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Abstract:  Force  feedback  sensors  are  useful  for  the  planning  of  robotic  digging 
trajectories.   In  particular,  when  combined  with  force-control  algorithms  it  becomes 
possible to sense buried objects and to determine the weight of excavated materials.  The 
proposed  force  sensor  system  makes  use  of  hydraulic  cylinder  pressure  and  thereby 
measures machine force indirectly.  Successful implementation of such an approach will 
eliminate  the  need  for  expensive,  direct-force  sensors.   Measurements  of  pressures  in 
candidate  cylinders  were  compared  with  laboratory-measured  stroke  and  force.    To 
measure force in every position and during the motion of a backhoe, kinematic, static and 
dynamic  inertial  parameters  of  the bucket,  arm and other  links have to  be  considered. 
From these data a friction model of the hydraulic cylinders can be developed.  The present 
work involves the determination of these friction parameters for an excavator arm using 
position  measures  of  the  bucket  and  boom,  cylinder  pressures  and  the  attitude  of  the 
excavator  boom.   Combined,  these  represent  the  “dynamic  tare”  of  system.  The  work 
includes a practical approach to filtering regression matrix to do not measure accelerations.
The methods allows  one to carry out inertial parameters for a full machine, in order to 
verified design and drawning of costruction machine or to use as input for simulation of 
machine dynamics.
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Introduction

 In previous studies [1,2] static and dynamic 
analyses of force sensors for digging robots and 
on-board force-sensing systems for construction 
machines  were  presented.  The force  sensor  is 
based  on  measurement  of  pressures  in  two 
hydraulic  cylinders  and  angular  positions  of 
two links,  e.g.  with  an excavator,  the  driving 
cylinders  and  position  of  bucket  and  boom 
respectively, were measured about an absolute 
inertial reference point.

Using  two  cylinders  it  is  possible  to 
compute variable pairs, e.g. force/force-position 
or  force/force-direction,  by  considering  the 

CNR-CEMOTER, via Canal Bianco 28, 44044 
Ferrara, Italy, email: malaguti@cemoter.bo.cnr.it

planar movement of two links.  This concept is 
applicable  to  many  types  of  construction 
machines  having  two  or  more  hydraulic 
cylinders.

The continuous measurement of soil-bucket 
interaction  force  is  required  to  predict 
interaction  force  or  for  real-time  planning  of 
bucket trajectories.

Our method of force measurement does not 
require any additional sensors; it makes use of 
sensors already available on most construction 
machinery.  It does, however, require new static 
and inertial parameters for the mechanism links 
and  their  respective  accelerations  and 
velocities. 

Errors  in  the  determination  of  hydraulic 
cylinder  force  by  using  cylinder  pressure 
measurements are  introduced  because  of  the 

1



presence  of  static  and  viscous  frictions.  the 
proposed  new  method  includes  the 
determination of these parameters.

We use Newton-Euler notation to describe 
the parameters affecting the dynamic equations 
of  the  excavator  arm.  The  parameters  are 
arranged in regression matrix form (eq 1), while 
the  introduction  of  a  linear  filter  and 
convolution  theorem allowed  us  to  transform 
the  regression  matrix  into  a  new  system 
independent of  acceleration of the link.  This 
independence  avoids  the  requirement  for 
measuring  accelerations  of  the  links  (bucket, 
stick, etc.).

The  present  work  is  focused  on 
experimental implementation of this approach, 
considering practical integration of sensors and 
software.  Tests  and  experiments  were  made 
using a small size excavator (Figure 1) which 
was  modified  to  use  proportional  servovalves 
and  was  powered  by  an  electric  motor. 
Parameter identification was done off-line using 
general  purpose  PC  hardare  and  computing 
software.

1. Dynamic Analysis and Filtering

Dynamic analysis of the excavator arm 
shown  in  Figure  1  was  undertaken  using 
Newton-Euler notation.

 

Figure  1 shows  the  arm  of  small  size  excavator 
modified to fit transducers

The  following  calculations  consider  the 
dynamics  of  a  system comprised  of  a  bucket 

and stick, without considering the contribution 
of the boom to the overall excavator dynamics.

Considering  the  angular  positions  of  the 
bucket  and  stick,  respectively  θ2 and  θ1 with 
reference  to  the  horizontal,  and  the  torques 
trasmitteed by their driving cylinders τ2 and τ1, 
the  Newton-Euler  dynamics  of  these  links  is 
shown with the system.
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and  I is  the  inertia  matrix,  h is  the  gravity 
matrix, Fx is the interaction force on the bucket.

This  system  was  arranged  in  matrix 
regression form as:

( )Φθθθ=τ∆ ,, W                                  (2)

where  [ ]T
212 τ−ττ=τ∆ ,  and  the  inertial 

parameters are defined as (3).
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To solve  equation system (2)  without  the 
measurement of angular accelerations of links, 
we  had  to  filter  equation  (1)  linearly.  By 
convolution, the filtered torques become

( ) gffhhfhff ∗+−+∗=τ )0(0   
were f is the linear stable filter, * is the sign of 
convolution,

 ( )( )θθ= I
dt
dh

( ) ( ) ( )θ+θθθ+θθ−= GCIg  ,

In this way a filtered regression form of the 
arm dynamics can be written as:

( )Φθθ=τ∆ ,ff W                                  (4)
where  the  vector  of  parameters  Φ does  not 
change, since the filter is linear.

Until now we have used the “torque” term, 
but  it  is  produced  by  the  cylinder  force  and 
crank  length.  The  torques  are  related  to 
hydraulic  pressures  of  the  cylinder  by  the 
following equation
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where  L is  the  crank  length,  f   the  distance 
between the link and cylinder pins, and θ’ is the 
angle  between  those  two.  This  relationship 
shows that the torque depends on the angle  θ’  
(fig.2),  which  is  related  to  the  θi  angles  of 
links. 

However,  it  is  also  possible  to  use  a 
polynomial approximation of  ii dLdθ , which 

represents  the  relationship between the  angles 
θi  and the rod extensions Li .

The  friction  of  the  hydraulic  cylinder  is 
difficult  to  model  and  compute,  because  it 
depends on many factors, for example the types 
of  seal  and load  pressure.  However  the  same 
method of identification of inertial  parameters 
allows for the contribution of friction too.
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Figure 2: Typical example of mechanism driven by 
hydraulic cylinder, where r is the variable length of 
cylinder, L and f the fixed lengths. 

From traditional Coulomb friction theory

( ) vfvfF vcf += sgn                                 (6)

where v is the velocity of the rod, we have two 
friction  coefficients,  the  fc Coulomb  friction 
coefficient  and  the  fv viscous  friction 
coefficient. Remembering that  Fdld =θτ , the 
previous coefficients form the vector of friction 
parameters :

 [ ]T
vcvcf ffff 1122=Φ                  (7)

2. Inplementation

To  filter  the  regression  matrix  a  simple 
stable  first  order  filter  was  used,  having  the 
simple transfer function ( ) 11 += ssf  and the 
following impulse response in the time domain 

( ) tetf −= . 
The  regression  matrix  was  convolved  by 

this  filter,  obtaining  the  filtered  regression 
matrix, independent of accelerations.
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In practice we chose the following transfer 
function: 

( ) asasF += , 

with a cutting frequency of 20 Hz, a sample 
frequency of 100 Hz and a ≅ 125 rad/s .

The  identification  process  was  based  on 
Least  Square  Methods  considering  the 
measured noise of torque, ε, only.

( ) ε+Φθθ=τ∆ ,ff W   

Moreover,  the  components  of  the  torque 
vector 

[ ]T
212 τ−ττ=τ∆

are decoupled, so every link or equation can 
be  considerd  as  a  single  input,  single  output 
system to estimate.

The  measurement  hardware  consisted  of 
traditional  strain  gauges  and  high  pressure 
transducers.   These  were  used  to  measure 
hydraulic  pressure  in  both  chambers  of  the 
cylinders,  two  resistive  angular  position 
trasducers and a tilt sensor.

One  position  sensor  was  placed  on  the 
stick-boom pin, the other one was placed on the 
pin of the crankshaft that transformed the linear 
motion of rod into angular motion (see fig.1). 
The  angular  position  sensor  location  was 
chosen  for  practical  reasons,  so  that  the 
relationship between the force produced by the 
cylinder and the angular position of the bucket 
was  known,  based  on  the  kinematics  of  the 
bucket mechanism.

The  tilt  sensor  (Accustar)  placed  on  the 
boom  of  our  small  excavator  provided  the 
absolute  inertial  reference  to  measure  the 
angular  positions  of  links.   Additionally  it 
allowed the determination of the boom  angular 
position and velocity.

The  signals  were  acquired  by  a  standard 
multifunction National Instrument I/O board for 
PCs and processed using Matlab-Simulink. The 
same  software  was  used  for  off-line  system 
identification routines.

 
As  discussed previously,  the  solution to  filter 
dynamic  system  and  its  regression  form was 
chosen to avoid the use of acceleration sensors 
or  the  noisy  and  inaccurate  double  time 
derivative  of   angular  displacement.  However 
the  regression  form  needs  to  measure  or 
estimate angular velocity.

Because  the  simple  method  of  backward 
differencing does not yield good performance, 
the angular velocities were estimated using the 
Savitzky-Golay filter.

In  practice  this  filter,  performing  a  least 
squares  linear  regression  fit,  is  a  mobile 
window  of  2nw+1 number  of  samples  of 
angular position that is fitted with an m-order 
polynomial.

( ) m
mm ptptpt +++=θ − 1

21

The time  derivative or  angular  velocity is 
derived at the same time. To avoid high-order 
calculus the filter  parameters  were chosen as: 
nW=3 and m=2.  The velocity is thus given as:

 ( )22 1 ptpv +=  .

Also in this case the filtering was  done off-
line.

First,  static  inertial  parameters  were 
determined  in  the  static  configuration; 
afterward the fitting of all static, dynamic and 
friction  parameters  was  conducted  during 
dynamic conditions, that is, by moving the arm 
of the excavator. 

In  the  first  case  we  used  the  normal 
regression matrix because the static conditions 
do  not  depend  on  accelerations,  while  under 
dynamic  conditions  the  filtered  regression 
matrix was used.

Many  references  on  identification  of 
dynamic parameters of industrial robots suggest 
the use of specified trajectories to minimize the 
conditioning of the data, but in our case it was 
impossible  to  plan  suitable  trajectories  that 
properly simulate a digging cycle under manual 
control.
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3. Results of estimation

The  tests  to  estimate  parameters  of  the 
excavator  arm  can  be  divided  in  two  parts: 
inertial static parameters in static condions, and 
all  inertial  and friction parameters in dynamic 
conditions.

3.1 Static estimation
Static estimation was carried out  by putting 

the  excavator  arm,  and  in  particular  the  stick 
and bucket, in various positions, where angular 
position  and  torques  for  each  joint  was 
measured with acceleration and velocity of the 
links equal zero.

This set of measurements was repeated for a 
number about 150 samples (positions), to have 
small variation in the results.  We avoided those 
positions corresponding or close to the endstop 
of the rods.

In this first part we chose to not include the 
static  friction  parameters  in  the  estimation, 
because  the  static  friction  depends  on  many 
factors including  the  characteristics  of  the 
hydraulic fluid,  the type of seal,  and the time 
that  the  rod  remains  in  the  same  position, 
making  difficult   to  have a reliable  model  of 
friction.

The  results  of  the  static  estimation  are 
summarized in Table 1,

i iφ [kgm] iσ̂ [kgm]

S1 6.17 2.95
S2 12.05 4.45
S3 103.31 23.67
S4 22.78 7.08

Table 1: Parameter estimation of static conditions

where  Φi and  σi are  the  vectors  of  static 
parameters  and  their  standard  deviations 
respectively.

3.2 Dynamic estimation
For  the  estimation  of  all  parameters  in 

dynamic  conditions,  the signals were sampled 
at  100  Hz  for  40  seconds,  converted  and 
processed, to be estimated off-line as described 
previously.

The final ersults are shown in Table 2:

parameters Estimated 
value

Standard 
deviation

φD1 100.32 kgm2 25.7 kgm2

φD2 186.73 kgm2 33.4 kgm2

φS1 3.50 kgm 1.54 kgm
φS2 13.71 kgm 3.28 kgm
φS4 71.81 kgm 10.07 kgm
φS4 35.56 kgm 5.68 kgm
φf1 52.23 kgm/s2 25.5 kgm/s2

φf2 31444.87 kg/s 1257 km/s
φf3 35.67 kgm/s2 20.6 kgm/s2

φf4 30167 kg/s 1320 kg/s

Table 2: Parameter estimation in dynamic conditions

One way to value the quality of estimation is to 
compare  the  measured  and  estimated  torque 
data.    Figure  3  shows  the  measured  and 
estimated torques related to the  bucket,  while 
Figure 4 shows a comparison of stick torques.
By analyzing the residual vector, the difference 
between measured and predicted torques were 
computed.   The  mean  square  error  and 
percentage error are given in Table 3.
 

torque Mean square 
error

Percentage error

τ2 43.12 Nm 26.7 %
τ1 73.54 Nm 18 %

Table  3:  Mean  Square  and  percentage  eerors  of 
stick torques.
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Figura  4 Comparison between measured (full line) 
and estimated (dashed) torques of stick

As we can note,  the  torque of  the bucket 
shows a  larger  error  with respect  to  the  stick 
torque.   This  is  probably  caused  by  many 
factors:   the  bucket  motion  needs  only  small 
forces and low pressures, so the influence of the 
joint  and  rod  seal  frictions  will  have  more 
uncertain values and the variation is therefore 
higher; second, the angular position is measured 
indirectly.    Also,  the  full  scale  range  of  the 
pressure  sensors  utilized  was  high  in 
comparison to the pressures needed to actuate 
the bucket.

4. Conclusions

This  work  purses  two  fundamental 
objectives: first to develop an economical force 
sensor for contruction machinery;  and second, 
to  develop  a  method  to  measure  the  masses, 
moments of inertia, and friction of parts, when 
it is not easy to compute these parameters, or to 
validate  models  by  running  mechanical 
dynamic simulation software.

To  achieve  these  objectives,  a  small 
excavator,  powered  by  electric  motor  and 
controlled by servo valves, was equiped with a 
suitable sensor suite.  For machine dynamics, a 
filtered regression approach was studied.

In  these  first  tests  we  can  see  that  the 
parameters  indentified  in  dynamic  conditions 
and  considering  cylinder  friction  are  more 
accurate with respect to static conditions.

We  can  note  that  the  estimated  torques 
follow the trend of measured torques, but it is 

evident that the errors on the torque related to 
the bucket are large with respect to the error of 
stick torque.

We were unable  during the  course  of  the 
research  to  find  the  reasons  for  these 
discrepancies.  These parameter values depend 
on  a  number  of  things,  from  selecting  the 
appropriate pressure sensor range  to software 
routines,  hydraulic  system  configuration,  and 
signal processing techniques.

This  complexity  requires  an  accurate 
calibration of  all  these  factors,  and that  takes 
time.   The  initial  results  suggest  that  with 
further  work  this  technique  can  be  made  to 
work,  thus  providing  an  economical  sensor 
approach for control of machinery.   
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