
1

A Computational Framework For Robotic Quality
Assessment and Management In Construction

Jingyang Liu, Yumeng Zhuang, and Joshua Bard

Abstract—As an integrated process in construction projects,
quality assessment and management (QA&M) can be important
to prevent failures during construction. The existing QA&M
practice such as the evaluation of the geometric tolerance and
surface qualities is mostly performed manually which can be
labor-intensive and tedious. This study proposes a computational
framework for a robot to perform automatic QA&M in unknown
environments. The framework is composed of three parts: (1)
motion planning; (2) defect detection; and (3) defect registration.
The motion planning component generates efficient robotic path
for autonomous exploration and surface inspection. The defect
detection component quantifies surface anomalies within a user-
defined area of interests through multiple sensor measurements.
The defect registration component localizes the detected defects
and registers the defects to a site model. To demonstrate the
feasibility of the proposed framework, we present a user case for
assessing geometric tolerance and surface quality of a 1500 mm
(L) x 745 mm (W) x 1980 mm interior wall mockup. The result
of the case study shows that the proposed framework has the
potential to provide reliable geometric measurement and defect
detection for gypsum wall panels in a lab environment.

I. INTRODUCTION

Surface quality assessment and management play a key
role in construction operations such as infrastructure safety
monitoring, prefab component inspection, and architectural
finish quality assurance. Currently, most quality assessment
and management (QA&M) tasks are conducted manually by
a certified inspector using a visual inspection approach or
contact-type measurement devices such as measuring tapes,
levels, and calipers. Manual inspection methods can be te-
dious, costly, and dangerous, especially when the work en-
vironment is hazardous and inaccessible. To overcome these
limits, the main goal of this paper is to provide a computational
framework for robots to assist humans in QA&M by (1)
traversing and inspecting the area of interest on a job site
where the environment may not be known a priori (2) per-
forming remote non-contact defect detection and registration at
different levels of details (LoD). The framework is composed
of three components (Figure 1):

• Motion Planning — The motion planing component
generates near-optimal paths for robots to explore the sur-
rounding environment and scan the target area. The com-
ponent integrates frontier-based and information-based
methods to maximize coverage in three stage. At the
first stage, the environment is unknown, the component
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returns the exploration path by searching and identifying
the frontier points between free and unknown parts of
the map. At the second stage, a user can define a
target volume within the partially known environment
for detailed reconstruction, the component plans a next-
best view based on the information gain of each sampled
view candidate. At the third stage, a user can define
an area of interest within the known environment for
surface inspection. The component generates an efficient
and collision-free path by minimizing the cost defined by
the total traveling distance.

• Defect Detection — The defect detection component
extracts surface anomalies and quantifies geometric tol-
erance based on multi-sensor measurements. The com-
ponent integrates a learning-based method for recogniz-
ing components such as screws on a panel. Processing
techniques including edge detection are used to detect
common surface defects such as discoloration and cracks.
Considering the lighting variation on construction sites,
we fuse 2D images with 3D laser scanning data at
decision-making level for more accurate surface anomaly
detection.

• Defect Registration — The defect registration compo-
nent registers and localizes defects in a scene model. We
combine a classical ICP [1] framework and its variant
Cluster ICP [2] for dense-to-dense and dense-to-sparse
data registration.

This study contributes to the domain of QA&M for construc-
tion by (1) a framework for robots to explore, detect and docu-
ment surface defects for construction practices. (2) expanding
the surface inspection framework from a factory setting to
complex unknown construction environments by introducing a
three-stage autonomous exploration and reconstruction method
(3) combining multi-resolution 3D reconstructions to address
the discrepancies in scanning resolution and range - for
instance, in construction QA&M, we need to identify surface
defects at millimeter scale within a wide area at meter scale. To
demonstrate the framework, we performed a surface inspection
on a interior wall mockup with a 6 DoF industrial robot
(Figure 2).

II. METHOD

The framework is composed of three components: a motion
planning component for generating coverage paths, a surface
defect detection component for identifying and classifying sur-
face defects at mm scale, and a defect localization component
for registering and localizing defects in a scene model.
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Fig. 1. The computational framework of the robotic QA&M system: (a) Frontier-based autonomous exploration in an unknown environment (b) Viewpoint
generation and path planning based on information gain for covering a user-defined search space in a partially known environment (c) Local scanning path
planning for covering a user-defined surface in a known environment (d) Geometric deformation detection (e) Surface anomalies detection (f) Defect registration
— 2D images are registered to the target 3D surface based on known extrinsic and intrinsic parameters. local dense point clouds obtained from the same
source are registered through ICP [1]. Local dense point clouds are registered to a sparse scene model through the cluster ICP framework [2].

A. Motion Planning

The motion planning component automatically generates a
collision-free path for a robot to reconstruct the site scene
and inspect the user-defined areas of interest. The problem
can be formulated as a coverage path planning (CPP) problem
or a variant of the well-known traveling salesman problem
(TSP) — an agent needs to pass over a set of target points
with minimum cost (usually time or path length). However,
in contrast to the traditional TSP where the environment
is stationary and known a priori, in site surface inspection
operations, full prior knowledge of the environment might
be unrealistic. In this work, we use a three-phase approach
including 3D exploration, coverage path planning, and local
scanning for reconstructing a multi-resolution scene model of
an unknown environment.

In the initial exploration phase, the robot explores the space
by finding a set of poses along the frontier of the unknown
environment and creates the occupied space map (a volumetric
representation of space in a hierarchical structure). The robot
first looks for a frontier located on the boundary between the
explored and the unknown part of the environment, and then
chooses the one with the maximum information gain weighted
by its cost to reach [3] [4], which can be defined as:

𝐼 𝑓 =
𝑁0
𝑁

· 1
|𝑃 𝑓 − 𝑃0 |

,

where 𝐼 𝑓 is the information gain of a candidate frontier cell. 𝑃 𝑓

and 𝑃0 represent the coordinates of the candidate frontier cell
and the current pose respectively. 𝑁0 represents the unknown

voxels within a sphere of radius 𝑅 around the candidate
frontier that contains 𝑁 voxels.

After the goal frontier is selected, the planner generates
a path to move the robot 30 mm towards the frontier and
look towards the direction of the frontier through an Inverse
Kinematic (IK) solver unless the planner can not find a valid
IK solution. The exploration procedure terminates when the
void voxels within the bounded space are classified as either
free or occupied.

The 3D exploration phase reconstructs a partially known
scene model of the site (93.67% coverage rate) at a relatively
low resolution (50 points per m3). Based on this model,
the remote inspector can define a smaller search space for
the second phase of coverage path planning. The coverage
path planning aims at automatically generating collision-free
robotic paths covering the required surface area within the
target volume. We first combine the voxels in the volume into
a binary status — “occupied” and “unoccupied” [5] [6]. The
system then uniformly samples a set of viewpoint candidates
on a sphere to capture the most variations of perspectives that
can cover the target volume [7]. The quality of each viewpoint
candidate is defined by measuring the mean entropy 𝑒 (𝑥) over
all voxels within the sensor frustum of a potential next pose,
which can be defined as [8] :

𝑒 (𝑥) = − 1
𝑘

𝑘∑︁
𝑖=1

𝑝𝑖 (𝑥) log 𝑝𝑖 (𝑥) + 𝑝𝑖 (𝑥𝑐) log 𝑝𝑖 (𝑥𝑐),

where 𝑝𝑖 (𝑥) is the probability of voxel 𝑥 being occupied, and
𝑝𝑖 (𝑥𝑐) 𝑝𝑖(𝑥) denotes the complement probability of 𝑝𝑖 (𝑥) ,
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Fig. 2. Experiment setup (a) a 6 DoF industrial robot on a 5800 mm linear track and a interior wall mockup of 1500 mm (L) x 745 mm (W) x 1980 mm (H)
(b) an end-effector sensor kit including RGB-D cameras (Kinect V2, Intel Realsense D415), laser range finders and a laser module (c) the robot highlights a
detected surface defect with a laser cross-line.

i.e. 𝑝𝑖 (𝑥𝑐) = 1− 𝑝𝑖 (𝑥) . Based on this volumetric function, we
select 10 candidates with the highest visible uncertainties for
coverage path planning.

After the exploration phase, we use a region-growing ap-
proach based on smoothness constraints to cluster point clouds
into surface patches. The remote inspector can then choose a
target surface or an area of interest on a surface for local scan-
ning. To generate the local scanning path, we take an offline
path planning algorithm formulated as an optimization process
of minimizing the cost function by adjusting decision variables
such as candidate viewpoints and their traversing sequence.
The function is defined by the total length of robot trajectories
covering the target area. An online path planning process is
then integrated to address real-time adaptive motion planning
to avoid collisions caused by tolerances in reconstruction.

B. Defect Detection

Defect detection of interior wall surfaces (gypsum board)
aims at identifying two types of defects — geometric de-
formation and surface anomalies — before finishing and
painting and after the gypsum board installation. Geometric
deformation can be caused by irregularities in the underlying
substructure and the failure of screwing onsite. The warping
of the board due to poor storage can also affect the drywall
surface evenness [9]. Failures in screwing such as loosing and
recession can cause surface discontinuities and result in bulges
on the wall after surface finishing. Surface anomalies such as
discoloration, cracks, and the detachment of the board covering
can affect the aesthetics of interior wall surfaces and cause the
degradation of the structure which needs to be repaired before
the application of surface finishing materials.

To detect geometric deformation, we first use a principal
component analysis-based approach to fit a plane within the
selected point cloud. Then we can calculate the orthogonal
distance between each point and the plane to evaluate surface
flatness errors and calculate the connecting angle between two
adjacent surfaces by computing the angle between their normal
vectors.

Screwing failures need to be detected in two steps. First,
screws are located based on 2D images. Their conditions are
then measured using a laser range finder. To locate screws in

an image, we first detect circles with Hough circles as potential
screw regions. The minimum radius and maximum radius for
Hough circles are set based on the image size. We find that
a minimum radius of image height divided by 150, and a
maximum radius of 15 times the minimum radius work well
with the Intel Realsense D415 sensor. We crop these circles
as regions of interest. The regions are then classified as screw
or non-screw with a fine-tuned Xception model [10]. We built
our own dataset with screw pictures taken on interior wall
surfaces under different lighting conditions.

Surface anomalies on gypsum boards can be visually de-
tected by changes in color on the surface. Discoloration and
cracks often have clear boundaries and/or rougher texture
than the normal areas. We apply Contrast Limited Adaptive
Histogram Equalization (CLAHE) to blurred images to reduce
the effect of lighting changes. Then we extract edges with
a Canny edge detector, and use morphological operations to
cover the regions with dense edges, which correspond to the
rougher texture of surface anomalies. We also use the depth
information to discard the pixels with depth greater than 50
cm, since they are not on the wall. With the remaining regions,
we filter out the regions with contour areas greater than one
standard deviation above average and classify them as surface
anomalies. We also notice that surface anomaly detection and
screw detection work optimally at different distances from the
gypsum board.

As construction sites can be affected by complex and unpre-
dictable lighting environments, to compensate for illumination
variations and shadows, we combine both 2D and 3D data
for defect detection. 2D image processing can extract the
potential defects in images. 3D geometric information is used
for detecting volumetric defects defined by sharp changes in
a depth reading. Depth reading is acquired by a fusion of a
stereo camera and laser range finder to compensate for each
individual sensor’s deficiencies — stereo vision can produce
dense output but performs poorly on textureless surfaces or
regions with repetitive patterns, and the data collected from
the laser range finder is accurate but relatively sparse in
nature [11]. The extracted defects from 2D and 3D data are
fused at the decision-making level based on evidence theory
— a general framework for modeling epistemic uncertainty
for multi-sensor fusion.
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C. Defect Registration

The detected surface defects need to be registered to a site
scene model, an inspector can thus localize the surface defects
and authorize surface repair tasks. The registration process is
completed in two phases - common source registration and
cross-source registration. During common source registration,
we first register the detected defects to a point cloud paired
with the current robot pose and then fuse the point cloud
acquired between different robot poses into a local model. The
detected defects are registered to a point cloud by applying
the transform matrix that is known after sensor calibration.
We then use the Iterative Closest Point (ICP) algorithm
for point cloud registration between frames. Since the local
model and site scene model are of large discrepancies in
densities, the registration method based on classical ICP may
yield inaccurate pose estimation. To address the cross-source
registration issue, we used the clustering iterative closest point
(CICP) approach [2]. CICP integrates a novel correspondence
point selection process based on voxelization and clustering
before the matching. Each selected point can represent a local
surface in a voxel of the source and target point clouds. Based
on the selected correspondence points, the matching process
is invariant to the point cloud density and scanning pattern.
After the two-phase registration, defects and robots can share
a common world-locked coordinate system for the user to
reference.

III. RESULT

Fig. 3. The robotic quality assessment result of the interior wall mockup

To validate the proposed framework, we conducted a lab
experiment using a 6 DoF industrial robot mounted on a linear
track for surface inspection of an L-shaped mock-up wall in
the dimension of 1500𝑚𝑚(𝐿) × 745𝑚𝑚(𝑊) × 1980𝑚𝑚. We
used a Kinect V2 sensor for 3D exploration and a combination
of Intel RealSense D415 Sensor and laser range finders for
the detection of surface anomalies. According to the surface
inspection results (Figure 3), the mockup wall has 8.18% area
identified as not flat (deviation from the fitted plane > 10
mm). The maximum displacement on the drywall is 28.95
mm. The angle between the two surfaces is −0.54 degrees
deviating from the expected angle (90 degrees). The total

area of surface anomalies is 85661.28 mm2, accounting for
3.86% of the total surface area. 1 out of 33 of screws detected
is identified as loose. To further optimize the framework,
the potential focus could be on (1) a more efficient 3D
exploration process: the existing framework examines every
cell in the robot’s map to trace the frontier for a next move.
With the increase of searching space, the frontier evaluation
process can be computationally inefficient. A faster frontier
detection algorithm such as [12] or an active sub-map with
bounded space can potentially improve the performance of
3D exploration. (2) a more robust view planning algorithm:
job sites can be cluttered and dynamic which may result in
occlusion. The compensation of occlusion adaptive to dynamic
scenes can be integrated into the view planning process to
avoid failures in coverage requirements. (3) a more accurate
registration process: the discrepancies between the scale of
the site and the scale of defects in construction practices can
be large. A multi-resolution 3D reconstruction is efficient for
capturing high resolution details of selected areas within a
wide range space. As the density difference, scale variation,
and noises from different types of sensors can pose challenges
to the accuracy of point cloud fusion, optimization in transfor-
mation estimation between cross-source 3D data can be further
explored in future work.
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