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Abstract – 

Automated monitoring systems have proven to be 
effective in improving the productivity of equipment-
intensive operations in the construction and mining 
sectors. Vision-based systems are the most recent 
methods employed to detect, track, and monitor 
construction equipment. The currently developed 
systems, however, analyze video frames captured by 
a stationary camera, which dramatically limits their 
coverage area and requires manual adjustment of 
the viewfinder. This research paper introduces 
methods to proactively steer a pan-tilt-zoom camera 
to localize, track, and identify objects of interest in 
construction jobsites. This automated camera 
control system uses a number of image and video 
processing algorithms to detect objects and estimate 
their trajectory and velocity, and then uses the 
extracted information to set the camera movement 
parameters, including direction and magnitude. The 
experimental results of this system showed 
promising performance for equipment monitoring in 
construction and mining jobsites. 
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1 Introduction 

There is a growing trend in the construction and 
mining industries to use cameras to monitor jobsites [1], 
[2], [3]. The resulting videos, however, are mainly 
processed manually, which is cumbersome, labor-
intensive, and hinders the potential use of these rich 
resources. Therefore, there has been considerable 
interest in the construction research community to apply 
computer vision methods to automate video analysis 
processes. In particular, research efforts have focused 
on detection, localization, and tracking construction 
equipment for productivity estimation, safety, and fleet 

management purposes. For example, projects 
investigated equipment detection [2], [4], [5], [6], 
tracking [3], [7], [8], [9], activity interpretation [3], [7], 
[10], and safety assessment [17], [18]. These 
investigations mentioned some advantages to using 
vision-based monitoring systems, including low cost 
and the non-intrusive nature of this monitoring approach. 
Despite all the achievements, a number of shortcomings 
exist in the developed vision-based methods that 
prevents their practical applications. These limitations 
include those described below.  

Low level of reliability: the rates of false positives 
and false negatives are still high compared to the radio-
based sensing systems. 

Line of sight and occlusion: vision-based systems 
require clear sightlines for the successful detection and 
tracking of operations, and obstructions can hinder the 
performance of the system. However, methods have 
been developed to improve the detection and tracking of 
semi-obscured targets. 

Limited coverage: the developed systems use videos 
captured by stationary cameras. This limits the coverage 
area and will be problematic for large construction and 
open-pit mining fields. In those types of settings, site 
personnel should be able to set the camera’s view as the 
work progresses.  

This research paper presents some methods for 
automated steering of a pan-tilt-zoom (PTZ) camera to 
overcome the coverage limitations of stationary cameras. 
In particular, it introduces intelligent steering 
frameworks for three main purposes: First, it 
demonstrates an algorithm to automatically scan the site 
by steering the camera and then finding active 
operations. Second, an algorithm is introduced to 
continue tracking an object when it is about to exit from 
the static view. Third, it discusses methods for 
identification and localization of equipment. All of these 
methods use image and video processing techniques to 
extract spatiotemporal data from 2D video frames, 
which are then used to steer the PTZ unit. Finally, 
opportunities and future research directions are 
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discussed.    

2 Research Methods 

This section introduces methods developed to steer a 
PTZ camera for various purposes, such as resource 
tracking and automated operation localization in jobsites. 
These frameworks employ combinations of computer 
vision algorithms, such as image stitching, object 
recognition and feature tracking; active control of a PTZ 
camera; and principles of camera geometry to achieve 
the expected performance. The following subsections 
explain the technical approaches used in these systems. 

2.1 Automated Search for Active Operations 

Stationary cameras cover a limited area, which is 
especially problematic for large construction jobsites. 
For full coverage, the viewfinder of the camera must be 
adjusted manually as the work progresses. However, 
this issue could be tackled using a self-steering camera 
that searches the jobsite for an active operation. The 
first step of this process is to determine the boundaries 
of the camera’s coverage area. In this step, the position 
of the camera, including its 3D coordinates and the 
initial yaw and pitch angles of the camera mount, is 
mapped to the jobsite plan. Then the boundaries of the 
site are considered to avoid scanning areas outside of 
the site boundaries (see Figure 1). In this arrangement, 
the optical axis is not allowed pass the boundaries of the 
jobsite.  

 

 

Figure 1. Mapping the camera in the site plan 

The next step is the systematic search within the 
assigned boundary for active operations. An image 
stitching technique was used to create a panorama of the 
jobsite from several overlapping images. In this 
approach, the system changes the yaw angle of the 
mounting unit in a certain step and captures a frame. 
Then it steers the camera to the next viewpoint, in 
which it has an overlapping field of view (FOV) with 
the previous frame. 

After the required frames are captured, invariant 
local features are used to find matches between frames 
and stitch those together [11]. This algorithm finds and 
matches SIFT features [12] in frames, and then employs 
a probabilistic method to verify the matches. Afterwards, 
it solves and refines camera parameters, compensates 
for errors, and blends the images (Figure 2. a). 

The next step in this process is to search the 
panorama for construction equipment (Figure 2 b). 
Methods for recognizing rigid [4] and articulated 
equipment (such as excavators) [5] have been discussed. 
If detectors locate potential targets in the panorama, the 
system steers the PTZ camera to the located targets to 
verify detection. Sometimes the detectors provide false 
positives, so spatiotemporal information is used to help 
eliminate them. Some consecutive frames are searched 
for the target, then the spatiotemporal data of the 
detections are compared with the movement pattern of 
active equipment to reject false positives [5] [13]. 

When the detectors find different types of equipment, 
stationary plants have priority over highly mobile 
equipment in identifying jobsite tasks. For example, an 
excavator is an indicator for an excavation/loading 
operation, whereas a dump truck could be seen in 
different parts of a construction site.  
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Figure 2. Steering of a PTZ camera to locate operations: a) stitching of images to create a panorama, b) 
object detection 
 

2.2 Active Camera Control to Track 
Equipment 

The tracking performance of the existing vision-
based systems is limited to the camera’s FOV. But some 
applications, such as security and safety monitoring 
systems, might need to track a target beyond the FOV of 
a stationary camera. Thus, it is useful to benefit from the 
physical panning and tilting capabilities of a PTZ 
camera to extend its tracking range.  

A key issue for continuous tracking of construction 
resources is to estimate their motion vector, which 
includes velocity and trajectory. The velocity of the 
object is measured in the frame coordinate system, thus 
it would be expressed in terms of pixels per second. 
Then the motion vector of the target is used to predict 
the upcoming 2D coordinate of the target. The trajectory 
and velocity of the detected objects could be estimated 
using a tracking algorithm. The KLT feature tracker [14] 
was utilized to track certain features of the target object. 
The KLT is a differential method that uses spatial 
intensity data to search for the best match in the next 

frame. Successful motion estimation requires a number 
of specific interest points that are mathematically well-
founded. Corners (the intersection of the edges) are 
suitable visual features for tracking, and Harris corner 
detection [15] was used to detect a number of corners 
for tracking (see Figure 3.b). Tracking each of these 
features yields a motion vector (see Figure 3.c). The 
overall motion vector of the target is calculated as the 
average of the valid motion vectors. The random sample 
consensus method (RANSAC) was used to remove the 
outlier vectors, vectors that indicate a direction 
inconsistent with that of most of the other optical 
vectors. Since construction equipment provides slow-
moving targets in videos, the system estimates the 
upcoming coordinates of a piece of machinery using its 
current coordinates in the frame and its speed and 
trajectory. Then the system should steer the camera 
mount to maintain the target in the center of the frame. 
Given the pixel distance between current and predicted 
positions of the target, it is possible to determine also 
the pan and tilt angles to reach the projected position. 
This could be calculated using the horizontal and 
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vertical angles of camera views. These angles are 
determined based on the size of the sensor and focal 
length of the camera’s lens as presented in Equation (1): 

(1) 

ߙ ൌ ݊ܽݐܿݎ2ܽ
݀
2݂

 

 
α is the angle of view (horizontal, vertical, or 

diagonal) 
d is the length of the sensor in the direction 

measured (horizontal, vertical, or diagonal) 

f is the focal length 
Given the horizontal and vertical angles of camera 

views, the required displacement of the frame’s center, 
and frame dimensions in pixels, the camera steering pan 
and tilt angles are calculated and executed (see Figure 
3.d).  

This algorithm, however, could consider the speed 
of the camera’s panning and tilting system to achieve 
the best results. Most camera mounting systems are 
quite fast (more than 180°/Sec in pan and 60°/Sec in tilt 
movement) and don’t cause any latency.  

 

Figure 3. Camera steering process: a) detection of the target, b) generation of suitable features to track, c) 
optical flow estimation, d) panning of the camera to a new position 
 

2.3 Zooming for Equipment Identification 

Sometimes the zoom of the camera needs to be 
changed to obtain a suitable resolution of the targets. 
For example, the visual markers attached to pieces of 
equipment for identification and localization purposes 
should have a specific minimum size in the frame (in 
pixels) to be robustly detected and provide useful 
localization results. On the other hand, sometimes it is 

necessary to have a wide-angle view of all of the 
processes for tracking and monitoring purposes.  

One of the main shortcomings of the model-based 
object recognition methods is that they cannot 
differentiate individual pieces of equipment within a 
same class. For example, they are not able to identify 
individual dump trucks within a fleet of similar 
machines. Identification of individual equipment is an 
important parameter for productivity estimation. The 
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solution for this problem is to attach unique visual 
markers to every piece of equipment.  

For detection of visual markers, such as AprilTag 
[19], attached on the equipment, the size of the marker 
in the frame (in pixels) is the key factor. Therefore, an 
automated zooming feature was developed to control 
the focal length of the lens. In particular, this module 
was developed to reliably detect markers attached to the 
equipment. Experiments revealed that an AprilTag 
marker should be at least 18x18 pixels to be reliably 
detected (>98%) [16].  

An automated zoom control algorithm was 
developed to change the focal length of the camera’s 
lens to obtain the expected marker resolution. First, the 
linear relationship between the focal length and the 
magnification factor of the camera lens was determined 
using a set of experiments. For this purpose, a specific 
target was captured in frames from the same viewpoint 
but with altered focal lengths. Then the linear 
relationship was established by measuring the changes 
of the target size (in pixels) versus the focal length. 
Second, the algorithm calculates the magnification 
factor required to obtain expected marker size (in pixels) 
based on the size of the detected equipment (in pixels), 
and sets the focal length of the lens to achieve the 
expected resolution. This algorithm calculates the 
magnification factor using the ratio of the actual length 
of the visual tag to the actual length of the equipment 
(e.g. 0.6m label and 7m dump truck length) and the 

expected marker size (e.g. 20x20 pixels). For example, a 
dump truck is detected with a size of 190x119 pixels in 
a frame, thus the size of the marker is about 16x16 
pixels in the frame (190x(0.6/7) = 16). Assuming that 
the expected marker resolution is 20x20 pixels, the 
required magnification factor would be 20/16=1.25.  

In addition, to avoid useless zooming, the algorithm 
checks whether the target will remain in the view after 
zooming. This test is done using a scale affine 
transformation, in which the coordinates of the object 
after magnification are calculated. The new coordinates 
indicate whether the target will appear within the 
zoomed frame.  

Since the camera lens zooms toward the center of 
the view, the center of the frame is set as the origin of 
the 2D coordinate system. Then the coordinates of the 
detected objects are multiplied by the calculated 
magnification factor to check whether the target will 
appear in the frame after zooming. An autofocus 
process (usually provided by the camera manufacturer) 
is employed to correct the usual blurriness resulting 
from change of the focal length.   

The zooming module was used to identify dump 
trucks and excavators that were labelled with unique 
fiducial markers, and the reported results are presented 
in Table 1. Due to the robust performance of the marker 
recognition algorithm, no false positives were observed 
[16]. 

 

Table 1. Performance of the equipment identification system using fiducial markers and active zooming 

Experiment No. appeared machines No. identified machines Precision  Identification rate  

Dump truck 32 27 100% 84.4% 

Excavator 18 16 100% 88.9% 

 

 

2.4 Active Camera Control to Localize 
Equipment 

Automated camera steering could be used to 
estimate 3D location of the targets. In this approach, the 
PTZ camera is the origin of a spherical coordinate 
system. The three parameters—the radial distance of the 
target from the camera, its tilt (polar) angle measured 
from the zenith direction, and pan (azimuthal) angle 
measured by its projection on the horizon plane from a 
fixed reference direction—are required to estimate the 
3D coordinates of an object with respect to the PTZ 

camera. The pan and tilt angles are provided by the 
motorized camera mounting systems, thus the only 
parameter requiring estimation methods is “the radial 
distance”—the distance of the target to the camera.  

Depth estimation using a single camera could be 
resolved using two main approaches: one based on the 
geometric principles of a pinhole camera and one based 
on a pinhole camera model. These methods also rely on 
detection of a fiducial marker attached to the equipment. 
So the system needs to zoom on the target for 
localization of the target.  

 
The first step in both approaches is to calibrate the 
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camera to find the focal length(s) and principal point of 
the camera. Then, the vision system searches the video 
frames for the objects of interest, i.e. construction 
equipment. The object recognition methods were 
discussed in previous works [4], [5]. As soon as a target 
is spotted in the frame, the system steers the camera to 
capture the target in the center of the frame to achieve 
the best depth estimation result. The process of the 
camera steering to capture the target in the center of the 
frame is similar to the method described in section. 2.2. 
Then the system zooms (by changing the focal length) 
on the target to detect the marker attached on the 
equipment. The following subsections describe the two 
depth estimation approaches.  

2.4.1 Camera	Geometry	

The first technique is to use the geometric principle 
of a pinhole camera. In Equation (2): 

 

݀ ൌ 	
݂ ൈ ݋݄ݎ ൈ ݄݅݉
݄݅ݎ ൈ ݄݁ݏ

 
(2) 

 
d is distance to the camera in mm 
f is the focal length in mm 
rho is the real height of the object in mm 
imh is the image height in pixels 
rhi is the object height in image in pixels 
seh is the camera’s sensor height in mm  
 
This method achieves the best result when the target 

is parallel to the image plane, and it is less successful 
when the planar target is rotated with respect to the 
image plane. 

2.4.2 Pinhole	Camera	Model	

This approach is based on the pinhole camera model, 
in which the intrinsic and extrinsic parameters of the 
camera are used to estimate the distance from a planar 
target to the camera (see Equation (3)). The intrinsic 
matrix includes the camera's focal length, principal 
point, and distortion parameters, which is extracted 
using a well-known camera calibration process. 

  
݉ݏ ൌ  ܯሾܴ|ܶሿܣ	

 
s is a scale factor. This coordinate system is 

a homogenous system and scale invariant. 
m is a 3x1 matrix of the pixel coordinates of 

the projected point in the image. The third 
element (z) is equal to 1.  

A is the camera’s intrinsic matrix. 
[R|T] is the 3x4 extrinsic matrix. R is a 3x3 

(3) 

rotation matrix demonstrating the orientation of 
the camera with respect to the planar target, and 
T is a 3x1 translation matrix which denotes the 
camera’s position. 

M is a 4x1 matrix which includes the 3D 
world coordinates of the point. The fourth 
element is equal to 1. To simplify the 
calculations, a point on the planar object is 
usually set as the origin of the world coordinate. 

 
This approach handles rotation of the targets 

theoretically, by considering the rotation of the planar 
target. In this method, a corner of the target (i.e., the 
visual marker) will be the origin of the world coordinate 
and the target plane is set as the world’s x-y plane; 
given the dimensions of the target, the world 
coordinates of the rest of three corners are calculated. 
Then four equations (based on Equation (3)) are 
established for the four corners, in which all parts 
except [R|T] matrix, including m, A, and M, are known. 
Using a set of linear equations, the [R|T] matrix is 
extracted [20].  

Afterwards, the [R|T] matrix is used in Equation (3) 
to estimate the 3D coordinates of the camera origin in 
the 3D coordinate system (where its origin is on the 
target). Lastly, the norm of the camera’s 3D coordinate 
yields the distance between the target and camera.  

2.4.3 Experimental	Results	

This localization framework was evaluated using a 
number of real-time videos of different earthmoving 
equipment, including excavators and off-highway and 
urban dump trucks. A total station was set up adjacent 
to the PTZ camera for accurate measurement of the 
location of the targets. These videos included 67 test 
samples, in which the distance of the test subjects to the 
camera varied from 30.44 to 100.50 meters. A few 
samples are presented in Figure 4. Table 2 provides the 
performance of localization methods. As it is presented, 
the results are relatively close, but the pinhole camera 
model performed slightly better. Comparison of the 
results demonstrated that the performance of the pinhole 
camera model approach was better than the camera 
geometry method in localization of the targets that were 
oriented with respect to the image plane. 
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Table 2. Performance of the localization algorithms 

Localization method Average 
localization 

error (m) 

Standard 
deviation of  

error (m) 

Maximum error (m) Upper limit at 95% 
confidence level (m) 

Camera geometry  1.389 0.992 4.18 1.631 
Pinhole camera model  1.346 1.031 4.11 1.597 

	

Figure 4. Samples of marker localization 

2.5 Conclusion 

Vision-based systems are among the sensing 
technologies that are increasingly being tested to 
monitor the productivity and safety of equipment-
intensive operations in the construction and surface 
mining industries. The developed systems, however, 
analyze videos captured by a motionless camera, which 
drastically limits their coverage area. This research 
paper introduces some algorithms to automatically 
control pan, tilt, and zoom features of a PTZ camera. 
These camera steering algorithms command the PTZ 

unit based on the spatiotemporal data extracted from the 
video frames. The methods discussed include automated 
scanning of the site for active operations, continuous 
tracking, and identification and localization of the 
labelled equipment.  

The discussed methods, however, are able to control 
only a single camera, which is not sufficient for large 
construction and mining fields. Future research will 
investigate autonomous control of a network of 
connected PTZ cameras to monitor large jobsites. 
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