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ABSTRACT: In  large-scale  construction  sites  there  are  constant  needs  for  rapid 
recognition and accurate  measurement  of  objects  so that  on-site  decisions can be 
made  quickly and safely.  Current  methods  involve full  area  laser  range scanning 
systems  that  can  produce  very detailed  models  of  a  scanned scene,  however  the 
computational and data acquisition time that is required precludes the methods from 
being used for real time decision making. This paper presents algorithms to fit objects 
to sparse point clouds of measured data in a construction scene, that significantly 
decrease  data  acquisition time,  and computational  and modeling time.  Two basic 
fitting and matching algorithms that address construction site material of cuboid and 
cylindrical shapes are discussed.  Experimental results that indicate that the proposed 
algorithms assist  an operator to create models of  construction objects rapidly and 
with sufficient accuracy are also presented. 
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1. INTRODUCTION  

Using  automated  or  semi-automated 
equipment on a large construction site requires 
rapid recognition and accurate measurement  of 
objects in the workspace so that timely on-site 
decisions  can  be  made.  Most  methods  for 
modeling work environments rely on analyzing 
dense  point  cloud  data,  which  requires 
computationally  intensive  processing,  and 
usually  takes  much  longer  than  the  ongoing 
construction  operation.  Low  accuracy  in 
extracting  objects  from  dense  clouds  is  an 
additional  limitation  of  full  range  scanning 
methods.  Since  most  objects  in  a  construction 
site  are  known  and  man  made,  they  can  be 
graphically  generated  and  stored  in  object 
database as parametrically defined object classes 
[1].  By exploiting a human operator’s ability to 

recognize  objects  in  a construction scene,  pre-
stored1 graphic representations2 of3 construction 
objects4 can5 be  matched  and  fitted  to  sensed 
data from 3D position sensors deployed in the 
construction environment [2][3].

The  ability  to  extract  models  of  real 
world  objects  in  a  construction  workspace  for 
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equipment  operations  from  only  a  limited 
number  of  scanned  points  is  a  significant 
advantage  of  this  approach  over  full  range 
scanning  methods  that  require  intensive 
computational  load  because  of  range  data 
processing for dense point clouds which consists 
of tens of thousand data points. 

This  paper  presents  algorithms  that 
accurately fit and match objects, with regard to 
location and orientation, to sparse point clouds 
which have less than 50 scanned points for each 
object  in  a  construction  scene.  The 
implementation  of  the  algorithms  will  allow a 
human  operator  to  rapidly  construct  a  world 
model from unfiltered real-world range data.

 With respect to the geometric primitives 
most  frequently  encountered  in  a  construction 
site, it appears that a few types of objects can be 
used  to  model  a  wide  range  of  construction 
scenes [4].  Cuboids can be used for fitting and 
matching  structural  objects  such  as  columns, 
box-beams  and  walls  and  finishing  objects. 
Cylinders can be used to fit and match chemical 
pipes, ventilation pipes, and concrete piles. The 
following fitting and matching algorithms were 
developed for each primitive: 

1. Cuboid algorithm
2. Cylindrical object algorithm

2. EXPERIMENTAL SETUP AND HUMAN 
ASSISTED OBJECT FITTING AND 
MATCHING PROCESS

A single-axis  laser  range finder,  a  pan 
and tilt unit, and a personal computer were used 
for  the  experimental  set  up  (Figure  1).  The 
single-axis laser range finder (DistoMemo) that 
is mounted on the pan and tilt unit is designed 
not  only for  hand-held  operation,  but  also  for 
computer  use  through  interface.  The 
measurements  can  be  remotely  taken  and 
transferred directly into the computer. The range 
of measurement of the laser range finder is 100 
m with accuracy of ±3 mm. The step size of the 
tele-operated  pan  and  tilt  unit,  which  controls 
the  laser  range  finder,  is  of  high  resolution 
(0.0128571º/step)  and its  maximum speed is  a 
little  over  60º/second.  Its  error  is  0.2  cm  for 
every 10 m in motion. 

The sparse points cloud is  acquired by 

operator  picking  points  to  each  object  using 
single-axis  laser  range  finder.  The  modeling 
process involves the following functions: 
1. Select object for scanning (by operator)
2. Acquire sparse point cloud data  in the form 

of range images 
3. Convert range data into xyz coordinates
4. Analyze the features of each surface of the 

object
5. Match  all  of  the  object  surfaces  with  the 

model’s surfaces using matching algorithms
6. Fit  the  object  into  the  point  cloud  using 

fitting algorithm

Figure  2  displays  a  process  diagram  of  these 
functions.

3. OBJECT FITTING AND MATCHING 
ALGORITHMS

Graphical  workspace  modeling  can 
improve  construction  equipment  control  and 
operations.  Equipment  operators  can  use 
graphical  workspace  models  as  an  interactive 
visual feedback tool during equipment controls 
[2][5].

For the rapid modeling of construction 
site objects from sparse point clouds two basic 
algorithms  were  developed  that  address 
construction  site  objects  of  cuboid  and 
cylindrical  shape.  Since  these  two  types  of 
primitives consist of 6 planar surfaces (cuboid), 
and two planar surfaces and one curved surface 
(cylinder),  the algorithms  were developed as a 
surface  based  fitting  and  matching  method. 
Algorithm  development  and  revisions  were 
based on lab experiments. 
 By using these  algorithms  we achieve: 
(1)  accurate  and  reliable  methods  to  save 
computational  cost  and  time,  (2)  improved 
fitting and matching methods to attain real-time 
execution, and (3) increased modeling accuracy 
with operator’s assistance.
            The following sections explain the fitting 
and  matching  methods  which  were  developed 
and used for rapid workspace modeling:  

3.1 Cuboid Algorithm

This  section  describes  how  to  fit  a 
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sparse points cloud to a cuboid’s surfaces using 
the  k-nearest  neighbors  and  the  least  squares 
methods. There is an assumption of this process 
that three surfaces of cuboid should be visible in 
order to acquire data points. 

3.1.1  Point  Segmentation  Using  K-Nearest 
Neighbors Method

To  find  the  nearest  points  for  all 
measured  points  on  a  cuboid,  a  k-nearest 
neighbors  algorithm  was  used.  The  algorithm 
finds the nearest two points by computing all the 
distances from a scanned point to all other points 
[6]. After determining two nearest neighbors for 
each scanned point, a group of three-point sets 
was found. Then, a normal vector for each three-
point  set  was  computed.  By analyzing  normal 
vectors, the scanned points were segmented by 
each cuboid surface. 

3.1.2  Plane  Optimization  Using  the  Least 
Squares Fitting Method

The least squares method [7] was used 
for  the  best-planar  fit  of  point  sets  on  each 
surface  of  the  cuboid  after  segmentation  was 
applied.

Since in a planar regression,  Y is to be 
regressed on two independent variables X and Z, 
a  relationship,  where  both  X and  Z, are 
calculated as deviations from their means,  was 
used:

iiii ZXYE ⋅+⋅+= γβα)(                     (1)
For  any  given  combination  of  Xi and  Zi the 
expected yield E(Yi) is a point directly above the 
plane, shown as a hollow dot in Figure 3. The 
actual value of the component Yi of an observed 
point  is  somewhat  greater  than  its  expected 
value and is shown as a solid dot lying on the 
plane. The difference between the observed and 
expected values of Yi is shown by the error term 
ei  and thus the observed value Yi is expressed as 
its expected value plus the error term ei:

iiii eZXY −⋅+⋅+= γβα                      (2)
While  moving  along  the  x-direction,  βi is 
interpreted as the slope of the plane. In the same 
way γ is the subsidiary effect of z. To minimize 
the error sum of the squares a coefficient is used: 
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iiii ZXYYY γβα          (3)

Taking  the  partial  derivatives  of  the  above 
expression  with  respect  to α̂ , β̂  and γˆ ,  and 
setting them to zero, finally alpha, beta, gamma 
are found.  Using  this  expression,  the  three 
optimized surfaces of the cuboid are computed 
(Figure 3).

After segmenting all scanned points by 
the three surfaces of the cuboid, the points were 
projected onto the optimized surface to compute 
dimensions. 

3.1.3 Determining Intersecting Edges and 
Computing Dimensions

The three surface planes of the cuboid, 
from which range data were received, intersect 
at a point, and each two planes intersect at a line. 
The intersection of the two planes of the cuboid 
was found by solving the two linear equations 
representing the planes. After applying this for 
all three surfaces of the cuboid, the three edges 
of the cuboid were determined and matched. A 
vertex  of  the  cuboid  was  also  determined. 
Figures  4  and  5  show  the  results  of  point 
segmentation, and matching vertex process.

Once the three edges of the cuboid were 
defined,  the  dimensions  of  the  cuboid  were 
determined  as  follows:   By  computing  the 
distances of all measured points on each surface 
to each one of the already defined edges of the 
same surface, the furthest point from each edge 
was found. The distances of the furthest points 
on the surfaces from the three intersecting edges 
represent the dimensions of the cuboid. 

Figure  6  shows  a  fitted  and  matched 
model  of  an object  after  the application of the 
cuboid algorithm.

3.2 Cylindrical Object Algorithm 

 Four parameters are required for fitting 
and matching a solid cylinder: a scalar radius r; 
an axis vector, a; a center point to determine the 
axis vector, c = (Xc, Yc, Zc) and a set of scanned 
points g= {(Xi, Yi, Zi)} to find out the boundary 
of the cylinder. To determine the normal vector, 
the  “k-nearest  neighbors  method”  was  used. 
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Then, by analyzing normals, the scanned points 
were segmented by surface (planar or  curved). 
Subsequently,  by  projecting  all  points  on  the 
curved  surface  onto  the  planar  surface, 
parameters  r and  c were  estimated.  The  least 
squares  method  was also used to  optimize  the 
curved surface. The radius of the cylinder was 
found  as  the  distance  from  the  center  of  the 
circle  to  any  point  on  the  optimized  curve. 
Projected  points  on  the  planar  surface  are 
considered end points of different chords in the 
circle  and  used  to  estimate  its  center  ĉ .  An 
initial  estimate  of  the  radius, r̂ ,  is  found  by 

)ˆ(ˆ kcmeanr ′−= ( k ′ =  {the  points  on  the 
optimized  curve  of  planar  surface}).  Then  the 
final values of a, c, and r are found by applying 
the  least  squares  method  to  all  scanned  data 
(Figure 7).

4. EXPERIMENTAL RESULTS AND 
CONCLUSIONS

The  fitting  and  matching  algorithms 
discussed in this paper, are an integral part of a 
method  that  involves  several  other  functions 
such as: human object recognition, collecting of 
range information,  grouping of scanned points, 
and  computing  dimensions  to  final  fitting  and 
matching. A basic feature of the method is that it 
takes  advantage  of  human  cognitive  ability  to 
recognize and classify objects in the workspace; 
that  is  a  human  operator  initiates  scanning, 
recognizes objects, and controls the system for 
data acquisition. In addition fitted and matched 
objects  are  verified  by  the  operator  and  then 
inserted into the workspace model. 

Experiments  were  conducted  to 
determine the efficiency of the human assisted 
modeling  method.  The  algorithms,  which  are 
based on the least squares method, were found to 
be  useful  for  modeling construction objects  of 
cylindrical  and  cuboid  shapes.  They  were 
applied to determine the width, depth, and height 
of cuboids, and the diameter, and height of solid 
cylinders including the location and orientation.

Table 1 shows an example of experimental 
results of a cuboid fitting and matching process. 
The  test  results  of  the  algorithms  present 
approximately  less  than  1-degree  angular 
deviation between model and real objects’ axis. 

Respectively  in  all  tests  the  size  difference 
between  the  modeled  and  the  actual  object’s 
surfaces is less than 5 %. For increased accuracy 
further  modifications  of  the  algorithms  are 
required. In general low deviation values and the 
low modeling times  in  Table  1 indicate that  a 
system based on the above geometric algorithms 
and  a  human-guided  simple  laser  range  finder 
can model construction objects rapidly and with 
sufficient accuracy. 
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Figure 1. Experimental Setup 

Figure 2. Fitting and Matching Process
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Figure 3. Surface Optimization

Figure 4. Matching Points and Segmentation

Figure 5. Three Edges of a Cuboid and its Centroid 
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Figure 6. Fitted and Matched Cuboid

Figure 7. Fitted and Matched Cylinder
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Table 1. Test Results of the Cuboid Algorithm
Matching Point 

(vertex)
Modeled
Object

Actual
Object Deviation

Object 1
x 57.749 57.816 0.067
y 11.697 11.733 0.037
z -35.447 -35.464 -0.017

Object 2
x 59.981 60.037 0.056
y -5.203 -5.136 0.067
z -41.370 -41.543 -0.173

Object 3
x 59.967 60.028 0.061
y -5.182 -5.108 0.073
z -41.354 -41.492 -0.138

Object 4
x 59.918 60.032 0.114
y -5.170 -5.109 0.061
z -41.210 -41.621 -0.411

Angular 
deviation

between edges

Edge A 1.089
Edge B 1.824
Edge C 0.927

Measuring +
Computing time pts Measuring

(sec.)
Computing

(sec.)
Object 1 16 30.00 5.87 35.87
Object 2 18 50.00 5.66 55.66
Object 3 22 60.00 6.48 66.48
Object 4 26 80.00 5.60 85.60


