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ABSTRACT

The  performance  of  engineering  activities  has  significant  impacts  on  the  successfulness  of 
implementing industrial construction projects. Improving engineering performance can lead to 
better project outcomes. Previous studies on engineering performance improvement have either 
focused on the use of certain techniques or products, or looked at specific engineering processes 
or  areas.  There  has  been a  lack  of  a  systematic  and  analytical  approach  that  improves 
engineering performance based on the understanding of the relationships between engineering 
inputs  and project  outcomes.  The paper proposes  a generic model,  which integrates  genetic 
algorithms with artificial neural networks, for modeling engineering performance measurement 
and improvement  in industrial  construction projects.  Due to their robust and efficient search 
ability  in  complex  situations,  genetic  algorithms  are  employed  to  search  for  solutions  to 
improving  engineering  performance  with  the  searching  criteria,  fitness  function,  being  the 
neural networks that establish the relationships between engineering inputs and project outputs.
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1. INTRODUCTION

Industrial  construction  projects  have  been 
experiencing  unsuccessful  implementation  of 
projects for  a  long  time.  An  industry  survey 
(Post  1998)  reported  that  one-third  of  the 
projects  surveyed  was  over  budget  and  nearly 
half was delivered late. The development of an 
industrial  facility  spans  over  five  stages:  pre-
project  planning,  detailed design,  procurement, 
construction,  and  start-up  and  commissioning 
(CII  1997).  Early  researches  addressed  the 
impact  of  engineering  performance  on  the 
overall outputs of a project. For example, design 
errors,  changes  and omissions  could  constitute 
approximately 10% of the total installed costs of 
a  project  while  construction  mistakes  account 
for only about 2% (Davis et al 1989). 25% of the 
facility owners surveyed by Post (1998) ranked 
detailed design as the weak link in the process of 
facility development.

The  Research  Team  156 (RT-156)  of 
Construction Industry Institute (CII) studied the 
industrial  project  data  collected  by  CII 
Benchmarking  and  Metrics  Committee.  The 
study reported that the detailed design phase was 
a  prime source of  project  schedule  delays  and 
that  about  half  of  the  project  scope  and 
development  changes were initiated during the 
detailed  design  phase.  The  report  also  pointed 
out that design errors were the utmost source of 
field rework and that design-related field rework 
surpassed  that  initiated  by  both  owner  and 
constructor (Georgy et al 2000).

Since industrial projects involve huge amount of 
investment,  even  a  small  percentage  of  cost 
overrun or schedule delay will result in serious 
economic  loss.  Therefore,  there  is  an  urgent 
need  to  improve  project  outputs  through 
improving  engineering  performance.  This 
research  aims  at  searching  for  approaches  to 
improving engineering performance in industrial 
construction projects through integrating genetic 
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algorithms  with  artificial  neural  networks. 
Engineering refers to the detailed design phase 
of an industrial project.

2. PREVIOUS STUDIES ON 
ENGINEERING PERFORMANCE

Engineering is a systematic process with inputs 
and  outputs.  Engineering  performance 
measurement  deals  with  the  output  side.  The 
ability to  successfully perform the engineering 
and  design  activities  on  an  industrial 
construction project depends on various project 
input  variables  (i.e.,  project  attributes  and 
conditions),  which  are  essential  in  driving  its 
engineering  performance.  There  was  a  lack  of 
analytical  scheme  that  can  approximate  the 
cause-effect  relationship  between  engineering 
inputs  and  outputs  until  the  research  work  of 
Georgy (2000) and CII RT-156, which is part of 
the foundation of this research study.

CII RT-156 identified a total of 25 engineering 
input variables and ten engineering performance 
measures,  as  shown  in  Table  1  and  Table  2 
respectively.  A  neural-fuzzy  system was 
developed  for  establishing  the  relationships 
between  engineering  inputs  and  engineering 
performance measures.  A multi-attribute utility 
function was used to aggregate the performance 
measures into a composite index to indicate the 
engineering  performance  level (Chang  et  al 
2001 and Georgy 2000).

Researchers in the past tried various approaches 
to  improve  engineering performance,  but  most 
of their approaches are qualitative in nature and 
have  certain  limitations.  The  limitations  come 
from the fact that some approaches promote the 
use of a specific technique or product and some 
look at specific areas of engineering and design 
activities (Armentrout  1986,  Atkin  and  Gill 
1986,  Breen and  Kontny 1987,  Choi  and Ibbs 
1990, Ginn and Barlog 1993). There is a lack of 
a systematic and analytical approach that looks 
at improving engineering performance based on 
the  understanding  of  the  relationship  between 
engineering performance and its driving factors.

3. THEORIES

3.1 Artificial Neural Networks (ANNs)

ANNs are an information processing technology 
that  simulates  the  human  brain  and  nerve 
system. Their basic element is also called neuron 
(or node). All neurons are organized in layered 
structure  and  connected  with  weighted  links. 
There is always an input layer where the initial 
stimulus happens, and an output layer where the 
final reaction of the system is shot out.  ANNs' 
two  major  functions  are  learning  and  recall. 
Learning  is  the  process  of  adapting  the 
connection weights in an ANN to produce the 
desired outputs in response to inputs.  Recall is 
the process of producing outputs in accordance 
to specific inputs using the knowledge obtained 
through learning (Tsoukalas and Uhrig, 1997).

3.2 Genetic Algorithms (GAs)

GAs are robust general-purpose search program 
based on the mechanism of natural selection and 
natural  genetics (Holland  1972).  Genes  and 
chromosomes  are  the  fundamental  elements  in 
GAs. A chromosome is a string of genes. In a 
real  problem,  genes  are  the  variables  that  are 
considered influential in controlling the process 
being optimized, and a chromosome is a solution 
to  the  problem.  GAs  search  for  the  optimal 
solution  from populations  of  chromosomes.  In 
this research, the genes are the 25 input variables 
in  Table  1.  A  chromosome  is  a  set  of  the  25 
input  variables.  There  is  an  objective  function 
(preferably called fitness function) in GAs. The 
search process seeks the maximum or minimum 
value of the fitness function.

4. MODELS

The fundamental approach of the research is to 
employ  GAs  to  search  for  the  engineering 
performance  inputs  that  lead  to  optimal 
engineering  performance.  The  ANN  system 
shown  in  Figure  1  serves  as  a  complicated 
fitness function. Two models were built.
 Engineering Performance Index Model (EPI 

Model).
 GA-ANN-Integrated Search Model (GA-

ANN Model). 
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4.1 EPI Model

EPI model  is in essence the framework of CII 
RT-156. As illustrated in Figure 1 and Figure 2, 
EPI model is comprised of two parts. The first 
part  is  10  neural  networks  that  establish  the 
relationships between the 25 engineering inputs 
and  the  10  engineering  performance  measures 
respectively.  The  second  part  is  a  multiple 
attribute  utility  function  that  takes  the  outputs 
from the 10 neural networks in the first part as 
its inputs and translates them into a composite 
utility score, engineering performance index.

The 10 neural networks, after being trained, can 
predict  performance  measures  for  given 
engineering  inputs.  The  10  engineering 
performance  measures  depict,  from  different 
perspectives,  the  quality  of  outputs  of 
engineering activities. However, if it is required 
to  evaluate  a  project  or  to  compare  it  with 
another  one,  it  will  be  hard  to  make  the 
judgment  when  10  varying  measures  are 
presented. Therefore, there comes the need for a 
single  composite  measure  that  indicates  the 
overall  level  of  engineering  performance  and 
contains  the  information  embedded  in  the  10 
measures.  Through  multiple  attribute  utility 
function,  an  engineering  performance  index  is 
defined on the scale of [0, 1] with 0 depicting 
the poorest  engineering performance and 1 the 
best performance. 

Thus,  through  the  trained  neural  networks,  if 
given engineering inputs, EPI model can make 
prediction on engineering performance through 
both a  group of  10  different  measures  and  an 
overall engineering performance index. The set 
of 10 measures gives a comprehensive view of 
engineering  performance.  The  engineering 
performance  index  will  be  used  as  fitness 
function value in GA-ANN model.

4.2 GA-ANN Model

GA-ANN model, as shown in Figure 3, depicts a 
typical  genetic  search  process.  Its  most 
distinguished feature is the fitness function, EPI 
model, where the GA-ANN integration happens.

GA-ANN model searches the engineering inputs 
that lead to better engineering performance. The 
genetic search starts with an initial  population. 
The initial population is comprised of a number 
of individuals. Each individual is a chromosome 
consisting  of  25  genes,  each  of  which 
corresponds to an engineering input in Table 1. 
For a given project, the input variables related to 
basic project attributes including general project 
attributes,  general  owner attributes and general 
designer attributes (refer to Table 2) will be kept 
constant throughout the genetic search; all other 
input  variables  subject  to  the  changes  in  the 
actual project execution will be manipulated by 
genetic  operations  in  order  to  form  better 
combinations of the variables.

GA-ANN  evaluates  all  individuals,  keeps  the 
good  ones,  reproduces  the  good  ones,  and 
sometimes  transforms  the  good  ones  to  make 
even better ones, … until satisfactory individuals 
are produced. First of all, the individuals in the 
initial  generation  are  evaluated  through  the 
fitness  function,  EPI  model.  First,  Each 
individual is presented to the 10 trained neural 
networks  that  predict  its  10  corresponding 
engineering performance measures. Second, the 
multiple attribute utility function transforms the 
10  predicted  measures  into  a  composite 
engineering  performance  index,  which  is  the 
fitness function value of the individual.

Then,  the  initial  generation  goes  through  the 
genetic  operations:  selection,  reproduction, 
crossover  and  mutation.  First,  the  individuals 
with higher fitness function values get selected 
and the worse ones eliminated, which means that 
the  engineering  inputs  that  create  better 
engineering performance  are  kept.  Second,  the 
selected  ones  are  reproduced  and  crossovered. 
Lastly, a certain percentage of the individuals go 
through the mutation process which transforms a 
certain number of genes of the individuals. The 
mutation  process  might  make  the  mutated 
individuals  better  or  worse.  Thus,  the  second 
generation is formed.

The second generation also goes through fitness 
evaluation,  selection,  reproduction,  crossover 
and mutation. Some individuals better than those 
in  the  second  generation  are  assembled  and 
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come into the third generation. The general trend 
is that the individuals become better and better 
from generation to  generation.  In other  words, 
the  level  of  engineering  performance  becomes 
higher and higher.

The genetic search process keeps going on until 
a  certain  termination  criterion  is  met.  Usually 
the termination criterion can be a desired fitness 
value, the maximum number of generations, or 
computation time. By the time the process stops, 
one or more sets of engineering inputs will  be 
identified as the ones that lead to an engineering 
performance level close or equal to the desired 
level.

4.3 Relationships Between the Models

EPI model establishes the relationships between 
the  engineering  inputs  and  engineering 
performance  measures  and  aggregates  the 
measures into a composite index to indicate the 
level  of  engineering  performance.  GA-ANN 
model  does  the  genetic  search  for  better 
engineering performance using EPI model as the 
fitness  function  while  EPI  model  provides 
engineering  performance  prediction  for  given 
engineering inputs.

5. ANTICIPATED APPLICATIONS OF 
THE MODELS

For  past  projects,  GA-ANN  model  and  EPI 
model  work  together  to  search  better 
engineering performance and the corresponding 
engineering inputs. Then, the actual engineering 
inputs can be compared with the those searched 
by GA-ANN model  and the comparison might 
be able to indicate what could have been done to 
achieve better engineering performance.

For  future projects,  GA-ANN model  looks for 
the  possible  better  engineering  inputs  and 
outputs for the project. These anticipated project 
inputs and outputs might act as the guideline and 
goal for the actual project execution.

6. DATA ANALYSIS

The  project  data  for  validating  the  proposed 
models are being collected by the authors. The 

result  of  data  analysis  is  expected  to  be 
presented at the conference.  

7. CONCLUSIONS

This  paper  proposed  a  systematic  approach  to 
improving  the  practice  of  engineering 
performance. The fundamental idea is to find the 
possible  best  practice  of  engineering  activities 
for  a  given  project.  To  pursue  this,  genetic 
algorithms  and  artificial  neural  networks  are 
employed to build the models. Artificial neural 
networks  provide  the  ability  to  establish  the 
relationships between engineering activity inputs 
and  engineering  performance  outputs,  and 
genetic algorithms  serve as a  search engine to 
find the possible best engineering practice based 
on the relationships between engineering inputs 
and  outputs  identified  through  artificial  neural 
networks.
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Table 1 Engineering Input Variables
Category Variables

General project attributes Project size (total installation cost)
Contract type
Relative size of project compared to projects of the same industry type
Relative level of complexity
Site conditions
Legal and environmental conditions

General owner attributes Owner profile and participation
Newness of process technology to owner
Owner previous experience with designer

General designer attributes Split engineering practices
Designer qualifications and capacity
Newness of process technology to designer

Project schedule Design schedule
Design-construction overlap

Project information inputs Completeness of scope definition
Completeness of objectives and priorities
Completeness of basic design data
Quality of constructor input and constructability
Quality of vendor data

Level of automation Use of 3D CAD modeling
Use of Integrated Databases (IDB)
Use of Electronic Data Interchange (EDI)

Project changes Percent TIC scope changes
Change management procedure
Change communication system

Table 2 Engineering Output Variables (Engineering Measures)
Category Variables

Detailed design value % design rework
Design document release commitment
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% detailed design schedule delay
% detailed design cost overrun

Fabrication and construction % fabrication and construction schedule delay due to design deficiencies
value % fabrication and construction cost overrun due to design deficiencies

% construction hours for design problem solving and field design
% estimated dollar savings due to constructability

Start-up and commissioning % start-up schedule delay due to design deficiencies
value % start-up cost overrun due to design deficiencies

Figure 3. GA-ANN Model
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