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Abstract –  

Building Information Modeling (BIM) and its 
implementation in Architecture, Engineering and 
Construction (AEC) industry is rapidly growing all 
over the US. The growing utilization of BIM 
application has resulted in accumulation of 
tremendous volumes of computer-generated design 
data. Such vast datasets provide practitioners with an 
opportunity to extract valuable information 
regarding the process of design. Design log files, in 
particular, are rich data sources that contain model 
development data automatically recorded throughout 
the design process. However, the existing studies are 
mostly restricted to mining structured data and hence, 
lack the capabilities to handle unstructured temporal 
data sources such as design log files. The main 
objective of this paper extract implicit process 
information from design log data by implementing a 
tailored sequential pattern mining approach. For the 
purpose of this research, we examined the feasibility 
of utilizing Revit journal log files as a non-intrusive 
data collection mechanism to capture modelers’ 
interactions with the software and detect common 
command execution structures during model 
development sessions. To this end, user-model 
interaction data such as modeler characteristics, 
command type, and command time were extracted 
from the data sample’s journal files using a text file 
parser. After careful data cleaning, the final set of 
temporal data were transformed into sets of multiple 
character strings. We used an efficient 
implementation of Generalized Suffix Trees (GST) 
data structure to identify common command 
execution sequences among several modelers. The 
results of the study identified several shared 
command sequences among five modeler. This study 
proposes a novel pattern mining methodology to 
extract useful information from time-stamped design 

log data and enables project managers to obtain 
valuable insight into design development processes.  
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1 Introduction 

Design log data in general and Autodesk Revit© 
journal files, in particular, are unstructured text files that 
BIM tools create when modelers use the application. 
These files capture all modeling activities that occur 
during a design session, as well as system information, 
such as memory performance and operating system [1]. 
Revit journal files are largely used to diagnose and 
troubleshoot technical problems with the software. In this 
research, however, we examine the feasibility of utilizing 
these log files as a non-intrusive data capturing 
mechanism for documenting modeller-software 
interactions and recording model development events. 
The information extracted from Revit journal files will be 
utilized to examine our research hypothesis that there are 
common command execution patterns among BIM 
modelers who work on similar projects. In the context of 
this research, a journal log file is regarded as a database 
of ordered modeling events (commands) recorded with a 
concrete notion of time. A frequent pattern is an ordered 
set of individual commands that occurs more than a 
threshold number of times (i.e., minimum support) in the 
original sequence database. The following questions are 
of particular interest in this research: What types of 
commands sequences do modelers execute frequently? 
What structures are formed from various commands at 
each stage of modeling and how? What command pattern 
sequences are common among different modelers? Is 
there a resemblance between the modeling behaviour of 
BIM users who work on similar types of projects?  

In recent years, there has been an increasing amount 
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of studies on the topic of mining information from BIM-
generated documents. In particular, a considerable 
literature has accumulated around the topic of extracting 
patterns from geometric and semantic information stored 
in virtual building models. For instance, Hu et al. 
developed a multivariate linear regression model to 
predict man-hour quantity for steel fabrication projects in 
the planning phase [2]. The utilized data was extracted 
from historical Tekla BIM models. In another study, 
Abdelmohsen et al. developed a cost analysis and 
reporting system that utilizes elements’ dimensions 
extracted from BIM models [3]. The researchers used 
Industry Foundation Classes (IFC) formats and Solibri 
Model Checker (SMC) to obtain quantity take off data, 
and integrate BIM and cost models. The main emphasis 
of these research efforts was on utilizing data stored in 
BIM models to enhance non-design practices, such as 
production planning, cost estimation, and site layout 
analysis. However, these studies are limited to utilizing 
information stored as physical and functional 
characteristics of elements after the model is already 
created. As a result, little is known about the implicit 
information that can be obtained by studying BIM model 
development data throughout design processes. 

Current applications of textual data mining 
techniques in AEC literature can effectively extract 
patterns from information stored in structured relational 
datasets or unstructured documents [4]. However, these 
approaches are restricted to data that lack time dimension 
[5]. Because of this shortcoming, these methods are 
inherently limited to analyze sequential design log data 
[6]. Soibelman and Kim outlined the steps necessary to 
apply data mining and Knowledge Discovery in 
Databases (KDD) as tools to extract novel patterns in 
design and construction fields [7]. In two consecutive 
studies, Caldas et al. [8] and Caldas and Soibelman [9] 
proposed text mining-based approaches to automatically 
classify unstructured construction documents. The 
presented approaches were implemented to classify 
several product description documents into categories 
defined based on CSI MasterFormat classification 
hierarchy. Another example of implementing data 
mining algorithms to analyze unstructured textual data is 
construction cost overrun prediction by William and 
Gong [10]. The authors used a stacking ensemble model 
of several classifiers to forecast the level of cost overruns. 
These approaches present valuable insights on how to 
overcome several challenges of handling unstructured 
textual information such as dealing with the high 
dimensionality of data, removing incorrect and irrelevant 
data points, and identifying features to represent the data 
in an analysis-friendly format. However, the existing 
methods fail to address how to incorporate the 
chronological dependencies of temporal data and hence, 
are not suitable to analyze design log files.  

The primary objective of this study is to extract 
implicit process information from design log data by 
implementing a tailored sequential pattern mining 
approach. For the purpose of this research, we examined 
the feasibility of utilizing Revit journal log files as a non-
intrusive data collection mechanism to capture modellers’ 
interactions with the software and detect common 
command execution structures during model 
development sessions. Throughout this paper, several 
steps necessary to collect, prepare, and analyze data to 
extract frequent command patterns are elaborated. A 
major international design firm provided the data for this 
exploratory study. This study contributes to the state of 
practice by providing new insights into what additional 
design process information can be retrieved from Revit 
journal files. The novel method created in this research 
contributes to the body of knowledge by incorporating 
chronological dependencies of textual records into the 
existing pattern matching models. Section 2 describes the 
methodology used in this paper to analyze time-stamped 
design log data. We outline the implementation details of 
the proposed approach in section 3. In section 4, we 
provide results obtained from conducting an experiment 
on real design project data. Section 5 is conclusions and 
future research directions. 

2 Research Approach 

“Figure 1” presents the flowchart of the process to 
extract necessary information from Revit journal files 
and identify common frequent command execution 
sequences. This process consists of three major parts. 
First, a large number of Revit journal files that belong to 
a design project are collected. These text files are parsed 
to extract and store necessary data items. Second, we 
transform the obtained data to construct long strings of 
characters and generate input vectors. Finally, we 
construct Generalized Suffix Tree data structures for 
each user. A Depth-First Search (DFS) is later conducted 
on the GST structures to find common command 
sequences for each and among the five users. 

2.1 Data Collection 

We utilized modeling log data provided by an 
international design firm. The research team had access 
to data from 10 healthcare project designed in 2013 and 
2014. The provided database consists of over 5,000 Revit 
journal files that were later parsed to extract useful 
entries, amounting to over 10 Gigabytes of structured 
data. In addition to the modeling events, journal files 
contain information about the user and the project to 
which the model belongs. The steps that were followed 
to extract required information from the journal files are 
outlined in section 3. 
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Figure 1. Flowchart of Common Command 
Sequence Extraction from Revit Journal Files 

2.2 Input Processing 

The records of five modelers that each had over 
100,000 log entries are used to conduct further analysis. 
We treated the log entries for each user as a long string. 
The commands that each user issued were modelled as 
characters. The final string for each user was constructed 
by putting these characters in the original order they were 
recorded. Input vectors of modelers were then generated 
by joining the constructed command strings in 
chronological order. 

2.3 Command Sequence Extraction 

Log files (or transaction logs) have for long been 
studied in the data mining community. Log files can be 
generated in different applications, such as retail 
transactions data, web access logs, etc. Agrawal and 
Srikant introduced Generalized Sequential Pattern (GSP) 
algorithm to mine shopping patterns [11]. The authors 

studied a large database of customer transaction data, 
where each transaction consisted of customer-id, 
transaction time, and items bought in the transactions. 
Utilization of downward closure property (i.e., Apriori) 
provides GSP with the advantage of reducing search 
space compared to an exhaustive search approach. 
However, the time and memory performance of GSP is 
relatively low since a huge number of candidates must be 
generated and stored in each repetition for evaluation 
[12]. PrefixSpan algorithm overcomes this issue by 
taking advantage of pattern-growth methodology [13]. 
This algorithm greatly reduces the candidate sequence 
generation efforts by following a divide-and-conquer 
approach called prefix-based projection. The approaches 
proposed in these studies can extract valuable 
information from sequential datasets. However, general 
Sequential Pattern Mining (SPM) methodologies do not 
preserve the exact order of elements in a sequence. As a 
result, some of the elements in extracted sequences may 
not necessarily be consecutive in the original string of 
transactions.  

For the purpose of this study, a special GST-based 
string processing algorithm was used. This method is 
particularly useful as it maintains the order in which the 
executed commands are recorded. Xiao and Dunham first 
proposed applying GST data structure to mine web 
access log data [14]. The authors analyzed clickstream 
data generated based on the access made by internet users 
to find frequent web page traversal patterns. The 
technique proposed in this study achieved a high level of 
adaptability to large databases through dynamic 
compressions and effective pruning.  Guerbas et al. 
introduced an improved version of GST algorithm with 
an optimized data structure to extract page visit patterns 
of internet users [15]. The primary objective of the 
authors was to improve the search experience of users by 
predicting what pages they intend to view next. To this 
end, the research team utilized GST algorithm to find 
common web navigational patterns among users with 
similar interests. The methodology utilized in our study 
is a modified version of Guerbas et al.’s algorithm 
tailored for mining journal log files. The algorithm’s 
implementation details are outlined in the following 
section.  

3 Implementation of the Proposed Design 
Log Files Mining Approach  

In this section, we present a detailed explanation of 
our proposed approach to process and analyze 
information embedded in Revit journal  files  using  
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Table 1 Examples of data items as recorded in Revit journal files 

Column name Example 

Date and Time 
 

Project Path  
 

General Command  
 

Specific Command  
 

Revit Version 
 

View Type 
 

 
GST string mining algorithm. To begin this process, we 
need to parse journal files and extract necessary data 
items. This step is particularly challenging as there is no 
documentation available on public domain that specifies 
how and where different data components are recorded. 
The data items extracted for the purpose of this study are 
modeller name, date of the modeling session, project 
name, command execution time, general and specific 
command description, view type, and the Revit version 
utilized by the modeller. To find this information in 
journal files, we use regular expression matching 
operations. “Table 1” shows examples of each data item 
as they appear in journal files. We manually search the 
files to identify the local format using which each data 
instance (e.g., project name, command, and view type) is 
recorded. Once patterns are identified, we use a text 
processor to extract and store information in a Comma-
Separated Values (CSV) file as shown in “Table 2”. Non-

value adding commands, such as “cancel the current 
operation”, are removed from stored entries to improve 
the quality of obtained command patterns.  

Testing whether a sequence of commands occurs 
frequently in a database needs to be performed in an 
efficient manner. That is why we opted for GSTs. Suffix 
trees are very efficient data structures and often provide 
linear time solutions to challenging string problems [16]. 
“Figure 2” shows the algorithm utilized to search for 
frequent command execution sequences where the 
original order of data is conserved. First, we assign 
unique characters to each specific command name to 
generate the necessary input strings. We generate long 
strings by joining these characters in accordance to the 
original order in which corresponding commands are 
recorded in each modeling session. Once these strings are 
constructed, we use suffix trees to represent all suffixes 
of the string set. In our

Table 2 Sample of structured processed data 

Modeller 
Name 

Time 
Project 
Name 

General Command Specific Command 
Revit 

Version 
View Type 

modeller  10:30:07 StdUnion "Internal" "Show or hide recent files 2014 Floor Plan 
modeller 10:33:50 StdUnion "StartupPage" "Open an existing project 2014 Floor Plan 
modeller 10:36:51 StdUnion "Internal" "Print the active window 2014 sheet 
modeller 10:45:25 StdUnion "Internal" "Activate this viewport 2014 sheet 
modeller 10:48:04 StdUnion "Internal" "Modify View Templates 2014 sheet 
modeller 10:48:07 StdUnion "Internal" "Manage Links 2014 sheet 
modeller 10:48:09 StdUnion "KeyboardShortcut" "Steering Wheels 2014 3D view 
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implementation, the DFS step generates an ordered list of 
leaf nodes of the suffix tree. The leaves corresponding to 
each internal node are, therefore, a consecutive sub-list 
of this ordered list of leaves. The DFS saves the start and 
end position of the leaves (based on their DFS order) for 
each pattern (i.e., internal node) in a helper hash table. 
The subtraction of the end position and the start position 
will give the number of repetitions of the specific pattern. 
Additionally, this way we can access all the instances of 
that pattern in the original string by having access to the 
leaf nodes and their corresponding suffix index. This 
technique enables us not only to identify patterns, but 
also calculate their frequency. These substrings, then, are 
filtered based on simple heuristics (e.g., minimum length 
of the substring, minimum frequency, etc.). At the end of 
this step, we have a limited number of most frequent 
substring of commands that is common between all the 
users. We call these substrings as primitives. We repeat 
this process for all users to extract their frequent 
command patterns. Finally, the retrieved patterns are 
compared against each other to identify the ones that are 
common among different users. The results obtained 
from implementing this approach on the provided Revit 
journal files are presented and discussed in the following 
section. 

Table 3 Statistics of the dataset used 

Data set Period Number of 
entries 

Modeler 1  2013 126,815 
Modeler 2 2014 122,813
Modeler 3 2014 114,290 
Modeler 4 2013 112,082 
Modeler 5 2014 106,887 
All records 2013-2014 5,568,243 

4 Experiments and Results 

This section describes the results of experiments 
conducted and discusses the patterns obtained. We 
present some statistics about the dataset used. We 
comment on the patterns discovery results obtained using 
GST and how they support our initial hypothesis 
regarding the existence of common command execution 
patterns among BIM modelers.  

A dataset containing 5,000 Revit journal files was 
used to implement our approach. We started the analysis 
by processing these files using a text parser. We also 
filtered out all noisy data (e.g., “cancel the current 
operation”, “delete”) and entries related to errors. The 
processed data was stored in .csv format amounting to 
over 5.5 million records. Data from five architects that 
model interior systems of healthcare projects were 
selected to conduct analysis. “Table 3” provides some 
statistics about the utilized data. 

Table 4 Top three most executed individual commands 

 Frequency 
Modeler Move 

selected 
objects or 

their copies 

Align 
references 

Create 
a line 

Modeler 1 19.30% 11.92% 7.89% 
Modeler 2 15.27% 13.56% 14.23% 
Modeler 3 18.19% 6.21% 11.07% 
Modeler 4 15.57% 15.98% 13.07% 
Modeler 5 14.31% 6.94% 10.00% 

Prior to using GST, we conducted some preliminary 
analysis to identify the most frequently executed 
individual commands. “Table 4” shows the top three 
commands for each modeller. These commands were 

Figure 2 Using generalized suffix trees to detect frequent command execution sequences 
(Adapted from Guerbas et al. [15]) 
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consistently found to be the most frequent events for all 
users. 

In the next step, we constructed a GST data structure 
for each modeller’s command string to identify shared 
sequences. Several arbitrary minimum frequency 
threshold values were tested, among which we selected 
250 and 500. The minimum length of extracted common 
command patterns was also set to three. Interesting 
patterns obtained for the two threshold values are 
presented in “Table 5”.  

The primitives extracted for minimum threshold of 
250 are longer and represent meaningful modeling 
activities. Pattern 1 seems to correspond to commands 
executed to create and extend multiple lines. In this case, 
modelers have hidden a number of objects to gain easier 
access to the elements they want to modify. The second 
pattern appears to show cases where modelers make 
copies of different elements and visualize their 
dimensions. The third pattern captures commands used to 
make copies of a specific object in the model and modify 
them.  

The obtained patterns became shorter when we 
increased the minimum frequency threshold. This 
observation was expected since longer sequences tend to 
match less frequently. The first pattern corresponds to 
cases where modellers navigate through different 
viewpoints to select and copy certain objects. The third 
pattern also captures command sequences used to change 
visibility of different layers. Contrary to these two 
patterns, it is not clear what specific activity the second 
command sequence represents. We saw more examples 
of such repetitive sequences for both thresholds. Presence 
of such patterns may be because of  

 
noisy input data or consecutive execution of similar 
commands by modelers.  

5 Conclusion and Future Work 

In this paper, we proposed an efficient approach to 
extract modeling development information embedded in 
design log files produced by Autodesk Revit. We have 
reviewed all steps of this process and made an effort to 
make a contribution at each step. The first step in Revit 
journal mining consists of different phases. The first 
phase is to identify the format in which different 
information items are stored. Our code accepts the raw 
journal files and produces structured csv files as shown 
in “Table 2”. We also clean the obtained data by 
removing non-value adding entries, such as cancel and 
error messages. The conclusion we derive from our 
investigation at this level is that using the suggested 
approach will help in processing unstructured journal log 
files and producing good quality input data for mining 
algorithm.  

In the second step, we use GST data structures to find 
common command sequences among BIM users. First, 
we transform command sequences into character-based 
input vectors. Then, the transformed data is utilized to 
construct GST. Frequent command patterns are identified 
by conducting DFS on the trees (“Figure 2”). Extracted 
patterns for different users are compared against each 
other to identify shared sequences. The conclusion at this 
step is that GST-based string mining approach is an 
efficient method to extract common command patterns 
among several modelers.  

Table 5 Common command sequences extracted using GST 

 Pattern 1 Pattern 2 Pattern 3 

E
xt

ra
ct

ed
 P

at
te

rn
 2

50
 1. Select objects to modify 

2. Hide selected elements 
3. Create a straight detail line 

or a detail arc 
4. Rotate selected object(s) 
5. Trim/Extend two lines or 

walls to make a corner 

1. Copy the selection and put 
it on the Clipboard 

2. Move copies of selected 
objects 

3. Create aligned Dimensions 

1. Select objects to modify 
2. Create an object similar to 

selected object        
3. Move selected objects or 

their copies 
4. Align references 
5. Finish Sketch 

E
xt

ra
ct

ed
 P

at
te

rn
 5

00
 1. Activate this viewport 

2. Copy the selection and put 
it on the Clipboard 

3. Deactivate the currently 
active viewport 

 

1. Move selected objects or 
their copies 

2. Move selected objects or 
their copies 

3. Move selected objects or 
their copies 

1. Deactivate the currently 
active viewport 

2. Activate this viewport 
3. Control visibility and 
appearance of objects (applied 

only in the active view) 
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    Finally, we conducted experiments on Revit 
journal files provided by a design firm to verify our 
proposed approach. Our code successfully processed the 
raw log files and extracted common command patterns 
for   five   architects   who   model   interior   systems   of 
healthcare projects. The obtained results also confirmed 
our initial hypothesis that there are frequent command 
execution sequences shared among BIM modelers who 
work on similar projects. 

This study contributes to the state of knowledge by 
proposing a tailored string mining algorithm capable of 
extracting meaningful information from time-stamped 
design development data. We contribute to the state of 
practice by enabling design project managers to gain an 
unprecedented insight into the evolution of design. It is 
suggested that the possibility of using command patterns 
to characterize modelers is investigated in future studies. 
For instance, it might be a good idea to modify the 
proposed approach to calculate the average time it takes 
BIM users to executed different command patterns. Such 
empirical assessment of modellers’ behaviour can 
potentially be used to provide customized training to 
improve designers’ performance. Moreover, calculated 
average times can help design manager to improve 
project outcomes by choosing an optimal team 
configuration. 
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