
33rd International Symposium on Automation and Robotics in Construction (ISARC 2016)

HYBRID SIMULATION MODELING OF HOIST DOWN-
PEAK OPERATIONS IN CONSTRUCTION SITES

Shousheng Xianga, Mehrdad Arashpourb and Ron Wakefieldb

aSchool of Management Engineering, Xi’an University of Finance and Economics, Xi’an, China
bSchool of Property, Construction and Project Management, RMIT University, Melbourne, Australia

E-mail: xiangshousheng@126.com, mehrdad.arashpour@rmit.edu.au, ron.wakefield@rmit.edu.au

Abstract – The down-peak period is an important
aspect of hoist operations in construction projects.
To make the vertical transportation service more
efficient, the operation parameters of down-peak
should be modeled precisely in the process of
planning. A simulation model is developed to
analyze the operations of elevator in down-peak. The
model incorporates hybrid use of discrete-event
simulation and agent-based modeling to provide a
robust methodology to analyze the two most
important parameters for elevator operation
planning: time spent and average waiting time. The
developed model is validated under several
conditions, and its usage is expanded to random
situations.

Keywords –

Agent-based modeling, Automation, Building
projects, Construction management, Discrete event
simulation, Elevator planning, Robustness, Process
visualization, Validation

1 Introduction

Research on the physics and dynamics of
construction hoists has attracted the attention of many
researchers [1-2]. Now with the increase in high-rise
construction, hoists have become a key important
vertical transport vehicle for workers. So planning of
the hoist capacity for a building construction has
become very important. Each building has its own
critical traffic period which is the busiest time of the
hoist [3]. For each kind of building, there may have
three critical traffic periods: up-peak (morning rush
hours), down peak (evening rush hours) and down-up
peak (lunchtime rush hours) [4]. If a hoist is sufficient
to serve the critical traffic periods of the building, the
rest of the time will not be a problem [3]. Two
commonly used parameters to select hoists for a
building are total time needed to send all the workers to
their destinations and average waiting time for workers
[5-6].

 During the period of design and construction of a

tall building, some key parameters for the hoist
operation have to be considered such as average waiting
time for workers, or total time needed to send all
workers to their destinations [6-8]. Some authors use
mathematical methods to determine these parameters for
hoist planning [9-10]. These methods while useful, have
some practical problems; it is not easy for those with
limited mathematical knowledge to understand and use
these methods to analyze the time spent and waiting
time criteria when designing hoists arrangements for
building design or construction site.

In this paper, a simulation model is proposed to
analyze the operation of hoists in down-peak periods for
a moderately tall building (for example 15 floors) with
one hoist which have a maximum capacity of 14
workers. The model is a hybrid of agent based
methodology with discrete event methodology to easily
get parameters discussed above for hoist operation.

In the paper, we first describe the down-peak, next
build a model for this situation; then the validation of
the model is tested, and lastly the base model is
expanded to random situation with any arrival
distribution.

2 Description of the down-peak mode of
construction hoists

In the lunch break or after work time of workers on
floors above the ground want to go down to the ground
floor (floor1). Workers from a given floor will first
leave their work site and arrive at the waiting area of the
floor, then call the hoist, if the hoist is just there taking
the hoist and leaving or waiting for the hoist. If we
assume the hoist first stays idle at the ground floor
(floor 1). If there is user calling for it from a given floor
above, the hoist will go upward to pick the user. During
the going upward process, if someone whose floor
number is bigger than the floor number of the user who
just called the hoist, the hoist will go to the user with the
highest floor number. During the downward process,
when the hoist arrives at each floor, if it has spare
capacity and there are workers waiting on this floor, it
will load workers on this floor, if the hoist is full loaded

Hybrid simulation modeling of hoist down-peak operations in construction sites

or there is no user waiting on this floor, it will go down
directly to the next floor. When the hoist arrives at the
ground floor, it will unload all the workers in it and wait
for another call. During the down-peak, it is assumed
that there is no user who wants to go upward. And also
there is no user who wants to go upward or downward
between the floors. The situation can be schematically
illustrated as Fig.1.

	

Fig. 1. Hoist’s operation in down-peak

3 Base model of the down-peak situation

3.1 The behaviour of user

Each user leaves his work site in the building and
arrives at the waiting area of his floor waiting for the
hoist. The workers’ behavior can be treated as a
process. A process flow chart is used to express the
behavior of workers on each floor (see fig.2).
The behavior of workers on each floor is expressed with
two blocks. The first block (for example f2) is a source
block to express workers’ behavior of leaving his work
area on a given floor (floor2) and arriving at the waiting
area. So when a user arrives at the waiting area of the
floor, the source block will generate an entity. The
second block (for example q2) is a queue block to
express the workers’ behavior of waiting on a given
floor (floor2). The function of the block is to store the
entity generated by the corresponding source block. A
person agent is predefined to represent the user entity.

	

Fig. 2. User’s behavior in down-peak

3.2 The behaviour of hoist system

The hoist’s behavior can be represented as a series of
events that can occur in one or more possible states. A
state chart of agent-based modeling methodology is
used to define the behavior of the hoist system (see
fig.3).

Fig.3. Behavior of hoist system in down-peak		

The hoist first stays idle on the ground floor (state idle).
If there are workers calling for it, it will go upward
(transiting to state Upto2) to pick them up, or the hoist
will stay idle, so the transition from the state idle to state
Upto2 is a condition transition. It will take the hoist
some time to arrive at floor2, so the state Upto2 is
followed a time transition, and all states in fig.3 are
followed by time transition except state idle because
time are needed to transit from these states to other
states. When the hoist arrives at floor2, it will either
keep going upward or opening door and loading
workers on this floor. So the time transition coming
from state Upto2 is followed by two branches, one goes
to state Upto3, the other goes to state dooropen2.
If the hoist opens the door and loads on this floor, its
state will transit to dooropen2, it will then load the first
user on the floor (transiting to state up0201), after
loading the first user in the waiting queue of the floor, it
will then either load the second user (transiting to state
up0202) or close the door (transiting to state
doorclose2), because after the loading the hoist may not
have spare capacity to hold user or there may not have
workers waiting on the floor. The hoist can load 14
workers in maximum because the maximum capacity of
the hoist is set to 14 workers. So after loading the 14th
user, the hoist will close the door. If the hoist keeps
going up (transiting to state Upto3) but not to load on
the floor, when it arrives at floor3, it will have similar
behavior as behavior on floor2. These similar behaviors
on floor3 to floor13 are omitted in fig.3.

33rd International Symposium on Automation and Robotics in Construction (ISARC 2016)

When the hoist loads workers on a given floor, after
closing the door, it will go down to the next floor
(transiting to state Downto#). When it arrives at the next
floor, if the hoist has some spare capacity and there are
workers waiting on the floor, the hoist will open the
door and load workers, if the hoist has no spare capacity
or there is no user waiting on the floor, the hoist will
keep going down to another floor. That means when the
hoist goes down to a given floor above the ground, it
either loads workers on the floor or keeps going down
to another next floor. So, each of the time transition of
state Downto# is followed by two branches. For
example, if the hoist closes the door on floor15 (state
doorclose15), it will go down to floor 14 (transiting to
state Downto14). When the hoist arrives at floor14, it
will make a decision about opening the door (transiting
to state dooropen14) and load workers or going down to
floor13 (transiting to state Downto13).
When the hoist goes down to ground floor (floor1), it
will open the door (state dooropen1), and unload the
first user (state d0101) in the hoist, after unloading the
first user, the hoist will check if there are workers in the
hoist, if there are, the hoist will keep unloading the
second user until the last user is unloaded, if there is
not, the hoist will close the door. There are 14 possible
workers to be unloaded (states d0101 to d0114) because
the hoist’s maximum capacity is 14 workers. The time
transition of each unloading state (states d0101 to
d0113) is followed by two branches except the state
d0114. One is pointing to the next unloading state (one
of the states d0102 to d0114) and the other is pointing to
state doorclose1.
After unloading workers and closing the door, if there
are workers waiting on the floors, it will choose to go up
again, if there is not, it will stay idle on the ground
floor. So the time transition of state doorclose1 is
followed by two branches, one is pointing to state
Upto2, the other is pointing to state idle.

3.3 Parameters, collection, variables, Java
codes or expressions for the base model

The behaviors of workers and hoist system are
expressed with different methodologies. To construct
the model , the Anylogic simulation tool (education
version) is used to incorporate the discrete-event
process flows chart with the agent based state chart. It is
said that AnyLogic is the only simulation tool that
supports all the most common situation methodologies
in place today: system dynamics, process-centric, and
agent based modeling [11-13]. The discrete-event
process flow chart is put in the main agent of AnyLogic
with a hoist agent collection named hoists. The state
chart of the hoist system is embedded in the hoist agent
of collection hoists.

Some parameters, collection, variables, events, Java
codes and expressions are used to construct the model.
The hoist first stays idle on the ground floor (floor1),
when there is any user calling for it, it will leave state
idle. So the trigger condition for the transition from the
state idle is that at least one of the queues on the floors
is not empty (see fig.4).

Fig.4. Trigger condition for the hoist leaving
state idle

A predefined parameter in the hoist agent named
Onefloortime is used to represent the time needed for
the hoist to go through one floor (see fig.5). The timeout
values of the transitions from states Upto# and Downto#
are defined by Onefloortime respectively.

	

Fig.5. Parameters and collection in the hoist
agent

When the hoist arrives at floor2, the condition for the
hoist to open the door and loads workers on this floor is
that there are workers waiting for the hoist on floor2 but
if there is not any user waiting for the hoist above this
floor at this moment. That means the queue on floor2 is
not empty, but all the queues above floor2 are empty
(see fig.6), the condition for the hoist to to go up to
floor3 (state Upto3) can be set to default.. If the hoist
goes up to a given floor, the condition for the hoist
choosing to open the door can be similarly defined. If
the queue of the floor is not empty, but the queues
above the floor are empty, the condition for the other
branch is set to default and all the condition for the
branches with dashed lines are set to default.

Hybrid simulation modeling of hoist down-peak operations in construction sites

Fig.6. Condition for the hoist to transit from state
Upto2 to dooropen2.

A parameter named doortime is predefined in the hoist
agent to represent the time needed to open or close the
door (see fig.5). All the timeout values of states
dooropen# and doorclose# are defined by the doortime
parameter. Another parameter named Perpersontime is
also predefined in the hoist agent, this parameter is used
to represent time needed to load or unload a user. The
timeout value of each state to express the time need to
load or unload a user is defined by this parameter.

When the hoist begins to load a user, the first user in the
queue of the floor will go into the hoist. The user’s
positive action is treated as passive action executed by
the hoist. The action of a user going into the hoist is
treated as the hoist removing a user from the waiting
queue of the floor and adding it into the hoist. So when
the hoist enters into a loading state, it will execute these
actions. For example, if the hoist is loading user on
floor2, the hoist will execute the actions in fig.7.
Cabinet is an agent collection predefined in the hoist
agent to represent the car of the hoist (see fig.5). The
Java codes in fig.7 show that the hoist removes the first
user (person agent) from queue of q2, define this user as
man, and add this man into the hoist (Cabinet).

Fig.7. Action executed by loading state on floor2

After loading each of the workers on a given floor, the
condition for the hoist to choose to close the door is that
the queue on the floor is empty or the hoist is full loaded

now. For example, if the hoist is now on floor2, after
loading a user, the condition for the hoist to close the
door is
get_Main().q2.size()==0||(Capacity-
Cabinet.size()==0). Where Capacity is a
parameter predefined in the hoist agent to represent the
maximum capacity of the hoist, its value is 14 in our
model. (See fig.5).

If the hoist has loaded workers and closed the door, it
will go down to the next door (transiting to state
Downto#), when it arrives at the next floor (floor#). The
condition for the hoist to open the door to load user on
the floor (state dooropen#) is that the hoist still has
some spare capacity and there are workers waiting on
floor#
(get_Main().q#.size()==0&&(Capacity-
Cabinet.size()==0)). But when the hoist arrives
at ground floor (floor1), the hoist opens the door and
loads workers.

When the hoist begins to unload a user it will remove a
user from its car, the action of unloading state on the
ground floor is to remove a person agent from the
Cabinet collection (Cabinet.removeFirst();).
When a user is unloaded, the total number of workers
moved down is recorded by a predefined variable
named totalpersonmoved in the main agent. So when
the hoist leaves an unloading state (states d0101 to
d0114), it will execute an action to make the parameter
totalpersonmoved increased by one
(get_Main().totalpersonmoved++). After
unloading a user on the ground floor, the condition for
the hoist to close the door is that there is not any user in
the hoist (Cabinet.size()==0).

If all the workers on the floors are moved down to the
ground floor, the hoist will go into state idle, the
moment is set as the time spent to move all the workers.
So when the hoist enters into state idle and the total
workers moved are equal to the number of workers
needed to be moved, the hoist will record the time. The
entry action of state idle will be like action in fig.8 if the
total number of workers needed to be moved is 336.
Timespent is a predefined variable in the main agent to
represent the time needed to remove all workers down
to ground floor.

33rd International Symposium on Automation and Robotics in Construction (ISARC 2016)

Fig.8. Entry action of state idle

To get the waiting time and average waiting time of
workers on each floor, eight variables are used for each
queue of a given floor. For example, eight variables in
fig.9 are used for the queue on floor2 to record the
waiting time and average waiting time of workers on the
floor. Number 2 is used to represent the floor number;
variables for the queues on other floors can be
expressed in the similar way. The variables Intime2,
Outtime2 and waitingtimearray2 are array variables, the
others are plain variables. When a user enters into the
queue, an index is tagged to him to represent the
entering order of the user and when a user goes out of
the queue, an out index is tagged him to the out order of
the user. For example, the first user entering the queue
is tagged by number 1 and the second by number 2. The
first user out of the queue is tagged by number 1 and the
second by number 2, and so on. When a user enters into
the queue, the entering time is recorded by Intime2
variable (see the on enter action in fig.9a). And when a
user goes out of the queue, the outtime variable is used
to record the out time of the user (see the on remove
action in fig.9a). The waitingtimearray2 is used to
record the waiting time of the user going out of the
queue. The other variables are used to get the average
waiting time of workers having gone out of the queue
(see the on remove action in fig.9b).

Fig.9a. Variables used for the queue on floor2

	

 Fig.9b. Actions for the queue on floor2.

4 Validation test for the base model

To test the model’s validation, the values of parameters
for the hoist are assumed to be certain, the values of
door time, per person time and one floor time are 1.5, 1,
and 1.5 seconds respectively. The capacity of the hoist
is 14 workers. The total number of workers that need to
be moved is 168, and all the workers are waiting in the
queue on a floor when the simulation starts.

4.1 Testing the time spent parameter

All the workers are first put on floor15 then floor14 and
finally on the floor2. To put all the workers on a given
floor at the beginning of the simulation, a system
function inject() is used in the on startup field of
main agent. For example, if all the 168 workers are on
floor15, f15.inject(168) is used in the on
startup field of agent Main to put all the 168 workers in
the queue on floor15. All the outcomes for each
situation are show in fig.10. If all the workers are on
floor15, the total time spent is 912 seconds, if all the
workers are floor9; the total time spent is 696 seconds
and if all the workers are on floor2, the total time spent
is 444 seconds.

Fig.10. Time spent outcome for the time spent
parameter testing.

To check if these outcomes are correct, the values of
time spent parameter for each of these situations are
calculated (see table1). The total workers are 168; it will
take the hoist to go 12 runs (168/14) for each of the
situation. The time spent for one run will be decided by
the door time, one floor time, per person time and
workers’ floor number
(doortime*4+perpersontime*14*2+onefloortime*(floor
number -1)*2). If all the workers are on floor15, the
time spent for run is 76 seconds
(1.5*4+1*14*2+1.5*14*2). The total time needed for
moving down all the workers on floor15 is 912 (12*76).
Total time needed for moving all the workers down to
floor1 in other situation are calculated in table1, the

Hybrid simulation modeling of hoist down-peak operations in construction sites

outcomes of simulations (see fig.10) are the same with
the calculations values (see table1).

Table 1. the values of time spent and average waiting
time for 1-3lifts situation.

Workers’
floor number

Time needed
for one run

Total time needed to
move all the workers

down to floor1
15 76 912
14 73 876
13 70 840
12 67 804
11 64 768
10 61 732
9 58 696
8 55 660
7 52 624
6 49 588
5 46 552
4 43 516
3 40 480
2 37 444

4.2 Testing the average waiting time
parameter

If all the workers are on floor15, the simulation outcome
of the workers’ average waiting time is 447 seconds
(see fig.11). The calculation outcome of this situation is
447 seconds too (see table2).

Fig. 11. Average waiting time outcome of
simulation for workers all on floor15

In this situation, for the first run, the waiting time of the
first user in the queue is the time spent by the hoist to
move itself from floor1 to floor15 and open the door. It
is equal to 22.5 seconds (1.5*14+1.5), the second
workers waiting time will be increased by one second
because he will wait for the first user to go into the hoist.
The waiting times of the first workers in the second run,
third run will be 98.5 (76+22.5), 174.5(76*2+22.5). And
the waiting time of the first user in the last run will be

858.5 (76*11+22.5). The average waiting time for all
the workers is 447 seconds.

Table 2. The calculation values of average waiting time
for all workers on floor15.

Number of
run

1 2 3 4 5 6 7 8 9 10 11 12

Workers
moved

14 28 42 56 70 84 98 112 126 140 154 168

1st user’s
waiting

22.5 98.5 174.5 250.5 326.5 402.5 478.5 554.5 630.5 706.5 782.5 858.5

2nd user’s
waiting

23.5 99.5 175.5 251.5 327.5 403.5 479.5 555.5 631.5 707.5 783.5 859.5

3rd user’s
waiting

24.5 100.5 176.5 252.5 328.5 404.5 480.5 556.5 632.5 708.5 784.5 860.5

4th user’s
waiting

25.5 101.5 177.5 253.5 329.5 405.5 481.5 557.5 633.5 709.5 785.5 861.5

5th user’s
waiting

26.5 102.5 178.5 254.5 330.5 406.5 482.5 558.5 634.5 710.5 786.5 862.5

6th user’s
waiting

27.5 103.5 179.5 255.5 331.5 407.5 483.5 559.5 635.5 711.5 787.5 863.5

7th user’s
waiting

28.5 104.5 180.5 256.5 332.5 408.5 484.5 560.5 636.5 712.5 788.5 864.5

8th user’s
waiting

29.5 105.5 181.5 257.5 333.5 409.5 485.5 561.5 637.5 713.5 789.5 865.5

9th user’s
waiting

30.5 106.5 182.5 258.5 334.5 410.5 486.5 562.5 638.5 714.5 790.5 866.5

10th user’s
waiting

31.5 107.5 183.5 259.5 335.5 411.5 487.5 563.5 639.5 715.5 791.5 867.5

11th user’s
waiting

32.5 108.5 184.5 260.5 336.5 412.5 488.5 564.5 640.5 716.5 792.5 868.5

12th user’s
waiting

33.5 109.5 185.5 261.5 337.5 413.5 489.5 565.5 641.5 717.5 793.5 869.5

13th user’s
waiting

34.5 110.5 186.5 262.5 338.5 414.5 490.5 566.5 642.5 718.5 794.5 870.5

14th user’s
waiting

35.5 111.5 187.5 263.5 339.5 415.5 491.5 567.5 643.5 719.5 795.5 871.5

Total waiting
406.0

1470.
0

2534.
0

3598.
0

4662.
0

5726.
0

6790.
0

7854.
0

8918.
0

9982.
0

1104
6.0

1211
0.0

Accumulated
total waiting

time
406 1876 4410 8008

1267
0

1839
6

2518
6

3304
0

4195
8

5194
0

6298
6

7509
6

Average
waiting time

29.00 67.0 105.0 143.0 181.0 219.0 257.0 295.0 333.0 371.0 409.0 447.0

5 Expand the base model to random
situations

In reality, the parameters of the hoist and arrival
distribution of workers may be random. To expand the
base model to the random situation, the arrival
distributions of workers should be expressed as random.
The other is that enough runs of simulation should be
done to get robust simulation outcomes.
Some assumptions are made to explain the expanding.
The one floor time is assumed to be between 1.5 and 2
seconds uniformly, the door time is between 1and 1.5
seconds uniformly, the per person time is between 0.5
and 1 uniformly. There are 24 workers on each floor.
Their arrival distribution is one user every 20 to 30
seconds.

33rd International Symposium on Automation and Robotics in Construction (ISARC 2016)

5.1 Random variables in the model

In the random situation, some of the parameters or
variables are random. The system function of the
AnyLogic software can be used to define these random
parameters and variables. For the assumption numerical
example, function uniform() is used to express the
parameters of the hoist. The default values of
parameters doortime, onefloortime and perpersontime
are set to uniform(1,1.5), uniform(1.5,2)
and uniform(0.5,1)respectively.
In the example, the arrival distributions of workers are
random too; events can be used to define the arrival
distribution. There are three kinds of events: Timeout,
Rate, and Condition. A Timeout event with cyclic mode
is used to define the arrival distribution of workers on
each floor in our example. The Event in fig.12 is used to
define the arrival distribution of workers on floor2. In
20 to 30 seconds, a user will come, and the number of
user on this floor should not more than 24. count() is
a system function used to count the number of user that
have been injected into the source block f2.

 Fig.12. Arrival distribution defining with an
event

5.2 Run the simulation for enough time

To get robust simulation outcomes, the model should be
able to run enough times. The simulation is repeated. A
variable named N is first defined in the agent of main to
represent the number of runs that has been finished
setting the initial value of N to 1. Then the finishing
condition of each run is defined in the Entry action field
of state idle of the hoist. For the example, the finishing
condition is defined as when the simulation is on the Nth
run, its finishing condition is that the workers that have
been moved (totalpersonmoved) is N times of total
workers needed to be moved (variable
Totalpersonneedtomove) , variable is a predefined
variable in the main agent, one run is finished, the value
of N will be increased by one (see fig.13).

 Fig.13. Finishing condition for each run.

When the simulation runs are repeated, the arrival
distribution is also repeated. The change in code is
shown in fig.14.

 Fig.14. Repeating workers’ arrival distribution
for workers on floor2

When the simulation has finished the specified runs,
average time spent of all runs and average waiting time
for all the workers are calculated. An event named
Pausesimulation is used to pause the simulation. Two
variables, Averagetimespent and Averagewaitingtime
are used to calculate the two time parameters; these two
variables are predefined in the main agent. The
condition of the event is defined by the variable N and
the specified runs. If the specified runs are 100, then the
condition and the action of the event can be expressed
as condition and action in fig.15.

Fig.15. Condition and action of the event Pause
simulation

For the assumed example, after 100 runs of simulation,
values of variable Averagetimespent and
Averagewaitingtime can be determined. The average
time spent is 1303 seconds and average waiting time is
473 seconds (see fig.16).

Fig.16.Outcome of the simulation after specified
runs

6 CONCLUSION	
In this paper we propose a down-peak model with single
hoist. The model hybrids discrete-event methodology

Hybrid simulation modeling of hoist down-peak operations in construction sites

with agent based methodology. The model can be used
in certain condition and random situations. Using this
model we can analyze the time spent parameter and
average waiting time parameters for hoist planning. If
there are two more hoists but each hoist is with its
independent waiting queue, it can also be treated as
independent single hoist situation.
In this paper, a down-peak model with single hoist is
proposed. The model is a hybrid of discrete-event
methodology with agent based methodology to simulate
the operation of hoist in the down peak. The discrete-
event methodology is used to simulate the behavior of
the workers on each floor, and the agent-based
methodology is used to simulate the behavior of the
hoist system. The model’s validation is tested under
deterministic conditions and then expanded to handle
random situations. The two commonly used operation
parameters (time spent and average waiting time) can be
determined for hoist planning through model simulation.
With two or more hoists, during the rush hours, if each
hoist has a separate waiting line, each hoist can be
treated as an independent hoist. If all the hoist s only
have one waiting line, hoists’ behavior will be affected
by each other, in that case, the model will need to be
modified. That will form the next stage of this work.

REFERENCES

[1] Bao Ding, Yong-Ming Zhang, Xi-Yuan Peng
(2013). A hybrid approach for the analysis and
prediction of hoist user flow in an office building.
Automation in construction, 35 69-78 DOI
10.1016/j.autcon.2013.03.003
[2]M.L. Siikonen (1997). Customer service in an
elevator system during up-peak, Transportation
Research 31(2) 127-139
[3] G.F. Newell(1998). Strategies for serving peak hoist
traffic, Transportation Research 32(8) 583-588
[4] T. Nagatani(2003). Complex behaviour of hoists in
peak traffic, Physica A 326 556-566
DOI:10.1016/S0378-4371(03)00278-4
[5] T. Nagatani(2004). Dynamical transitions in peak
hoist traffic, Physica A 333 441-452 DOI
10.1016/j.physa.2003.10.001
[6] Yutae Lee, Tai Suk Kim, Ho-Shin Cho, Dan Keun
Sung, Bong Dae Choi (2009). Performance analysis of
an elevator system during up-peak, Mathematical and
Computer modelling, 49 423-431DOI
10.1016/j.mcm.2008.09.006
[7] Yoonseok Shin, Hunhee Cho, Kyung-In Kang
(2011). Simulation model incorporating genetic

algorithms for optimal temporary hoist planning in
high-rise building construction, Automation in
construction, 20 550-558 DOI
10.1016/j.autcon.2010.11.021
[8] Stefan Heinz, JÖrg Rambau, Andreas Tuchscherer
(2014). Computational bounds for hoist control policies
by large scale linear programming, Math Meth Oper
Res 79 87-117 DOI 10.1007/s00186-013-0454-5
[9] U Beißert, M König, H-J Bargstȁdt (2010). Soft
constraint-based simulation of execution strategies in
building engineering, Journal of simulation, 4 222-231
DOI 10.1057/jos.2010.8
[10] Strakosch, G. R. (2010). The vertical
transportation handbook (Vol. 4). Hoboken, NJ,
USA: John Wiley & Sons.
[11] Arashpour, M. and M. Arashpour (2015). "Analysis
of Workflow Variability and Its Impacts on Productivity
and Performance in Construction of Multistory
Buildings." Journal of Management in Engineering
31(6): 04015006.
[12] Arashpour, M., R. Wakefield, N. Blismas and T.
Maqsood (2015). "Autonomous production tracking for
augmenting output in off-site construction." Automation
in Construction 53: 13-21.
[13] Andrei Borshchev (2013), The big book of
simulation modeling: multi-method modeling with
AnyLogic 6, Lisle,IL:Anylogic North America.
[14] Arashpour, M., R. Wakefield, N. Blismas and B.
Abbasi (2016). "Quantitative analysis of rate-driven and
due date-driven construction: Production efficiency,
supervision, and controllability in residential projects."
Journal of Construction Engineering and Management
142(1): 04015006.

