Al needs to be rephrased as "intelligent use of dumb
systems."

Acknowledgments

Research at EdCAAD, which forms the background to this paper, is being
supported by the UK Science and Engineering Research Council and the European

ESPRIT Programme, project P393 (ACORD).

428

References

1. Bijl, A., Stone, D. and Rosenthal, D.S.H.; Integrated CAAD Systems, EdCAAD
Report for the Department of the Environment, Edinburgh University, UK, 1979.

2. Bijl, A.; An Approach to Design Theory, Proc. IFIP WG 5.2 Working Conference
on Design Theory for CAD, Tokyo, Japan, 1985.

3. Dreyfus , H.L.; What Computers Can't Do - The Limits of Artificial Intelligence,
(revised edition) Harper Colophon Books , NY, 1979.

4. Searle, J.; Minds, Brains and Science, 1984 Reith Lectures, BBC Publication, UK,
1984.

5. Krishnamurti, R.; Representing Design Knowledge, submitted to Environment and
Planning B, Planning & Design, UK, 1987.

6. Bijl, A., Architecture in Mind, Computer Discipline and Design Practice, in
preparation, Wiley, UK, 1988.

7. Minsky, M.; A Framework for Representing Knowledge, in Psychology of
Computer Vision, 211-277, Winston P.H. (ed) McGraw-Hill, USA, 1975.

8. Woods, A.W.; What's in a Link: Foundations for Semantic Networks, in
Representations and Understanding, 35-82, Bobrow, D.G. and Collins, A.M. (ed)
Studies in Cognitive Science, Academic Press, NY, 1975.

9. Szalapaj, P.J. and Bijl, A.; Knowing Where to Draw the Line (IFIP WG 5.2,
Hungary, 1984) in Knowledge Engineering in CAD, 149-169, Gero J.S. (ed)
North Holland, 1984.

10. Bijl, A.; Computer Aided Housing and Site Layout Design, proc. PARC79
(Planning Architecture & Computer): Int. Conf. on Application of Computers in
Architecture, Building Design and Urban Planning, 283-292, Berlin, West
Germany, 1979.

429

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

