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Abstract –  

This paper presents a fast and robust three-
dimensional (3D) terrain surface reconstruction 
system using a stereo camera. The local feature-
based 3D terrain surface reconstruction algorithm 
consists of two major steps: matching and terrain 
surface reconstruction. In this paper, extracted 
corners are described by multi-scale descriptors 
(MSDs), and the matching precision is increased by a 
quadratic interpolation method. In the terrain 
surface reconstruction step, the construction terrain 
surface is modeled using a 3D regular grid plane for 
its computational efficiency and robustness. The 
precision of the 3D regular grid plane is improved by 
inferring the 3D grid vertices from a robustly 
matched nearest point cloud. The computational 
complexity of the proposed terrain surface is 
simplified using 2D and 3D triangle mesh structures.  

In order to evaluate the proposed method, 
different types of 3D reconstruction methods were 
compared under the conditions of a practical 
construction site. The results of the experiment show 
that the MSD-based 3D terrain surface algorithm 
performed well in terms of robustness and 
computational efficiency. 
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1 Introduction 

Recently, the development of automated 
construction systems on construction sites for safety and 
convenience has attracted interest [1,2,3]. In order to 
operate an automated construction system, it is essential 
to understand the environment in which construction 
equipment operates, and the first step of environment 
recognition is terrain reconstruction. To reconstruct 
construction site terrain, there are two general 
approaches: vision-based and Light Detection and 
Ranging (LiDAR)-based [5].  

 

Figure 1. Example of a construction environment 

LiDAR can provide highly precise distance 
information about the observed terrain. Therefore, when 
surveying construction sites, LiDAR based terrain 
reconstruction is normally used [4,5]. However, the use 
of LiDAR is limited in real-time applications. This is 
because the post-processing of the three-dimensional 
(3D) point cloud acquired from LiDAR is a time-
consuming task. In addition, LiDAR consumes a large 
amount of power and it is expensive to mount these 
devices on real construction equipment.  

A vision sensor can provide construction site 
environment images quickly, at over 30 Hz. 
Furthermore, it is possible to quickly calculate terrain 
surface information using current computer vision 
techniques [6,7,8]. However, there remain some 
problems when using vision to reconstruct construction 
site conditions because of its challenging environment. 
An image of a construction site generally comprises an 
irregular-appearing surface and textureless ground (see 
Figure 1). This makes it difficult to use vision-based 
methods to reconstruct 3D terrain surfaces in practical 
applications. 

In order to deal with this problem, in this paper, we 
propose a fast and robust 3D terrain surface 
reconstruction algorithm suitable for construction sites. 
In the matching step, the quadratic interpolation method 
is applied to increase the precision of sparse 3D point 
location. In the 3D terrain surface reconstruction 
process, regular a grid vertex-based 3D terrain surface 
reconstruction algorithm is presented. This method 
efficiently estimated terrain surfaces from 2D and 3D 
triangle meshes while improving accuracy.  
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2 Related Work and Proposed Method 

2.1 Related Work 

In order to infer 3D terrain surface information using 
a stereo vision sensor, the first step is to find 
correspondence points between stereo images. There are 
many approaches to searching for correspondence 
points. One popular method is to find correspondence 
points by minimizing global constraints. Graph-cuts [9] 
and the belief propagation algorithm [10] are well-
known global methods for stereo matching. These 
algorithms have shown good performance [10,11]. 
However, the selection of parameters such as disparity 
range and kernel size critically affects the result [9,15].  

A local feature-based reconstruction algorithm is 
another general method. This method finds 
correspondence points based on interest points 
represented by a descriptor. In local feature-based 
reconstruction, how to represent extracted interest 
points is important, because descriptor distinctiveness 
significantly affects matching precision. The most 
widely used local features are SIFT [12] and SURF [14], 
which are based on gradient information. In various 
applications, these features have shown good 
performance. However, their high computational 
complexity restricts their use in real time applications 
[15,21].  

Recently, a robust and fast feature descriptor, the 
multi-scale descriptor (MSD), was proposed by Sung et 
al. [13] for outdoor practical applications. This 
descriptor already has demonstrated its performance in 
outdoor applications such as motion estimation and 
dense 3D reconstruction [3,13]. Therefore, we also used 
the MSD to describe extracted corner points because of 
its distinctiveness and computational efficiency. 

 

 

Figure 2. Overall procedure for the proposed 3D 
terrain surface reconstruction algorithm 

2.2 Proposed work  

The proposed terrain surface reconstruction method 
comprises three major steps: MSD-based matching, 
matched point-based 2D and 3D triangle mesh 
generation, and a regular grid-based terrain surface 
creation (see Figure 2). In the matching step, the 
distribution of the corners and the precision of the 3D 
point cloud are important, as they significantly affect 
the accuracy of reconstructed 3D terrain surface. In 
order to achieve these requirements, an equal number of 
corners are selected from each sub-region to ensure that 
the distribution of the interest points is uniform. The 
precision of the 3D point cloud is improved by 
quadratic interpolation techniques.  

In this paper, the construction site’s terrain surface is 
represented by a regular grid plane. Regular grid planes 
can dramatically reduce computational burden by 
inferring regular grid vertices from a robustly estimated 
triangle mesh. The accuracy of the terrain surface plane 
is improved by precisely calculated closest 3D points. 
Furthermore, when reconstructing a 3D terrain surface, 
we also generate a 2D terrain surface to increase the 
accessibility to the target surface distance and as 
information for the operator of the construction 
equipment.  

3 Matching 

Various methods have been proposed to extract 
interest points. One popular detector is the Harris corner 
detector [17]. This corner detector extracts corner points 
by eigenvalues analysis. For computational efficiency, 
the Features from Accelerated Segment Test (FAST) 
detector has been proposed [18]. This detector finds 
corner points by comparing the pixel intensity around a 
candidate point with machine learning techniques. The 
FAST detector has performed well in various practical 
tasks [18,21]. In this proposed method, we also find 
corner points using the FAST detector.  

The proposed terrain surface reconstruction 
algorithm is based on a triangle mesh formed from the 
nearest extracted corner points. Therefore, in order to 
reconstruct the terrain surface more efficiency, it is 
important that the distribution of the corner points is 
uniform. In order to achieve this goal, in the proposed 
algorithm, corner points are independently extracted 
from regularly divided sub-regions. This enables a 
triangle mesh to be generated evenly over the input 
image.  

After detecting the corner points, each extracted 
point must be described distinctively for finding 
correspondence points. Several ways to describe corner 
points have been proposed [15]. The well-known local 
feature descriptors are SIFT and SURF [12,14]. These 
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descriptors have shown good performance in many 
tasks [15,21]. However, there is a limit to their practical 
applications because of their computational complexity. 
In order to overcome this problem, MSD has been 
proposed for real practical vision application in 
challenging outdoor conditions [3,13]. Therefore, in 
order to find correspondence points, each extracted 
corner point is described by MSD in the proposed 
method.   

In order to keep this paper self-contained, we briefly 
discuss the concept of MSD. As shown in Figure 3, 
MSD describes each corner point with three pre-defined 
scale descriptors ሺs1, s2, s3ሻ . These multiple scale 
descriptors improve the distinctiveness of the descriptor, 
as combining the different scales represents the corner 
point characteristics more efficiently. Furthermore, the 
computational complexity of MSD is significantly 
reduced using an integral image.  

 

 

Figure 3. Concept of MSD  

Once a pair of correspondence points ݔ ൌ ሼݑ,   is	ሽݒ
found using the MSD descriptor and matching process 
[3,13,16], the 3D point ܺ ൌ ሺݑ, ,ݒ ݀ሻ்of x is estimated 
from the difference d, between the matched points, 
which is called the disparity value. In general, the 
location of a pixel is presented by an integer value. 
Therefore, the data type of d is also an integer because it 
is computed by subtracting corresponding integer-type 
pixel point locations. This leads to inaccuracy in the 3D 
point position.  

In this paper, to enhance the precision of the 3D 
point position, a quadratic interpolation method is 
applied as follows:   

 
                 ܵሺݔ௥,௧ሻ ൌ ௥,௧ଶݔܽ ൅ ௥,௧ݔܾ ൅ ܿ                    (1) 
 

where Sሺݔ௥,௧ሻ indicates the similarity between the target 
corner location in left image ݔ௟  and the tth candidate 
corner location in right image ݔ௥,௧ . The interpolation 
Sሺݔ௥,௧ሻ is computed by comparing the MSD descriptor 
similarity between ݔ௟ and ݔ௥,௧ (see Figure 4).  

The quadratic interpolation equation parameters {a, 
b, c} are computed by solving the following linear 
equation.  
 

቎

௥,௧ିଵଶݔ ൅ ௥,௧ିଵݔ ൅ 1
௥,௧ଶݔ ൅ ௥,௧ݔ ൅ 1

௥,௧ାଵଶݔ ൅ ௥,௧ାଵݔ ൅ 1
቏ ቈ
ܽ
ܾ
ܿ
቉ ൌ ቎

௥,௧ିଵሻݔሺݏ
௥,௧ሻݔሺݏ
௥,௧ାଵሻݔሺݏ

቏       (2) 

 
Once the quadratic interpolation parameters have 

been estimated, we can find the optimal disparity value 
݀௢௣ easily by solving the quadratic equation.  

Note that interpolation is a highly important step in 
the proposed terrain surface reconstruction algorithm. 
Regular grid plane vertices are inferred based on the 
triangle mesh estimated from the sparse 3D point cloud. 
Therefore, once the precise sparse 3D point cloud is 
calculated, accurate grid plane vertices can be obtained. 
This also positively influences the precision of the 
regular grid plane.   

 

 

Figure 4. Quadratic interpolation for sparse 3D 
point cloud improvement 
 

        
Figure 5. Summary of the proposed 3D terrain 
surface reconstruction: (a) input image, (b) 
sparse 3D point cloud, (c) 3D triangle mesh, and 
(d) reconstructed 3D terrain mesh 
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4 3D Terrain Surface Reconstruction  
The proposed 3D terrain surface reconstruction step 

comprises three major steps:  
 
(1) sparse 3D point cloud estimation  
(2) 2D and 3D triangle mesh generation  
(3) 2D and 3D terrain surface creation  
 
Figure 5 shows each step in detail. 
Once the disparity value has been estimated by 

subtracting the location of the corresponding point pair, 
the 3D point position can be computed based on the 
stereo camera geometry. The calibration and 
rectification of the stereo camera is an essential step for 
obtaining the camera’s geometric information. Camera 
calibration is related to knowing the intrinsic and 
extrinsic parameters of camera, and the stereo camera 
rectification step involves horizontally aligning the 
epipolar line of the stereo images for matching 
efficiency. In this paper, the well-known open-source 
library OpenCV [21], was used to calibrate and rectify 
the stereo images.  

In order to infer a regular grid vertex for the 3D 
terrain surface, we first establish a 2D triangle mesh 
with the matched point cloud using Delaunay 
triangulation. Once the 2D triangle mesh set is 
constructed with the three nearest matched 2D points in 
the left image, ݔ௟,௧ ൌ ൛ݑ௟,௧, ௟,௧ൟݒ ݐ ,  ൌ 1, 2, 3 , we then 
construct the 3D triangle mesh ݏܯሺx௟

௡ሻ  using the 
estimated 3D point ௟ܺ,௧ ൌ ൛ݑ௟,௧, ,௟,௧ݒ ݀௟,௧ൟ	 corresponding 
to the 2D point ݔ௟,௧, where  ݀௟,௧ is the disparity value of 
3D point, ௟ܺ,௞  calculated from the camera parameters 
and quadratic interpolation. The mesh is calculated as 
follows: 

 
௜൫ݏܯ               ௟ܺ,௞൯ ൌ ܽ௜ݑ௟,௞ ൅ ܾ௜ݒ௟,௞ ൅ ܿ௜             (3) 

 
where ݏܯ௜  indicates the ith 3D triangle mesh and 
ሺܽ௜, ܾ௜, ܿ௜ሻ  are the mesh parameters. The mesh 
parameters are easily acquired by solving a linear 
equation with the given matched 3D point set.  

Note that construction site can be assumed to be a 
collection of continuous small surfaces. Construction 
terrain can be approximately described as a combination 
of small planes. Therefore, a small-sized triangle mesh 
reflects the real terrain surface well. Furthermore, we 
efficiently construct a 3D triangle mesh from the 2D 
triangle mesh. It is possible to further reduce the 
computational complexity of the 3D triangle mesh. 

 

 

Figure 6. (a) 2D triangle mesh and (b) 3D triangle 
mesh structure 

After building the triangle mesh, we calculate a 
regular grid of vertices from the 3D triangle mesh. If the 
kth regular grid vertex ݔ௞ ൌ ሼݑ௞,  ௞ሽ in the image planeݒ
is given, we search for the corresponding 3D triangle 
mesh ݏܯ௜ that contains the target grid vertex using the 
relationship between the 2D and 3D triangle meshes. 
We then compute the disparity value ݀௞ of the target 
grid vertex using the 3D triangle mesh model. 

 
݀௞ ൌ ܽ௜ݑ௞ ൅ ܾ௜ݒ௞ ൅ ܿ௜                  (4) 

 
Once the disparity value ݀௞ of  ݔ௞ is calculated, we 

can define the 3D position of ݔ௞ to be ܺ௞ ൌ ሼݑ௞, ,௞ݒ ݀௞	ሽ, 
as previously explained, it is easy to convert the 
disparity-based 3D position into to Cartesian 
coordinates using the camera parameters.   

Note that proposed regular grid-based 3D terrain 
surface reconstruction has two major advantages. The 
first one is that regular grid vertices are inferred from 
robustly estimated nearest 3D points using the triangle 
mesh model. This improves the result of the proposed 
3D terrain surface. The other one is that the grid vertices 
are computed by simply solving a linear equation from 
the triangle mesh model. It is hence possible for the 
proposed algorithm to be applied in practical 
applications.  

 

 

Figure 7. Regular grid vertex estimation 
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The 3D terrain surface is represented by regular grid 
plane ݎܩ using the three adjacent grid vertices 	ܺ௞, k=1, 
2, 3 as follows: 

 
௜ሺܺ௞ሻݎܩ                          ൌ ௞ݑ௜݌ ൅ ௞ݒ௜ݍ ൅  ௜               (5)ݎ
 
where ݎܩ௜ indicates the ith regular grid plane containing 
the three adjacent 3D points, ܺ௞, k=1,2,3. The grid plane 
parameters ሺ݌௜, ,௜ݍ  ௜ሻ are easily obtained by solving aݎ
linear equation with three given grid vertices. Once the 
grid plane parameters are estimated, we can easily 
calculate the target area information such as surface 
slope, area, and distance from the equipment.  

Note that the proposed 3D terrain surface is also 
connected to the corresponding 2D image, similarly to 
the 2D and 3D triangle meshes. It is a very convenient 
way to describe the 3D terrain surface. This is because 
the operator of a piece of construction equipment such 
as an excavator or wheel loader can intuitively access 
the 3D information of a certain task area simply by 
touching the 2D input image using the instrument 
displays  in the cabin.  

 

5 Experiments and Analysis 

To evaluate the proposed method, we captured test 
images from real construction sites to take into account 
practical conditions. The test images were acquired 
from a stereo camera mounted on an excavator that 
consists of two Flea3 USB 3.0 cameras (see Figure 8) 
[3].  We evaluated each algorithm with four test images 
Image I (gravel slope), Image II (soil slope), Image III 
(mud hole), and Image IV (mud bumps). Each test 
image reflects typical construction environments such as 
complex surface appearances and various solid 
materials.  

We compared the MSD-based 3D terrain surface 
reconstruction (MSD-TS) with three popular 3D terrain 
reconstruction methods: semi-global block matching 
(SGBM-TS), block matching (BM-TS), and SURF 
descriptor-based matching (SURF-TS) methods.  

 

 

Figure 8. Stereo camera system mounted on an 
excavator 

 

Figure 9. Evaluation image, (a) Image I (gravel 
slope), (b) Image II (soil slope), (c) Image III 
(mud hole), and (d) Image IV (mud bumps) 

The three comparative algorithms were 
implemented with the latest OpenCV library [19]. In 
order to fairly test each algorithm, we used the same 3D 
terrain surface reconstruction process after finding the 
correspondence points with each original method. All 
experiments were performed on  a 2.6 GHz single core 
processor with 8 GB memory.  

5.1 Experimental results  

 The three major steps of the MSD-TS method are 
shown for each of the four evaluation images in Figure 
10. For each test image, the shape of the reconstructed 
surface is close to the actual slope of the real ground 
surface.  

Note that construction site terrain surfaces consist of 
textureless and irregular shaped surfaces with different 
type of solid material such as gravel, mud, and sand. 
This makes it difficult to reconstruct 3D terrain surfaces. 
However, given these challenging conditions, the 
proposed method performed well.  

This is explained by the fact that proposed terrain 
surface model is built from a triangle mesh using a 
sparse 3D point cloud. Therefore, the accuracy of the 
sparse 3D points and robustness of triangle mesh plays 
an important role in the proposed method. The accuracy 
of the sparse 3D point cloud is improved by quadratic 
interpolation. The triangle mesh is robustly established 
with the previously matched nearest three points. This 
combination of a matched 3D point cloud and robust 
triangle mesh set has a positive effect on the result of 
the 3D terrain surface model.   

To show the performance of the proposed method 
clearly, we also compared it the three algorithms, BM-
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TR, SGBM-TR, and SURF-TR. As can be seen Figure 
11, MSDTR outperformed the BM-TR and SGBM-TR 
methods for all test images. This is because the 
matching of patch-based descriptors such as BM and 
SGBM perform poorly in these kinds of textureless and 
periodic conditions. This also affected the result of the 
3D terrain surface. 

SURF-TR achieves a result that was similar to those 
of MSD-TR because of its good matching performance. 
However, as mentioned in Section II, SURF-TR has 
limited suitability for practical applications because of 
its computational complexity. In contrast, the MSD-TR 
was fast to calculate in the real 3D terrain surface 
reconstruction application. We discuss this fact in detail 
in Section 5.2.  

5.2 Computation Time 

In Tables I and II, we evaluated the computation 
time of each method. Although BM-TR and SGBM-TR 
reconstructed the noisy terrain surface poorly in terms 
of accuracy, with respect to computation time, BM-TR 
and SGBM-TR performed well because of the 
descriptor characteristics of patch-based descriptors.  

The average computation time of MSD-TR was 
about 360 ms. This is far faster than SURF-TR. 
Furthermore, MSD-TR is 1.2 times faster than SGBM-
TR. Note that the operators of construction equipment 
are generally recommended to operate their machine 
slowly (under 15 km/h) for safety reasons. In this 
environment, the computation time of MSD-TR is 
sufficiently fast to provide ground surface information 
for automated equipment.  

Table 1. Computation Time (ms) 

Img   SGBM-TR SURF-TR MSD-TR 

I 

Matching 429.9 17,199 358.8 
Terrain 
Surface 

10.7 10.9 10.6 

Total 440.6 17,209.9 369.4 

II 

Matching 415.3 17,131 348.2 
Terrain 
Surface 

9.0 9.4 9.2 

Total 424.3 17,140.4 357.4 

III 

Matching 423.3 17,080 327.2 
Terrain 
Surface 

11.3 11 11.2 

Total 434.6 17,091 338.4 

IV 

Matching 426 17,371 356.8 
Terrain 
Surface 

10.5 10.3 10.2 

Total 436.5 17,381.3 367 

Table 2. Total Computation Times (ms) 

Img BM-TR SGBM-TR SURF-TR MSD-TR 

I 209.0 440.6 17,209.9 369.4 
II 211.1 424.3 17,140.4 357.4 
III 212.5 434.6 17,091.0 338.4 
IV 209.6 436.5 17,381.3 367.0 

6 Concluding Remarks 

This paper proposed a robust and fast 3D terrain 
surface reconstruction algorithm combined with a 
regular a grid plane for computational efficiency and 
robustness. In order to enhance the precision of the 3D 
terrain surface, the vertices of a 3D grid are calculated 
from a robustly interpolated nearest 3D point set. 
Computational efficiency is achieved by constructing 
2D and 3D triangle mesh structures. The 3D grid vertex 
is calculated by simply solving a linear equation using 
the triangle mesh structure. 

The experimental results show that MSD-based 3D 
terrain surface reconstruction performed well in terms 
of robustness and computation time. The experimental 
result demonstrate that MSD-TR is suitable for a terrain 
surface reconstruction system where accuracy and 
operating time are vital. 
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Figure 10. Results of the MSD-TR 3D terrain surface reconstruction method: test images (column 1), sparse 3D 
reconstruction (column 2), triangle mesh (column 3), and dense reconstruction (column 4) 
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Figure 11. Comparison of the results of different 3D terrain surface reconstruction algorithms: (a) MSD-TR, 
(b) BM-TR, (c) SGBM-TR, and (d) SURF-TR 

 
 

 
 

Figure 12. Magnified results of (a) MSD-TR, (b) BM-TR, (c) SGBM-TR, and (d) SURF-TR 
 


