
ARTIFICIAL INTELLIGENCE BASED QUALITY CONTROL 
OF AGGREGATE PRODUCTION

by

Hyoungkwan Kim1, Carl T. Haas2, Alan F. Rauch3

ABSTRACT: This paper discusses a quality control  method,  based on artificial 
neural networks, that enables a plant operator to quickly detect property variations 
during the production of stone aggregates.  The group texture concept  in digital 
image analyses, two-dimensional wavelet transforms, and artificial neural networks 
are reviewed first. An artificial intelligence based aggregate classification system is 
then described. This system relies on three-dimensional aggregate particle surface 
data, acquired with a laser profiler, and conversion of this data into digital images. 
Two-dimensional wavelet transforms are applied to the images and used to extract 
important features that can help to differentiate between in-spec and out-of-spec 
aggregates. These wavelet-based features are used as inputs to an artificial neural 
network,  which  is  used  to  assign  a  predefined  class  to  the  aggregate  sample. 
Verification tests  show that  this  approach can potentially help a plant  operator 
determine,  in  a  fast  and  accurate  manner,  if  the  aggregates  currently  being 
produced are in-spec or out-of-spec. 

KEYWORDS: aggregate, artificial neural networks, group texture, laser profiling, 
wavelet transforms

1. INTRODUCTION

The  importance  of  using  high  quality  stone 
aggregates  is  gaining  increased  recognition 
within  the  construction  industry.  To  rapidly 
acquire  the  data  needed  to  ensure  that 
aggregate products have the desired properties, 
automated  methods  for  characterizing 
construction aggregates have been developed. 
By  implementing  automated  methods  of 
measuring basic material properties in testing 
laboratories, at large construction sites, and so 
forth,  construction  material  quality  can  be 
improved. 

Digital image analysis (DIA) has been widely 
studied  as  a  means  of  automating  aggregate 
tests [1]. In DIA, an aggregate sample from the 
production  stream  is  photographed  with  a 
camera;  this  image  is  then  digitized  for 

computer analysis. To extract size information 
on each  particle  in  the  digital  image, 
algorithms  for  image  segmentation  and  size 
measurement  are  used.  That  is,  after  the 
particles  in  the  image  are  separated  by  the 
segmentation algorithm, all of the particles are 
measured,  one  by  one,  in  a  computationally 
intensive manner.

However,  if  the  application  is  primarily 
concerned with variations in the product rather 
than complete sample characterization, a much 
faster  approach  is  possible.  For  example,  in 
aggregate production plants, product gradation 
can be monitored by tracking variations in the 
percent  passing a selected sieve size  [2].  By 
monitoring variances in this one measure, plant 
operators  can  know  when  the  production 
process needs to be adjusted. The method of 
extracting  simple  variance  information 
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facilitates  faster  analysis  because  it  does  not 
require the complete  characterization of each 
particle  following  segmentation.  In  addition, 
this approach can potentially enable the plant 
operator to assess the properties of aggregates 
on a conveyor belt without acquiring discrete 
samples from the belt.

This  paper  proposes  a  neural  network  based 
quality  control  method  for  aggregate 
production.  The  Laser-based  Aggregate 
Scanning System (LASS) [3], developed at the 
University  of  Texas  at  Austin,  is  used  to 
acquire  accurate  three-dimensional  (3D)  data 
on  stone  particles.  To  generate  meaningful 
features for input to the neural network, two-
dimensional  (2D)  wavelet  transforms  are 
suggested for processing the 3D data. Aided by 
the  multi-resolution  feature  of  the  wavelet 
transform,  the  neural  network  is  expected  to 
provide the necessary information for real-time 
quality control during aggregate production.

This  paper  begins  with  a  literature  review 
covering group texture, 2D wavelet transforms, 
and  artificial  neural  networks.  Then,  an 
aggregate classification system is proposed for 
monitoring variations in an aggregate product 
stream.  This  system  is  focused  on  detecting 
variations  in  particle  size  distribution 
(gradation).  Finally,  experimental  results  and 
conclusions are presented.

2. LITERATURE REVIEW

2.1 Group Texture and Wavelet Transforms

In the machine vision field, texture is defined 
as  “something  consisting  of  mutually  related 
elements”  [4].  Namely,  texture  can  mean  a 
combination  of  texture  elements  and  the 
relation between each element. In an attempt to 
identify  the  most  suitable  method  for 
objectively  quantifying  the  properties  of  an 
aggregate  sample,  machine-vision-based 
texture  quantification  (or  classification) 
methods  were  investigated.  These  methods 
included  the  use  of  statistical  moments,  co-
occurrence matrix, edge based method, Law’s 
energy,  surface  based  method,  fractal 
geometry,  mathematical  morphology,  and 
Fourier transform.

Wavelet  analysis,  where  edges  on  various 
scales are detected and processed, is a method 
that  belongs  to  the  edge  based  texture 
quantification  methods.  A  wavelet  analysis 
decomposes  a  signal  into  a  group  of  linear 
combinations,  with  each  combination  having 
different  resolutions.  This  transform  is 
conducted  using  the  finite  length  of  a  basis 
function  called  a  “mother  wavelet”.  The 
mother wavelet is compared with the signal to 
be analyzed  by changing its  length (dilation) 
and  location  (translation)  in  order  to  find 
where  and  how  much  each  dilated  and 
translated  version  of  the  mother  wavelet 
coincides  with  the  signal.  The  dilation  and 
translation mechanism of the mother  wavelet 
enables  not  only  production  of  localized 
information  in  the  space  and  frequency 
domains,  but  also  effective  representation  of 
the data signal. 

A comprehensive  explanation  of  2D wavelet 
transforms can be found in [5,6,7]. With a 2D 
wavelet  transform,  a  digital  grayscale  image 
can be represented as:
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where  ),( yxf  is  the grayscale  image,  ϕ  is 
the  scaling  function  of  the  1D  wavelet 
transform, ψ  is the wavelet of the 1D wavelet 
transform,  j and  k represent a location in the 
wavelet domain,  i represents a decomposition 
level,  and  0c  and  lid ,  (l =  0,  1,  2)  are 
coefficients  for  a  scaling  function  and 
wavelets, respectively. 

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are pattern 
recognition  systems  that  imitate  biological 
nervous systems. ANNs can be used either as 
classifiers, to allocate a predefined category to 
the  data  representing  a  given  case,  or  as 
estimators for predicting a certain value based 
on  the  given  environment.  A  typical  ANN 
consists  of  three  different  layers:  the  input 
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layer,  hidden  layer,  and  output  layer.  While 
there  is  only one input  layer  and one output 
layer, the number of hidden layers used usually 
depends  on  the  degree  of  complexity  in  the 
pattern  recognition  problem.  Each  layer  has 
one  or  more  processing  elements  called 
neurons  (or  nodes),  which  are  typically 
connected with those of the next layer. These 
neurons take input signals, process them, and 
produce  output  signals.  These  signals  are 
weighted and transferred using the connections 
between neurons. 

To  operate  properly,  ANNs  must  be  trained 
with  many  examples.  This  study  uses  a 
backpropagation training algorithm, one of the 
simplest and most general methods for training 
multilayer  neural  networks  [8].  In  the 
backpropagation  method,  the  network 
propagates  the  errors,  determined  by  the 
differences  between  the  actual  and  desired 
output values, backward (from the output layer 
to  the  input  layer)  while  adjusting  the 
connection weights between neurons. A more 
comprehensive  treatment  of  ANNs  can  be 
found in [8].

3. PROPOSED METHOD

3.1 Laser-based Aggregate Scanning System

The  "Laser-based  Aggregate  Scanning 
System" (LASS) was developed to acquire 3D 
aggregate  particle  surface  data.  The  LASS 
consists  of  a  laser  line  scanner,  a  horizontal 
gantry system,  and a personal computer (Fig. 
1). The laser scanner, which is mounted on the 
gantry  system,  passes  over  an  aggregate 
sample, scanning it with a vertical laser plane. 
The laser line scanner can move approximately 
1.5 m along the Y axis while performing  25 
scans per second, with a scan width (X axis) of 
120 mm and a scan height (Z axis) of 220 mm. 
The resolution of the LASS data is as good as 

0.3 mm, 0.1 mm, and 0.5 mm in X, Y, and Z 
directions,  respectively.  A  comprehensive 
description of the LASS can be found in [3].

3.2  Artificial  Intelligence  Based  Aggregate 
Classification System

Texture  can  be  defined  as  a  combination  of 
texture  elements  and  the  relations  between 
each  element.  Aggregate  particles  can 
correspond  to  texture  elements  with  certain 
special  relationships  with  each  other.  If  a 
group  of  construction  aggregates  is  scanned 
into an image, this image can be considered as 
a texture. One method to quantify texture uses 
edge information in the  image.  For example, 
the number of edge pixels in a certain area can 
be used for texture description. 

Texture  descriptions  are  highly  scale 
dependent  [4].  For  instance,  edges  detected 
with high resolution would be ignored if low 
resolution  was  used.  However,  wavelet 
analyses  can  be  used  to  advantage  in 
overcoming this problem. 2D wavelet analysis 
provides  vertical,  horizontal,  and  diagonal 
edge information on various scales. With this 
information,  it  is  possible  to  quantify  the 
texture of an aggregate image effectively and 
objectively.  Then,  by  comparing  this 
quantified  information  between  in-spec  and 
out-of-spec  aggregate  images,  an  aggregate 
group  with  an  out-of-spec  gradation  can  be 
detected as unacceptable.

A  flow  chart  for  the  proposed  aggregate 
classification  system  is  shown  in  Fig.  2. 
Aggregate  samples  are  first  scanned  by  the 
LASS to obtain 3D laser  images.  The height 
value  of  each  data  point  is  represented  by a 
grayscale value ranging from 0 to 255. Then, 
2D  wavelet  transforms  are  applied  to  the 
images  so that  the following features can be 
obtained:
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Basically, the features are energies (summation 
of absolute values of all the elements)  of the 
decomposition  level  i.  Since  particles  are 
randomly spread and scanned, no distinction is 
necessary  between  horizontal,  vertical,  and 
diagonal  edges  in  the  wavelet  transformed 
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Figure 1. The Laser-based Aggregate Scanning  
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image.  This  is  why  0d ,  1d ,  and  2d  can be 
added together. In  other  words,  all  the  edge 
information on a resolution level is summed to 
obtain one feature value, which is then put into 
a  classifier  to  determine  the  appropriate 
categories  for  the  aggregate  sample.  In  this 
approach, the number of decomposition levels 
in  the  2D  wavelet  transforms  applied  to  the 
image  is  naturally  the  maximum  number  of 
features  that  can  be  used  in  the  proposed 
classification system.  

Aggregate
sample

3D laser Profiling

3D grayscale image
creation

2D wavelet transform

Neural Network

Classification

Figure 2. Artificial intelligence based 
aggregate classification system.

In  this  study,  an  artificial  neural  network 
(ANN)  is  used  as  a  classifier  to  determine 
whether or not an aggregate sample is out-of-
spec.  Since  this  research  is  focused  on 
detecting  only  variations  in  particle  size 
distribution,  the  following  three  groups 
(categories)  are  defined: Norm,  Large,  and 
Small. Group Norm is composed of 100 % of 
the same size of aggregates (which would pass 
a certain mesh size and be retained on a certain 
smaller mesh size). Group Large has a certain 
percentage of larger particles and Group Small 
has  a  certain  percentage of  smaller  particles. 
Thus,  this  system  can  classify  an  aggregate 
sample  into  three  categories:  in-spec,  out-of-
spec with larger particles, and out-of-spec with 
smaller particles. 

In  a  field  application,  these  classifications 
could  be  used  to  adjust  the  aggregate 
production process. If the plant operator finds 
that  the  aggregates  currently  being  produced 

are  classified  as  out-of-spec  with  larger 
particles,  the  crusher  settings  could  be 
tightened to produce fewer oversized particles. 
If the categorization indicates out-of-spec with 
smaller  particles,  the  crusher’s  settings could 
be  opened  to  produce  fewer  small  particles. 
Depending  on  the  specific  needs  of  the 
aggregate  producing  plant,  more  than  three 
categories could also be defined. 

Fig. 3 shows the neural network model for the 
aggregate classification system. It is composed 
of an input layer with two neurons, a hidden 
layer  with  five  neurons,  and  an  output  layer 
with  three  neurons.  The  number  of  input 
features  naturally  determines  the  number  of 
input  neurons,  while  the  number  of  output 
neurons  is  determined  by  the  number  of 
categories  used  to  classify  the  aggregate 
samples.  A  sigmoid  nonlinear  function  and 
backpropagation  with  a  momentum  learning 
method  were  adopted  for  training  the  neural 
network model.

Input
layer

Hidden
layer

Output
layer

Energy 6

Group
Norm

Group
Large

Group
Small

Energy 7

Figure 3. Neural network model for the 
aggregate classification system.

Sixth  and  seventh  energy  levels,  which 
correspond to relatively low frequencies in the 
wavelet  domain,  are  fed  into  the  neural 
network  model.  These  two  features  were 
selected  because  preliminary  experiments 
indicated that those energy levels are most apt 
to differentiate between aggregate groups with 
different  gradations.  This  preliminary 
examination  of  the  energy  features  saves  a 
significant  amount  of  computing  effort  by 
reducing the complexity of the neural network. 
It  is  also  worth  noting  that  the  network  has 
three  output  neurons  matching  the  three 
categories defined as Norm, Large, and Small, 
whereas the number of neurons for the hidden 
layer was determined from trial and error.   
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The  aggregate  classification  system  was 
implemented  using  the  C++  programming 
language, LabView (a graphical programming 
language), the IMAQ Vision image processing 
tool,  the  Wavelet  and  Filter  Bank  Design 
Toolkit,  and the DataEngine (an off-the-shelf 
Neural Network subroutine). LabView, IMAQ 
Vision,  and  the  Wavelet  and  Filter  Bank 
Design  Toolkit  are  all  products  of National 
Instruments  (Austin,  Texas),  while  the 
DataEngine  is  a  product  of  MIT  GmbH 
(Germany).

4. EXPERIMENTS

To check the validity of the group texture and 
artificial  intelligence  based  aggregate 
classification  method,  the  proposed  system 
was used to classify three aggregate samples 
described  in  Table  1.  Norm particles,  Large 
particles,  and  Small  particles  are  defined  as 
particles that fall within the size ranges of 1/2” 
to  3/4” (12.7  mm ~ 19.0  mm),  1”  to  1-1/4” 
(25.0 mm ~ 31.5 mm), and No. 4 to 3/8” (4.75 
mm  ~  9.5  mm),  respectively.  Then,  Group 
Norm consists  of  100  % of  Norm particles, 
Group Large has 50 % of Large particles and 
50 % of Norm particles, and Group Small has 
50  % of  Small  particles  and  50 % of  Norm 
particles.  These  aggregate  samples  were 
randomly spread on the scanning platform of 
the LASS such that there are no overlapping 
particles.  They  were  then  scanned  and 
converted into digital images. Fifty-six images 
were created for each group, resulting in a total 
of  168  images.  Each  image  is  566  by  180 
pixels and covers a rectangular area of 120 mm 
by 50 mm. Eighty-four images (half the total 
number  of  images)  were  used  to  train  the 
neural  network  model  described  in  Fig.  3, 
while the other 84 images were used to test the 
classification system.

To  obtain  the  energy  values  that  are 
representative  of  each  aggregate  sample,  a 
running (moving) average value of every five 
images  was  used  instead  of  separate  energy 
values for each image, as follows:

∑
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where  RA is  a  running  average  and  I is  an 
energy feature of one image. In other words, 
for  every five  images  in  the  same  aggregate 
group,  the  energy  values  were  averaged  to 
produce  more  stable  and  representative 
features.  Note  that  this  running  average 
approach reduced the total number of training 
sets (or test sets) from 84 to 72.

Table 1. Description of aggregate test samples.
Group Size fraction % kg

Group 
Norm

No. 4 ~ 3/8”
(4.75 mm ~ 9.5 mm) 0 0

1/2” ~ ¾”
(12.7 mm ~ 19.0 mm) 100 5

1” ~ 1-1/4”
(25.0 mm ~ 31.5 mm) 0 0

Group 
Large

No. 4 ~ 3/8”
(4.75 mm ~ 9.5 mm) 0 0

1/2” ~ ¾”
(12.7 mm ~ 19.0 mm) 50 2.5

1” ~ 1-1/4”
(25.0 mm ~ 31.5 mm) 50 2.5

Group 
Small

No. 4 ~ 3/8”
(4.75 mm ~ 9.5 mm) 50 2.5

1/2” ~ ¾”
(12.7 mm ~ 19.0 mm) 50 2.5

1” ~ 1-1/4”
(25.0 mm ~ 31.5 mm) 0 0

Table 2 shows the classification results. With 
only one incorrect classification in identifying 
Group Large, the 99 % classification accuracy 
demonstrates that the group texture approach, 
in  conjunction  with  artificial  intelligence 
classifiers,  is  a  promising  method  to  detect 
variations in an aggregate production stream.

Table 2. Classification results.
Group Accuracy  

(Number)
Accuracy 

(%)
Group Norm 24 / 24 100
Group Large 23 / 24 96
Group Small 24 / 24 100

Total 71 / 72 99

5. CONCLUSION

This  paper  explored  the  possibility  of  using 
group  texture  of  aggregate  images  in 
conjunction with an artificial neural network to 
quantify  gradation  properties.  First,  an 
aggregate  sample  was scanned by the  Laser-
based  Aggregate  Scanning  System,  and 
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converted into 3D images.  Then,  2D wavelet 
transforms  were  applied  to  those  images  to 
extract  wavelet  coefficients  and  calculate 
energies  at  different  scales.  Finally,  these 
energies  were  used  as  inputs  to  an  artificial 
neural network that assigns a predefined class 
to  the  aggregate  sample.  Verification  tests 
show that this approach can potentially classify 
aggregates in a fast and accurate manner.

Further work is needed to develop and verify 
the  proposed  artificial  intelligence  based 
approach.  First,  while  reducing  gradation 
variations  in  the  training  samples,  different 
network architectures  can be constructed and 
evaluated  to  optimize  the  neural  network 
model.  This  requires  testing  with  different 
numbers  of  neurons,  different  numbers  of 
hidden layers, different transfer functions, and 
different learning methods. Second, efforts are 
needed  to  develop  good  features  that  can 
represent  the  aggregate  properties  well.  A 
system using  the  standard  deviation  or  other 
statistics of the wavelet coefficients at a certain 
decomposition  level  might  be  successful  in 
grouping  similar  aggregate  samples.  Third, 
different  classifiers,  such  as  the  K-Nearest-
Neighbor  method,  Linear  discriminant 
function,  Fuzzy  logics,  etc.  [8],  could  be 
investigated. These relatively simple methods 
are sometimes more effective than complicated 
neural networks. 
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