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Abstract 

According to the Ministry of Land, Infrastructure 
and Transport in Korea, the number of bridges over 
30 years old will be three times in 2025 than three 
thousands in 2015 so that proper maintenance 
enforcement has emphasized. The Korean 
government legislated on the Special Act on Safety 
Control for Infrastructure in 1995 and rated the 
condition grade of “A” to “E” to indicate that under 
the “C” grade of infrastructure requires critical 
repairs. Since the lack of maintenance budget and 
decrease of professional inspectors, more effective 
and efficient monitoring solutions for bridge 
conditions are required. The primary purpose of this 
study is to develop a model to predict deficiencies of 
bridge elements using big data analytics and the 
framework is proposed in this paper. The model 
analyzed a dataset of Bridge Management System 
(BMS) developed by the Korea Institute of Civil 
Engineering and Building Technology (KICT) (e.g., 
general bridge information, structural information, 
and inspection and maintenance history) and found 
combinations of significant factors causing damages 
of bridge elements. Data mining algorithms (Apriori 
and Ripper) were applied for the pattern analysis and 
the partitional clustering algorithm grouped similar 
patterns for more efficient and fast damage 
prediction. Machine learning concepts using bagging 
and boosting were also employed for resampling and 
upgrading the estimation model to enhance 
estimation performance. The expected results showed 
potential to predict causes, locations, current status, 
and the types of bridge damages that can be used for 
preventive bridge maintenance planning. 
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1 Introduction 

According to the World Economic Forum, 
infrastructure plays a key role for economic development 
since it can enhance national competitiveness. In addition, 
the condition of infrastructure is crucial because its 
deterioration can threat public safety and hinder 
economic activity[1]. Recently it is reminded owing to a 
case that a serious damage of steel wire to support main 
structure of the elevated bridge of Jeongneung stream in 
Seoul, Korea was found by emergency inspection and 
then the bridge was blocked for a month from February 
2016. Bridge structures need enough time and budget for 
maintenance inspection considering its structural 
complexity and also direct and indirect impacts of 
deficiency, and thus preventive management have 
become significant. 

A number of bridges were built with rapid economic 
growth of Korea in the 1970s and then the number of 
bridges over 30 years old is expected to rise over three 
times in 2025 from 3,094 in 2015[2]. Nowadays many of 
them have deteriorated and required proper 
maintenance[3]. After the collapse of Seongsu Bridge in 
Seoul in 1994, the Korean government legislated on the 
Special Act on Safety Control for Infrastructure in 1995 

to designate major facilities as type Ⅰ and type Ⅱ 
facilities and manage them. The aim of the Act is to 
provide methods and regulations of periodic inspection 
for proper repairs based on infrastructures’ condition 
grade of “A” to “E”. A bridge under the state “C” requires 
critical maintenances. 

Current bridge management systems in Korea only 
consider about ten thousand major targeted bridges based 

on its scale elements. Type Ⅰ bridges cover the bridges 
which have 1) a specific superstructure types including 
suspension bridges, cable-stayed bridges, arch bridges, 
and truss bridges, 2) maximum span length over 50m 
except one span bridge, 3) length over 500m, and 4) cut 
and cover structure with width over 12m and length over 
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500m. Type Ⅱ bridges are the second priority structures, 
and they include the bridges which are 1) one span 
bridges with span length over 50m, 2) length over 100m 

among not the type Ⅰ bridges, 3) cut and cover structure 
with width over 6m and length over 100m among not the 

type Ⅰ bridges. However, approximately twenty 
thousand smaller bridges which are under 100m in length, 
not targeted to be managed by the Act, are exposed to be 
in danger. Nonprofessional inspectors have been hired 
and even such an inspection has not been conducted 
regularly[4]. 

An uniform inspection cycle based on the condition 
grade also hinder efficient investigator arrangement and 
budget allocation for weak facilities. Since there are 
various causes of bridge damage and the time of 
occurrence are less predicted[5], there is a need for a 
model to support inspections at ordinary times. 

Developing a model to support effective and efficient 
bridge inspection had been a critical issue in bridge 
management so many studies have been conducted not 
only in Korea, but also in many other countries. The 
bridge condition deterioration model have been one of 
main streams providing condition ratings. The models 
can be categorized into three groups which are not 
mutually exclusive: deterministic, stochastic, and 
artificial intelligence[6].  

Deterministic models including regression models 
represent the relationship between the factors (e.g., 
bridge age, length, and width) that affect deteriorations 
and the facility functions based on mathematical or a 
statistical formulations. Stochastic models such as 
Markovian models focus on facility condition change 
from one state to another during one inspection period 
using probabilities of one or more random variable. 
Artificial intelligence (AI) models with data mining 
techniques comprise classification, clustering, and 
mining frequent patterns. Classification is to find a model 
that explains and distinguishes data classes to predict the 
class label of objects for which the class label is unknown. 
Artificial Neural Network have been utilized in many 
studies to predict condition ratings of bridge[7-10]. 
Clustering forms some groups based on similar 
characteristics measured by distance between data points. 
The latter analysis is advantageous to find frequent 
patterns which are a set of items that often appear 
together[6], [10-13]. Huang and chen (2012) clustered 
bridge data in similar characteristics and found mining 
association rules using the National Bridge Inventory in 
the United States[14], but this research did not show the 
relationships with bridge deficiency and just described 
the associations between conditions. 

Regression models are simple but they have several 
constraint conditions. At first, they need to select several 
factors influencing bridge condition grade before making 

models and thus some factors can be ignored even if they 
are significant[15]. Second, the models are updated as 
calculating new coefficient, and therefore, it is hard to 
update frequently. Moreover, in the context of 
application, most regression studies have focused on the 
condition grade of the whole bridge rather than its 
elements or different types of elements’ deterioration 
because a parsimonious model, a model that satisfies a 
desired level of explanation or prediction with as few 
independent variables as possible, is usually 
preferred[16]. Even though deterioration factors that 
cause bridge elements’ problems were not much different 
by each type of elements and thus individual properties 
of elements did not properly reflected. For instance, the 
current deterioration model in the BMS uses 
combinations of factors among bridge age, span length, 
Average Daily Truck Traffic, average humidity, and 
amount of surface chloride as independent variables for 
different type of elements. Since the number of variables 
is small and the combinations are not much different by 
type of elements, the current model did not very much 
good at considering different type of elements[17]. 

Stochastic models such as Marcovian model are not 
suitable to develop a model to assist inspections  since 
they have been applied for prediction of future conditions 
of bridges, not correspond with the objective of this 
research focusing on present condition predictions. 
Moreover, the Marcovian model based only on the 
current condition without considering historical records 
which make this model unrealistic according to [6], [18]. 

In this context, adopting the AI approach using big 
data analytics or data mining techniques to discover 
patterns is suitable for developing a model. Big data 
analytics enables the model to use as many as variables 
for more reliable model development. Easy updating of 
algorithms enhance the estimation performance and also 
can encourage frequent uses. Inspections supported by 
such functions will be more efficient by offering the 
elements which have high probability of deficiency. 

The primary purpose of this study is to develop an 
easily updated estimation model for bridge elements’ 
damage by considering numerous factors from the bridge 
element level with big data analytics. The model is to find 
a set of patterns such as sheet waterproofing as a deck 
waterproofing type and the maximum span length 
between 29.3 and 32.3 that can impact to each element’s 
condition grade from A to E (e.g., deck delamination = 
“D”). 

This paper developed a model by using Bridge 
Management System (BMS) data collected by the Korea 
Institute of Civil Engineering and Building Technology 
(KICT). There are two types of bridge condition ratings 
in BMS which are a state condition grade and safety 
condition grade. The latter is assessed by structural 
analysis and load carrying capacity test and therefore, it 
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is hard to be replaced. The estimation object is state 
condition grade and it will be mentioned as just 
“condition grade”. BMS data covers bridges categorized 
as general national road, and smaller bridges as well as 

type Ⅰand type Ⅱ bridges. 
The word “prediction” in this research implies that 

the model estimates probable damages in target bridge 
elements. The prediction does not mean time series 
analysis. 

This paper introduces the framework to develop the 
estimation model and preliminary results. 

2 Research Methodology 

2.1 Research Framework 

The major steps to build the estimation model were 
described in Figure 1. 

 

Figure 1. Research Framework 

First of all, data exploration to understand data 
characteristics was performed. Data types (e.g., 
numerical variable and text variable) and data 
distributions were identified in this step. The next step 
was data preprocessing which covered data reduction, 
data transformation, data discretization, data integration, 
and data cleaning. Using the preprocessed data, pattern 

analysis including associations and classifications was 
carried out and this paper presents the preliminary results 
by this step. As one of machine learning algorithms, self-
learning algorithm such as bagging, and an algorithm 
learning by evaluation such as boosting are applied to 
improve estimation performance. Significant patterns are 
then grouped by the similar input conditions or the same 
output damage. At the final stage, the model is validated 
using new inspection data by the boosting algorithm. All 
procedures were carried out in R software version 3.2.2 
for statistical computing and graphics. 

2.2 Data Characteristics 

Accumulated inspection data in BMS were 
categorized into three parts: general factors (e.g., bridge 
class, locations, competent authorities, construction 
related factors, mileage, offset, detour, traffic volume, 
length, width, number of lanes, number of spans, main 
structure type, substructure type, design live load, and 
attached facilities), structural factors (e.g., span length, 
decks, girders, diaphragms, ribs for span and support 
types, abutments, piers, expansion joints, shoes, and 
stopper factors for support) and inspection factors (e.g., 
span or support number, element code, damage code, 
condition  grade and maintenance record). Some text 
options were coded into numbers such as 11 indicated a 
RCS type of main structure. Factors were divided into 
discrete numerical variables (e.g. bridge class and main 
structure type), continuous numerical variables (e.g., 
mileage and traffic volume), and text variables (e.g., 
design firm, constructor, supervisor, and inspection 
descriptions). To utilize text string variables, they should 
be preprocessed into discrete values and they were not 
considered yet in this paper. 

The size of BMS data were quite large enough to be 
called big data since it contained about 84 thousands 
tuples (i.e., records or rows). General data covered total 
6,773 bridges and structural data included 19,625 rows 
for span and 25,729 rows for support. Inspection data was 
10,655 which comprised 9,775 of detailed inspection and 
900 of precise safety diagnosis. Detailed inspection data 
was used since it contained the condition grade in an 
element level. 834,815 rows inspection data in a level of 
different damage types of elements were composed of 
3,701 bridges’ span data and 3,000 bridges’ support data. 

The classes of 6,773 bridges in the data were type Ⅰ 

bridge (13.6%), type Ⅱ bridge (18.6%), the others 
(64.7%), and missing value (3.1%). A distribution of 
condition grade of the whole bridge showed grade “A” 
(27.9%) and “B” (64.7%) took large portion and “C” 
(3.6%), “D” (0.1%), “E” (0%), and the other values 
(3.7%). In the bridge element level, distribution is 
different from that of condition grade of the whole bridge: 
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the portion of grade “A” (34.4%) and “B” (37.0%) are 
smaller and “C” (11.2%), “D” (1.3%), “E” (0.1%), and 
the other values (16.0%). 

2.3 Data Preprocessing 

Variables used in the developed model consisted of 
predictors (i.e., input variables or independent variables) 
and targets (i.e., output variables or dependent variables), 
and preprocessing step was different according to the 
variable type and the role of each variables. 

2.3.1 Predictors	

Data reduction, data transformation, and data 
discretization were conducted for predictors. Predictors 
covered all general factors, all structural factors, and the 
condition grade and the maintenance record from 
inspection factors in order to consider condition grade. 
Data transformation was then performed to correct or 
erase typing errors and to have consistency of expression. 
For example, bridge elements’ condition grade should 
comprised from “A” to “E” but number (e.g., 1, 2, and 3), 
some symbols (e.g., ] and ‘), and other characters (e.g., 
N, Q, V, and X) were sometimes included in a original 
dataset. Numbers and the other values were removed and 
small letters from “a” to “e” was changed into the capital 
letters.  

Discretization was also carried out to make continuous 
numerical variable be categorized. It can be considered 
as if one dimensional partitioning and then a k-means 
clustering was utilized. By k-means clustering, the 
objects are distributed into k clusters based on a rule that 
minimizing within-cluster distances and maximizing 
inter-cluster distances[6]. The “discretize” function in the 
“arules” package was applied to make results on R 
software. To set the number of classes ( ݇ ) before 
clustering, Sturge’s rule was applied using size of sample 
(݊) [19]. The calculated values were 20 for span and 19 
for support when n was 560,272 for span and 240,418 for 
support. 

݇ ൌ 1  3.322ሺ݈ ଵ݃nሻ (1) 

2.3.2 Targets	

The major goal of this research is to find patterns of 
bridge elements’ damages, so the related variables were 
restricted to represent target variables. An aggregated 
factor (e.g., 2B07100C) consisted of span or support 
number (2), element code (B07; expansion joint), 
damage code (100; crack), and condition grade (C) from 
inspection factors. 

2.3.3 Generating	Dataset	

The preprocessed variables were combined by the 
bridge number which existed in the every data table. Span 
dataset (87 variables, 452,361 records) and support 
dataset (69 variables, 193,499 records) were generated to 
include not only predictors but also targets. Since there 
was not any common structural factor between span 
factors and support factors and thus two divided dataset 
were created. 

2.3.4 Data	cleaning	

Handling missing values was critical because blank 
cells were randomly but frequently distributed in each 
dataset. There are two common approaches to deal with 
missing values: ignoring the tuple or filling in the missing 
values[11]. The former is very conservative and then the 
span dataset were shrunk as 66,542 tuples when it was 
applied. A global constant (e.g. 9999) or using a measure 
of central tendency (e.g., mean for numerical continuous 
variable and mode for numerical discrete variable) to fill 
in the missing value were used to find the best method 
that represented real population. 

2.4 Data Mining 

The core part of the estimation model was the pattern 
analysis and it had two axis in this research: descriptive 
mining and predictive mining. Descriptive mining is to 
comprehend essential characteristics of the data and 
answers to “What has happened?” and predictive mining 
deduces patterns from the data and replies to “What could 
happen?”[20], [21]. Two approaches used different 
techniques but the objective is same: finding patterns 
between predictors and targets. 

The first descriptive axis was to find frequent patterns, 
which were association rules. The rule indicated only co-
occurrence and did not mean causality. This process 
found significant factors that correlated with each bridge 
elements’ damage. Association rules are sets of items (i.e. 
itemsets) which consist of “if” (i.e., antecedent) and 
“then” (i.e., consequent). Items indicate each condition 
such as bridge age under 20 years and a “frequent itemset” 
means the itemset can be found in the data more than a 
specific level called minimum support. “Support” is 
calculated as the number of occurrences with both 
antecedent and consequent itemsets divided by the 
number of the whole tuples. Another measure that shows 
more strong co-occurrences than support using 
conditional probability concept is “confidence”. The 
“confidence” is calculated as support divided by the 
number of occurrences with only antecedent itemsets. It 
means how many occurrences which include consequents 
among the occurrences only with antecedents. The 
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validity of the created rules is obtained by “lift”  
calculated as confidence divided by benchmark 
confidence. The benchmark confidence is computed by 
the number of occurrence with only consequent itemsets 
divided by the number of the whole tuples. Assume that 
a rule can be created as if six years old bridge and number 
of shoes under three then B16100C (i.e., pier, network of 
fine cracks, and grade “C”). In this case, benchmark 
confidence presents the frequency of B07100C. If lift 
ratio is smaller than 1, the obtained rule is not significant 
since there is a good possibility that B07100C can occur 
without antecedents [11], [21]. 

To mine association rules, Apriori algorithm 
proposed by Agrawal and Srikant in 1994[22] were used 
in this research since its efficiency for analyzing huge 
amounts of data. The basic concept of Apriori is that if 
an itemset is not frequent, each superset of the itemset 
does also not appear frequently. For instance, if 
{condition 1}  {condition grade C} is not frequent, 
then {condition 1, condition 2}  {condition grade C} 
is also not frequent. The contraposition for frequent cases 
is also true[11]. This concept prunes insignificant rules 
and then enhances the computational efficiency. Data 
discretization is needed to operate the Apriori algorithm. 
On R software, the “apriori” function in the “arules” 
package was utilized. Rules are created by adding 
conditions one by one until the number of conditions 
reaches the maximum length. The results contained a lot 
of combinations, and thus to obtain the desired outcome 
such as {condition 1, condition 2}  {condition grade C} 
an option was added that descendants should include the 
target variable column. 

In the other axis, classification as performed to find 
patterns which combinations of certain conditions predict 
a particular condition grade. As one of the classification 
method, rule-based classification also finds rules (i.e., 
patterns) like mining association rules but its objective is 
to predict class label such as condition grade. For 
extracting predictive patterns, RIPPER (Repeated 
Incremental Pruning to Produce Error Reduction) as a 
rule producer[23] was applied. RIPPER directly extract 
rules from data without going through other classification 
models such as decision tree, so the computation time is 
faster.  

In the RIPPER, one condition is created and the next 
condition is added with examination of how well the 
training data (i.e., data used for developing model) is 
explained. After making patterns, it sets a different 
training set from the whole data and compares rules from 
training sets. Through this step, the optimized 
combinations can be created[11], [24]. The “JRip” 
function in the “RWeka” package on R software was 
used. 

After finding patterns, a partitional clustering 
algorithm groups similar patterns not only for efficiency 

but also for utility for users. The grouping includes two 
directions: one is to make clusters with common 
combinations of conditions, the other is to group using 
some component of the target such as condition grade, 
damage code, element code, and span or support number. 

2.5 Updating 

The developed estimation model is updated using 
ensemble algorithms of machine learning to obtain better 
prediction performance. Ensemble methods apply 
multiple classifiers which indicate an algorithms or a 
specific mathematical functions that implement 
classification[11]. 

In the pattern analysis phase, bagging, also called 
bootstrap aggregating proposed by Leo Breiman(1994) is 
utilized to reduce variance and to avoid overfitting of 
classification. The main concept of this method is 
creating multiple training sets by random sampling from 
the given training set, building estimation models in each 
sample space (i.e., bootstrap), and eventually combining 
estimation models using majority vote for 
classification[11], [24].  
In addition, boosting algorithm is applied for model 

evaluation and validation. To decrease misclassification 
and maximize the classification performance, 
misclassified items gain weight and correctly classified 
items lose weight during boosting so that weak classifiers 
concentrate more on the items  previously 
misclassified[11,] [24]. Model update occurs when a new 
data enters. Training population is changed and then 
bagging algorithm builds estimation model. 

2.6 Validation 

The developed model is validated by comparing new 
inspection data to the estimation results. After entering 
the data about newly inspected bridge into the model, the 
model matches the data to patterns found and evaluate 
whether inspected condition grade corresponds the 
predicted grade. The validation result will be an input 
data for boosting and the classifiers will be weighted. 

3 Results 

3.1 Preliminary Results 

The 11 rules and 678 rules were found using the 
Apriori algorithm in the span and support dataset 
respectively with numerical settings that 0.001 for 
minimum support, 0.5 for minimum confidence, and four 
for maximum length of itemsets (Table 1). Four patterns 
from the support dataset were created using the RIPPER 
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without any numerical settings. The number of patterns 
including only grade under C were selected since the 
bridge elements of condition grade under C were the 
targets to get proper maintenance.  

Table 1. Obtained patterns of bridge span based on the 
Apriori algoritm 

Combination of conditions Estimated
condition

grade Condition 1 Condition 2 Condition 3 

Inspection 
date 
=20071016 

Maximum 
span length 
=[ 29.3,32.3) 

City 
=Moon-Kyung 

Expansion 
joint 

 
Crack 

 
C 

Road code 
=2003 
Millage 
=[274.64,316.48)

Inspection 
date 
=20080808 

Type of cross 
=Normal 
(not elevated) 

Effective  
width 
=[18.36,20.83) 

Deck 
 

Crack 
 

C 

Deck main  
rebar space 
=[ 27.51,37.21) 
Girder space 
=[ 207.2,229.6) 

Substructure type
=Round-shaped 
pier Allowable 

load=0 Effective width 
=[18.36,20.83) 

Total width 
=[18.91,20.11) 

 

Barrier 
existence 
=Y 

The results can explain that some structural 
conditions determines specific grade and type of bridge 
elements. The results about span using the Apriori shows 
that specific location, time, and structural characteristics 
had an impact for C grade of crack on expansion joint. 
When a bridge which was located on the load code 2003 
in Moon-Kyung city with maximum span length between 
29.3 and 32.3 and millage between 274.64 and 316.48 
was inspected in 2007 it frequently showed C grade of 
crack on expansion joint. For C grade of crack on deck 
was influenced by time, structural types, and structural 
sizes. A bridge which was not the elevation bridge and  
had barriers and rounded-shaped piers  with widths 
between 18.36 and 20.83, rebar space between 27.51 and 
37.21, or girder space between 207.2 and 229.6 
frequently represented C grade of crack on deck. The 
support data presented similar format results. 

Using the RIPPER algorithm patterns about not span 
but support were found as follows: 

1) If bridge Age=21 and abutment high=[0, 1.41) 

then grade D of crack on bridge bearing. 
2) If minimum distance=[21.21, 27.33) and bridge 

age = 16 then grade C of erosion on bridge 
bearing. 

3) If bridge length = [43.2, 78.2) then grade C of 
erosion on bridge bearing. 

4) If bridge age = 24 and number of up-lanes = 2 
then grade C of deformation on  bridge bearing 

The patterns from the RIPPER algorithms were simpler 
than that from the Apriori but the explanation power was 
not good enough since the number of conditions was too 
short and it is less understandable such as only bridge age 
and the number of up-lanes leaded to bridge bearings’ 
erosion. 

3.2 Expected Outcomes 

To provide interpretable information the output is 
designed as a portfolio type of each bridge span or 
support as illustrated in Table 2. Using confidence 
probabilities of each pattern will also be offered. 

Table 2. Sample portfolio of a bridge span 

1) Bridge Number: 03447 
2) Bridge Name: Songgang 
3) Span number: 3

Combination of 
conditions 

Element Damage G Prob. 

{bridge length 
=(970.0, 1289.3), 
average traffic 
volume 
=(18291, 22064), 
deck pavement 
thickness 
=(7.75, 8.50)} 

Deck Crack C 70% 

{bridge width 
=(17.85, 20.08), 
deck depth 
=(23.7, 27.5)} 

Girder Crack D 60% 

{no. of lanes=4, 
girder type 
=PSCB} 

Diaphra-
gm 

Exposed 
Steel bars 

B 80% 

4 Conclusions 

This study proposed a framework to develop an 
estimation model to find patterns of bridge element’s 
deficiencies by applying association, classification, and 
clustering in big data analytics. The preliminary results 
implied that specific conditions of factors can cause 
bridge elements’ damages. The developed model uses the 
number of various factors and can be updated using 
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machine learning algorithms which are strengths of this 
model compared to existing regression models.  

The study used BMS data which covers not only type 

Ⅰ and Ⅱ bridges but also smaller bridges and therefore 
the model can be utilized widely. Identifying many 
factors related with specific condition grade of each 
bridge element provides useful information to be referred 
for inspection that enables effective and efficient 
monitoring. In short, this estimation model can enhance 
current inspection system by enabling a preventive 
bridge maintenance planning. 

This paper suggested the framework to develop the 
estimation model and provide preliminary findings of 
rules. Other association rule algorithms and classification 
algorithms should be compared and conducted to find 
optimized level of performance as well as remaining 
steps from the research framework. The detailed results, 
portfolio and a set of critical factors influencing bridge 
elements’ damage, will covered in our future research. 
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