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ABSTRACT: Project cost becomes increasingly variable if many cost items for a 
construction  project  are  correlated,  and  this  can  increase  the  uncertainty  of 
completing a  project  within a  target  budget.   This  work presents  a  factor-based 
computer simulation model for evaluating project costs given correlations among 
cost items.   Uncertainty in the total cost distribution of an item is transferred to 
several factor cost distributions according to qualitative estimates of the sensitivity 
of each cost item to each factor.  Each cost distribution is then decomposed further 
into a family of  distributions (children;  costs given factor conditions),  with each 
child corresponding to a factor condition.  Correlations are retrieved by sampling 
from the child  distributions  with the  same-condition for  a given iteration of the 
simulation.
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1. INTRODUCTION

Accurately estimating costs is an essential task 
in  effectively managing  construction  projects. 
Each cost component, and thus project cost, is 
variable or probabilistic since future events are 
always  uncertain  [1].   Project  cost  becomes 
increasingly variable  if  several  cost  items  are 
correlated,  increasing  the  uncertainty  of 
finishing a project to a target budget.  Current 
research  on  correlated  costs  deals  with 
theoretical issues concerning in the accuracy of 
correlations.  For example, Touran and Wiser 
used  a  multivariate  normal  distribution  to 
generate correlated cost variables for a precise 
simulation  analysis,  assuming  that  the 
correlation  coefficients  between  variables  are 
known  [2].   The  simulation  model  of  Chau 
employed  a  percentile-based  sampling 
procedure  to  influence  the  probability  of 
sampling  the  same  quantiles  from  two 
correlated  probability  density  functions, 
according  to  whether  the  given  correlation 
coefficient is positive or negative [3].  Finally, 
Ranasinghe  highlighted  some  theoretical 
requirements, such as the conditions required to 
achieve  a  positive  definite  correlation  matrix 

and  the  possibility  of  using  an  induced 
correlation  to  define  the  correlation  between 
derived variables [4].

This  paper  presents  a  simulation-based  cost 
model that considers correlations between cost 
items [5].   In contrast to existing cost related 
models  in  incorporating  correlations,  the 
proposed  model  is  designed  to  meet  the 
following  three  requirements  which  are 
considered practical in a cost management tool, 
namely:  not  requiring  excessive  input  from 
management,  introducing  correlations 
indirectly (since this correlation information is 
not  readily  available)  [2],  and  recognizing 
factor-based  correlations  when  they  occur  in 
the field.

2. THE PROPOSED MODEL

2.1 Breakdown of uncertainty

The  proposed  model  treats  the  cost  of  a  bill 
item as a random variable.  The cost variable is 
represented by a total cost distribution (that is, 
"grandparent"  distribution)  that  combines  a 
base cost with variations resulting from various 
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factors.  Variations owing to a particular factor 
are  represented  by  a  cost  distribution,  a 
"parent" distribution.  The base cost is assumed 
to be deterministic, while the cost distribution 
for each factor is assumed to be a zero-mean 
random  variable.   Figure  1  schematically 
depicts  this  approach  to  break  down  the 
uncertainty.   The base cost is taken to be the 
user's  best  estimate  of  an  item's  cost  under 
expected factor conditions, and is the expected 
value of the total cost distribution for the item. 
Deviations from the expected value caused by 
various factors are introduced through the cost 
distributions.

Total cost distribution
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variations owing to all
factors

base cost
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variation = 0

cost
distribution 1
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cost
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Figure 1. Breakdown of uncertainty

The  model  captures  correlations by  drawing 
cost samples from related portions of the cost 
distributions for cost items that are sensitive to 
a given factor.  For example, the upper part of 
Fig. 2 classifies weather conditions into “better 
than  expected,”  “normally  expected,”  and 
“worse than expected.”  Based on these three 
different  weather  conditions,  the  weather 
related  cost  distribution  is  disaggregated  into 
three  corresponding  child  distributions 
(illustrated in the lower half of Fig. 2), namely, 
cost given better than expected weather (that is, 
better than expected weather child), cost given 
normally  expected  weather  (that  is,  normally 
expected weather child), and cost given worse 
than  expected  weather  (that  is,  worse  than 
expected  weather  child).   Child  distributions 
may  also  overlap,  as  presented  in  Fig.  2. 
Restated, the cost of an item may be the same 
under both better than expected and normally 
expected weather conditions;  or  the cost  with 
normally expected weather conditions may be 
less  than  the  cost  with  better  than  expected 
weather.

Cost distribution
given weather

conditions
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expected
weatherBetter than

expected
weather
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expected
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expected
weather
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Figure 2. Decomposition of cost distribution 
into costs, given particular factor conditions

A cost model, in which the effect of uncertainty 
is broken down by factor, is derived from the 
unit cost perspective [5].  Following a series of 
derivation [5],  Ci the  cost  of  item i,  may be 
expressed as 
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where ci(0) is the estimated (or base) cost and 
the random variable ci(j), j = 1,..., J, is the cost 
(parent) distribution of cost item i due to factor 
j.  Restated, Equation (1) displays the variations 
in  the  cost  of  an  item,  as  a  base  cost  and  a 
series of cost distributions for various factors.

The model assumes that the costs of items are 
correlated  only  through  the  impact  of  shared 
factors.  Different factors are assumed to cause 
independent effects.  For example, assume that 
cost  item 1 is  sensitive to weather and labor, 
and  cost  item  2  is  sensitive  to  weather  and 
equipment.   Only  the  weather-related  cost 
distributions  are  correlated;  the  variations 
caused by labor and equipment are assumed to 
be independent.  Then, regardless of the type of 
the marginal distribution of ci(j), the mean and 
variance  of  the  cost  of  cost  item  i  can  be 
derived as [5]
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in which Mi and σi are the mean and standard 
deviation for Ci  (the total cost distribution for 
item i), and mi(j) and SDi(j) are the mean and 
standard  deviation for  ci(j),  with SDi(0) = 0. 
The model finds Mi and σi for cost item i, and 
then determines SDi(j).  In the example project 
presented  herein,  the  three-point  estimates  of 
PERT are used to calculate Mi and σi.

In constructing a family of child distributions to 
represent  changes  in  cost  due  to  factor 
conditions,  one  goal  is  to  preserve  the  mean 
and standard deviation of the cost distribution. 
In  other  words,  the  mean  and  standard 
deviation  of  the  combination  of  the  child 
distributions for a family should be the same as 
the  mean  and  standard  deviation  of  the  cost 
distribution.  Mathematically,  this relationship 
can be represented [5]
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in  which  H  =  number  of  child  distributions; 
pj(h)=  probability  of  occurrence  for  child 
distribution  h  of  factor  j;  and  oi[j(h)] and 
sdi[j(h)] =  mean  and  standard  deviation, 
respectively, for child distribution h of factor j 
for cost item i.  Equations (4) and (5) are valid 
for any type of statistical distribution.  Steiner's 
theorem can be directly applied to justify (5) 
[6].

The mean of the child distribution for a given 
condition  is  the  expected  deviation  from the 
mean  of  the  cost  distribution  when  the  cost 
item is  performed  under  the  given  condition. 
Means  of  child  distributions  are  expressed 
through a variable x, the mean placement.  The 
mean  of  each  child  distribution  should  be 
confined to a range that maintains the variance 
of the cost distribution.  When x is equal to the 
limit,  the  child  distributions  will  have  zero 
standard deviations [5].

To construct a family of child distributions is to 

determine their means and standard deviations. 
Consider a cost distribution that is sensitive to 
factor j and has a variance of $4 K.  Assume 
that  the  user  chooses  the  categories  of  better 
than  expected,  normally  expected,  and  worse 
than  expected  conditions  to  describe  the 
conditions of the factor.  Then a family of three 
child  distributions  should  be  constructed. 
Assume that the probabilities of occurrence for 
the child distributions are equal; that is, p1 = p2 
= p3 = 1/3.   Thus,  based on (4) and (5),  the 
mean  and  variance,  respectively,  of  the 
combined child distributions are

0o
3
1o

3
1o

3
1

321 =++

(6)

4)osd(
3
1)osd(

3
1)osd(

3
1 2

3
2
3

2
2

2
2

2
1

2
1 =+++++

(7)
Assume -o1 = o3 = x and o2 = 0 so that (6) is 
satisfied,  and  let  the  child  distributions  have 
equal  standard  deviations,  then  (7)  can  be 
rewritten as

4x)3/2(sd 22 =+
(8)

The limit of the value of x is found by requiring 
that  the  variance  of  the  child  distribution  be 
non-negative.  Namely,

0x)3/2(4sd 22 ≥−=
(9)

Thus,  the limit  in this  case is  x  ≤ 6  = 2.45 
(limit  = 2.45).   In other words,  the values of 
2.45 and -2.45 are the two extreme means for 
Child Distributions 1 and 3, respectively.  The 
next step is to select the value of x between 0 
and 2.45.  Instead of specifying the exact value 
of  x,  the  proposed  model  suggests  that  the 
value of x be selected according to the level of 
influence of the factor under consideration on 
the  cost  item  under  consideration.   In  this 
example,  assume  x  is  set  to  one-half  of  the 
limit.  Then x is equal to 1.27.  The properties 
of  this  family  of  three  child  distributions  are 
thus Child 1 (p1 = 1/3, o1 = -1.27, sd1 = 1.71), 
Child  2  (p2 = 1/3,  o2  = 0,  sd2  = 1.71),  and 
Child 3 (p3 = 1/3, o3 = 1.27, sd3 = 1.71).

2.2 Qualitative estimates

Cost  distributions  are  derived  according  to 
subjective  information.   Project  planners  are 
asked  to  estimate  qualitatively  the  extent  to 
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which each factor influences the cost  of each 
item.   For  example,  a  cost  item  would  be 
considered to be highly sensitivity to weather if 
its  cost  varies  greatly  depending  on  the 
weather.  This approach of qualitative estimates 
is practical because the impact of uncertainties 
is easily expressed linguistically.  No inherent 
restriction is placed on the number of levels of 
influence used for  each factor.   The example 
included  herein  use  four  levels  of  influence, 
high, medium, low, and no influence.

2.3 Scale system

A  scale  system  is  used  to  transfer  the 
uncertainty  associated  with  total  cost 
distribution to  the  cost  distributions  based on 
qualitative  estimates  of  the  uncertainty 
sensitivity of cost item i to factor j [5][7].  That 
is,
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where  Qi(j) is  the  qualitative  estimate  of  the 
sensitivity  of  cost  item  i  to  factor  j,  and 
wj[Qi(j)] is a scale for each level of influence. 
For  example,  the  values  of  the  estimates  of 
high, medium, low, and no sensitivity for factor 
j can be represented by wj[High], wj[Medium], 
wj[Low],  and wj[No],  respectively.   Ki is  an 

adjustment  constant  that  ensures  that  σ i
2 is 

preserved.  Since wj[Qi(j)] is fixed for a given 
factor j, Ki will be different for each cost item. 
The value of wj[No] is always zero.  The value 
of wj[Qi(j)] is higher when Qi(j)  represents a 
higher  level  of  influence.   Consequently,  a 
larger portion of the variance is distributed to a 
cost distribution that has a higher sensitivity.  

2.4 Sensitivity of project cost to uncertainty

When  several  cost  items  for  a  project  are 
sensitive to particular factors, these factors are 
likely to dominate the cost performance of the 
project.  Knowledge of factor-sensitivities gives 
management  a  better  idea  of  what  factors  to 
control.   For  instance,  management  should 

focus on carefully scheduling weather-sensitive 
tasks  and  ensuring  adequate  equipment  is 
available  if  weather  and  equipment 
performance  exert  the  biggest  influence  on 
project  cost.   Controlling  the  factors  that 
influence  performance  improves  performance 
more  than  modifying  or  changing  work 
methods.  This study measures the uncertainty 
sensitivity of each cost item to a given factor 
based on its standard deviation divided by its 
mean.  A project in which a certain factor has a 
high  standard  deviation  is  considered  highly 
sensitive  to  that  factor  (since  the  mean  of 
project  cost  is  equal  for  each  factor),  and 
consequently project cost is more likely to be 
affected by a change in that factor.

3. COMPUTER IMPLEMENTATION

In  the  model,  when  cost  distributions  are 
sensitive to the same factor,  a  sample  cost  is 
independently  drawn  from  a  particular  child 
distribution  (given  a  specified  probability  of 
occurrence)  for  each  cost  distribution.   For 
example,  if  better  than  expected,  normally 
expected, and worse than expected weather are 
equally  likely  to  occur,  then  one-third  of  a 
predefined  number  simulation  iterations  will 
have cost samples that are simultaneously and 
independently  drawn  from  the  better  than 
expected weather child distributions; one-third 
will  have  normally  expected  weather  child 
distributions;  and  one-third  will  have  worse 
than  expected  weather  child  distributions.   A 
simulation  language,  STROBOSCOPE  [8],  is 
used  to  execute  the  simulation-relevant 
procedure  described  in  the  model.   This 
procedure was implemented on a 586 PC with 
64 MB under  a  32-bit  Windows environment 
(namely, Windows 98).  Making 1,000 analyses 
of  twenty-four cost  categories of the example 
project took approximately six minutes, which 
is acceptable for research.

4. EXAPME DEMONSTRATION

An example  for  a  building project  is  used to 
compare  the results  obtained using the model 
with  two  analyses  that  do  not  consider 
correlations, namely: a standard PERT analysis 
(PERT) and a Monte-Carlo simulation, carried 
out  using  normally  distributed  costs  with  the 
same  mean  and  standard  deviation  as  the 
model’s  total  cost  distribution  (W/O 
Correlation  Normal).   Meanwhile,  three 
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different scale systems (Scales 1, 2, and 3) are 
applied  to  investigate  the  effect  of  the  scale 
system.  This project comprises 20 direct-cost 
division  items  and  4  indirect-cost  division 
items  (that  is,  insurance,  tax,  profit,  and 
contingency).  The model requires two types of 
inputs,  the three-point cost  estimates for  each 
division item and the  qualitative  estimates  of 
the sensitivity of each division item to various 
factors.  The analyses considered here involve 
1,000 simulation iterations.  The scales of Scale 
1 are listed in Table 1.

Table 1. Scales of Scale 1
Scales

F1 ]H[w 1F =16 ]A[w 1F =12 ]L[w 1F =8 ]No[w 1F =0

F2 ]Yes[w 2F
=12

]No[w 2F =0

F3 ]H[w 3F =7 ]A[w 3F =5 ]L[w 3F =3 ]No[w 3F =0

F4 ]H[w 4F =4 ]A[w 4F =3 ]L[w 4F =2 ]No[w 4F =0

F5 ]H[w 5F =3 ]A[w 5F =2 ]L[w 5F =1 ]No[w 5F =0

where "H", "A", "L", and "No" represent high, 
average,  low,  and no sensitivity,  respectively. 
"Yes"  or  "No"  are  used  to  describe  the 
sensitivity of cost items to F2. F1 - F5 represent 
owner  approval,  weather,  material  delivery, 
labor, and equipment, respectively.

Meanwhile,  the  scales  for  Scales  2  and  3 
(which  exaggerate  the  differences  between 
high,  medium,  and  low  sensitivities)  are 
displayed in Table 2 and Table 3, respectively.

Table 2. Scales of Scale 2
Scales

F1 ]H[w 1F =8 ]A[w 1F =5 ]L[w 1F =1 ]No[w 1F =0

F2 ]Yes[w 2F =8 ]No[w 2F =0

F3 ]H[w 3F =8 ]A[w 3F =5 ]L[w 3F =1 ]No[w 3F =0

F4 ]H[w 4F =8 ]A[w 4F =5 ]L[w 4F =1 ]No[w 4F =0

F5 ]H[w 5F =8 ]A[w 5F =5 ]L[w 5F =1 ]No[w 5F =0

Table 3. Scales of Scale 3
Scales

F1 ]H[w 1F =
100

]A[w 1F =10 ]L[w 1F =1 ]No[w 1F =0

F2 ]Yes[w 2F =
100

]No[w 2F =0

F3 ]H[w 3F =
100

]A[w 3F =10 ]L[w 3F =1 ]No[w 3F =0

F4 ]H[w 4F =
100

]A[w 4F =10 ]L[w 4F =1 ]No[w 4F =0

F5 ]H[w 5F =
100

]A[w 5F =10 ]L[w 5F =1 ]No[w 5F =0

Results:  project  cost.  The  project  costs 
obtained  from various  analyses  (PERT,  W/O 
Correlation Normal, With Correlation Scale 1, 
Scale  2,  and  Scale  3)  are  compared  using 
several  metrics,  namely  the  mean,  standard 
deviation,  minimum  and  maximum  project 
costs.  Table 4 lists the analytical results, and 
yields the following observations:
 The  mean  and  standard  deviations  for 

PERT and W/O Correlation  Normal  are 
approximately  the  same  because  of  the 
effect of the Central Limit Theorem.

 The  analytical  results  with  and  without 
correlation  analyses  reveal  very  little 
difference in mean project cost.  Restated, 
the correlation affects the variance rather 
than the expected cost.

 Correlation  produces  a  project  cost  that 
may  be  significantly  lower  than 
expectations (e.g., $117.96 K for Scale 1 
versus  $132K  for  W/O  Correlation 
Normal)  or  significantly  higher  than 
expected  (e.g.,  $184.25  K  for  Scale  1 
versus  $167.49K  for  W/O  Correlation 
Normal).  The correlation effect thus has 
the potential to create an unexpected cost 
overrun.

 The  project  standard  deviations  of  the 
three With Correlation analyses are 153%, 
137%, and 149% higher than for the W/O 
Correlation Normal analysis for Scales 1, 
2, and 3, respectively.   For this example 
project, the choice of scale systems does 
not markedly affect the analytical results, 
which  fact  applies  even  in  the  case  of 
Scale  3  (highlighting  the  differences 
between  sensitivities),  because  the 
correlation effect determined by Scale 3 is 
enhanced only when most activities have 
high  sensitivities  to  the  same  factor  or 
factors.   It  was  found  out  that  the 
correlation  effect  tends  to  be  dominated 
by  the  lower-sensitivity  factor  cost 
distributions,  rather  than  the  higher-
sensitivity ones. 

Results:  uncertainty  sensitivity.  Table  5 
summarizes  the  results  of  uncertainty 
sensitivity to F1, F2, F3, F4, F5, and all factors 
of project cost for different scale systems.  For 
Scales 1 and 2, the project cost is most sensitive 
to F4 (labor), followed by F1, F5, F3, and F2. 
This  information  tells  management  that 
controlling the quality and availability of labor 
deserves special attention.  Meanwhile, in Scale 
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3, which increases the difference between high, 
medium, and low sensitivities, F1 becomes the 
most sensitive factor rather than F4.  Notably, 
the PERT and W/O Correlation Normal models 
are  unable  to  provide  this  type  of  sensitivity 
information.

Table 4. Comparisons of W/O correlation and 
the model analyses

Project
W/O 
Corr.

Proposed
model

Cost a PERT Normal Scale 1 Scale 2 Scale 3

Mean 150 b 149.97 150.06 149.69 150.33

Standard 
deviation

5.69 5.32 13.46 12.63 13.26

Min. cost N/A 132 117.96 118.65 117.05
Maxi. cost N/A 167.49 184.25 184.09 184.38

a The results are evaluated considering all factors.
b All data are expressed in thousands (K).

Table 5. Effect of scale systems
Standard deviation

Factors Scale 1 Scale 2 Scale 3
1. Owner approval 7.9857b[2]a 6.8174 [2] 10.8664 [1]

2. Weather 1.5813[5] 1.9488 [5] 1.7313 [5]
3. Material 

delivery
2.7240[4] 1.9603 [4] 3.8811 [4]

4. Labor skills 8.3092[1] 8.9019 [1] 5.7696 [2]
5. Equipment 

breakdown
6.7841[3] 5.5836 [3] 4.0056 [3]

All factors 13.46 12.63 13.26
a [  ] indicates the rank of the sensitivity with respect 

to a given factor.
b All data are expressed in thousands (K).

5. CONCLUSIONS

This  work  has  developed  a  simulation-
facilitated  factor-based  model  that  allows 
correlation between cost items to be considered 
in cost analysis.  The model is based upon the 
two-step  breakdown  of  uncertainty.   The 
correlation between cost distributions is caused 
by their sharing the same factor(s).  Correlation 
is  introduced  by  sampling  from  the  child 
distribution  representing  a  given  factor 
condition.  The use of qualitative estimates to 
describe the effect of factor-based uncertainty 
should  make  the  user  more  comfortable  in 
providing inputs than other approaches.  Future 
research  directions  could  include  exploring 
ways to capture non-Normal cost distributions 
and total cost distributions; implementing time-
dependent  and  non-time-correlated  cost 
variables; and applying the proposed model to 

other practical projects.
6. ACKNOWLEDGEMENTS

The  author  thanks  Professor  Laura  Demsetz 
from the College of San Mateo and Professor 
Hojjat Adeli from the Ohio State University for 
their valuable assistance.  Dr. Julio Martinez is 
also commended for making STROBOSCOPE 
available.

7. REFERRENCES

[1]  Adeli,  H.  and  Wu,  M.,  “Regularization 
Neural  Network  For  Construction  Cost 
Estimation”,  Journal  of  Construction 
Engineering  and  Management,  ASCE,  Vol. 
124, No. 1, pp. 18-24, 1998.

[2] Touran, A. and Wiser, E.D., “Monte Carlo 
Technique  With  Correlated  Random 
Variables”,  Journal  of  Construction 
Engineering  and  Management,  ASCE,  Vol. 
118, No. 2, pp. 258-272, 1992.

[3] Chau, K.W., “Monte Carlo Simulation Of 
Construction  Costs  Using  Subjective  Data”, 
Construction  Management  and  Economics, 
Vol. 13, pp. 369-383, 1995.

[4]  Ranasinghe,  M.,  “Impact  Of  Correlation 
And Induced Correlation On The Estimation Of 
Project  Cost  Of  Buildings”,  Construction 
Management and Economics,  18, pp. 395-406, 
2000.

[5]  Wang,  W-C.,  “Simulation-Facilitated 
Model  For  Assessing  Cost  Correlations”, 
Journal  of  Computer-Aided  Civil  and 
Infrastructure Engineering, Vol. 17:5,  pp.  368-
380, 2002.

[6] Levin,  R.I.  and Rubin,  D.S.,  Statistics for 
Management,  5th  Edition,  Prentice  Hall, 
Englewood Cliffs, New Jersey, 1991.

[7]  Wang,  W-C.  and Demsetz  L.  A.,  “Model 
For  Evaluating  Networks  Under  Correlated 
Uncertainty  –  NETCOR”,  Journal  of 
Construction  Engineering  and  Management, 
ASCE, 126(6), pp. 458-466, 2000.

[8] Martinez, J. C., STROBOSCOPE: State and 
Resource  Based  Simulation  of  Construction 
Processes,  Ph.D.  Dissertation,  University  of 
Michigan, Ann Arbor, Michigan, 1996.

6


	SIMULATION-FACILITATED FACTOR-BASED APPROACH FOR
	COST CORRELATION EVALUATION

