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Abstract –  

Recent advances in sensing technologies provide 
opportunity to utilize advanced data collection 
equipment such as laser scanners, high-resolution 
cameras, etc. for both short- and long-time 
monitoring of structures. Laser scanners, which are 
capable of collecting up-to two million points per 
second along with high-resolution images, are 
especially evolving rapidly and their usage for 
capturing and documenting the current condition of 
varying structural types is becoming increasingly 
feasible. The authors’ previous research has focused 
on developing generalized algorithms for detecting 
surface damage on structures from captured laser 
scans and images. These algorithms are capable of 
automatically detecting surface damage on varying 
structural types as well as several construction 
materials since they use underlying surface geometry 
for performing damage detection. These damage 
types include concrete cracking, concrete spalling, 
steel delamination, steel section loss, bent members, 
and other misalignments. This paper investigates the 
use of supervised learning methods for determining 
whether a detected region represents an actual 
damage location. First, the input feature 
representations of the learning algorithms for each 
damage type are determined and the associated 
training sets, which are representative of real-world 
use of the algorithms, are prepared. Once the training 
and validation are completed, the learning algorithms 
are tested on the detected damage data, which is 
obtained by running the damage detection algorithms 
on both laser scans and texture-mapped images from 
a concrete test setup. Finally, the accuracy of these 
learning algorithms is investigated.  

 

Keywords – 
Terrestrial Laser Scanning; Surface Damage 

Detection; Damage Classification; Supervised 
Learning 

1 Introduction 

In the past two decades, researchers have developed 
several methodologies for both monitoring structures and 
detecting damage by using laser-scanning technology. 
The common methodologies used for structural 
monitoring include measuring high accuracy 
displacements, strains, pressures, or using a small 
number of points for computing related quantities or 
collecting visual inspection information [1]. Since the 
texture-mapped point cloud-capturing laser scanning is a 
recent technology, its usage for damage detection has not 
been investigated broadly. A couple of novel advances 
include the usage of point clouds to generate Building 
Information Model (BIM) of reinforced concrete walls 
and performed BIM–based earthquake damage 
assessment [2] and the utilization of LiDAR data and 
imagery for performing post-earthquake assessment, in 
order to determine the building damage degree [3]. 

Laser scanning technology provides a 3D 
representation of the entire structure under investigation. 
As has been discussed, with the current developments in 
this technology, it is possible to collect high-density point 
clouds that capture the surface properties accurately for 
structures. Authors’ previous research focuses on the 
surface damage detection capabilities of the laser 
scanning technology that captures 3D point clouds with 
color information [4; 5; 6; 7]. The developed damage 
detection algorithms provide an adaptive system for 
damage detection, since the parameters used for the 
detection algorithms are computed automatically using 
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the associated surface properties. The strategies 
developed for laser-based structural sensing and surface 
damage detection have been discussed extensively in [5]. 

For this paper, these developed damage detection 
algorithms are used to determine the damage locations on 
a concrete testing frame, and then, the detected surface 
damage is quantified. Since the main focus of this paper 
is to use supervised learning algorithms for damage 
classification, the detailed damage detection results 
obtained from the concrete testing frame are not included 
in the text, however, these results could be found in [5].  

Once the damage detection and quantification are 
completed, the damage detection results obtained from 
the concrete testing frame are used for both training and 
validation of the learning algorithm, and finally, its 
accuracy is investigated. 

The brief information on the methodologies used for 
surface damage detection and the detailed explanation on 
the use of supervised learning algorithms for damage 
classification are discussed in the following sections. 

2 Laser-based Surface Damage Detection  

Two main surface damage detection methodologies 
were developed in authors’ previous research. The first 
methodology is a surface-normal based damage detection 
method that only uses the 3D coordinate information for 
locating rupture, spalling, delaminations. This method is 
later improved by using intensity values along with the 
3D point information for locating small deformations 
such as cracks, corrosion.  

The second methodology, on the other hand, is a 
graph-based damage detection method that is used for 
detecting alignment issues and points of discontinuity. 
This method is an extension of the graph-based object 
detection method that generates skeletons from cross-
section cuts of a voxelized cluster, where a voxel 
represents a single sample or data point on a regularly 
spaced, three-dimensional grid, through extracting 
skeleton of an object in order to detect common structural 
members. The deviations from the predicted object 
alignments are used for extracting problematic locations 
on structures. Then, another method is introduced that 
converts cross-section voxel representation 
automatically into a polygon for computing the changes 
in the cross-section through area calculation and 
determining the total volume change on the investigated 
member. 

Detected defects are automatically clustered and a 
mesh grid-based defect area and volume extraction 
method is developed in order to obtain quantifiable defect 
outputs for further investigation. For smaller defects such 
as cracks, an additional methodology is proposed for 
automated crack length and width extraction.  

2.1.1 Surface Normal-based Damage Detection 

The surface normal-based damage detection method 
relies on the modal properties of the detected surfaces 
and/or objects. The relative orientation of the estimated 
surface normal with respect to a reference normal is used 
to locate the defected areas on the surface of structures. 
The reference normal can be a surface normal computed 
via surface patches; the normal representing the skeleton 
of the detected object; or the normal vector between a 
reference point and the current query point. 

The usage of only the normal variations on the surface 
would be sufficient for detecting large surface defects. 
However, another parameter should be introduced if 
certain defects with sizes close to the resolution of the 
scanner, such as cracks, are to be detected. Thus, the pixel 
information (intensity) obtained from texture-mapped 
point clouds is used for enhancing the detection 
capabilities for smaller defects. 

In order to calculate both area and volume of a 
detected defect, a mesh-grid is fitted to the defect surface. 
Later, each part of the grid (for the area) and the 
corresponding rectangular prism (for the volume) are 
used for quantifying the detected damage. This damage 
quantification method is used to compute the area and 
volume associated with each detected defect. 

For the concrete testing frame, the developed damage 
detection methods are used for both locating and 
quantifying concrete spalling. Several point cloud 
patches, which are extracted from the surface of the 
concrete testing frame, are processed. A set of 
representative dimensions are extracted from the detected 
damage areas, and these dimensions are compared with 
the corresponding hand-measurements in order to 
validate the efficiency of the detection algorithms.  

Even though the mentioned quantification method is 
capable of both locating and quantifying relatively large 
defects, it is not suitable for recording required crack 
dimensions, which can be listed as length and thickness. 
Thus, a new methodology is developed for computing the 
necessary crack dimensions automatically. 

2.1.2 Improvements for Crack and Spalling 
Detection 

In most of the previous crack detection studies, which 
are predominantly image-based, some of the important 
parameters, such as camera-object distance, are not 
considered or are assumed to be constant. This prevents 
most of the current approaches from being used for crack 
quantification, since these methods are specifically 
developed for crack detection rather than quantification. 
For current approaches, it is required to maintain a 
constant focal length, resolution, or distance to the object 
in order to be able to extract crack dimensions ([8]; [9]; 
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[10]; [11]; [12]; [13]). The damage detection method 
discussed in authors’ previous research eliminates the 
requirement for prior knowledge on focal length, 
resolution, or distance to the investigated object, since all 
the required parameters for the defect detection are 
extracted from the point cloud automatically. However, 
it should be noted that the proposed method, similar to 
many other damage detection methods, especially crack 
detection methods, results in false positives along with 
actual defects.  

The first step towards automated crack dimension 
extraction is to adjust the existing clustering algorithm, 
cluster tuning, which separates detected defect regions 
into individual defects, for cracks, and then quantify the 
dimensions of each separated point cluster with the 
proposed crack dimension extraction method. The crack 
dimensions are computed by defining a bounding box 
around each crack and performing a dimension extraction 
procedure as explained in [5]. 

The results obtained through defect detection and 
dimension extraction algorithms prove that these 
developed methods provide an opportunity to use laser 
scanning technology for detecting small defects, such as 
cracks and spalling regions, effectively. However, it 
should be noted that since the defect detection is achieved 
through investigating the local variations at a point of 
interest on the surface, the developed detection 
algorithms are sensitive to surface impurities. These 
impurities and/or any reoccurring patterns result in false 
positives when the damage detection algorithms are 
executed. Thus, the obtained results include several 
falsely detected clusters, which do not represent an actual 
defect. In order to avoid detecting these false positives, 
to improve the accuracy of the developed algorithms and 
to perform automated classification, a neural network 
classifier is introduced. The details of this classification 
strategy and the classifier’s overall performance on the 
concrete testing frame are discussed in the following 
section. 

3 Damage Classification with Supervised 
Learning 

 
The detected false positives for damage results could 

be an issue due to a repeated pattern, any surface impurity, 
and etc.; essentially, any surface variation that causes the 
surface normal to deviate from the computed reference 
normal and/or results in significant variations in local 
intensity values. Two significant example cases that are 
encountered for this dataset are shown in Figure 1(a) and 
(b). In Figure 1(a), the locations of small surface holes 
are shown with black circles, and a repetitive pattern for 
intensity variation, resulted from inefficient texture-

mapping, is represented in Figure 1(b). It is required to 
eliminate the false positives from the detected damage 
clusters in order to improve the overall efficiency of the 
proposed defect detection algorithm. To perform this, a 
trained artificial neural network classifier is used to 
differentiate the real defects (cracks and/or small spalling 
regions) from false positives.  

(a) (b) 

Figure 1. Sample false positive patterns: (a) small holes 
existing on the surface and (b) lines with significant 

intensity variation 

 
In [14], an image-based study, which uses 2D images 

to create 3D surface representations, was performed, in 
order to eliminate the dependency on the previously 
listed parameters: constant focal length, resolution, or 
distance to the object. The first step of this study is 
segmentation, which is used for isolating the patterns that 
can be potentially classified as defects. The useful 
information about the scene objects is extracted by using 
morphological image processing and then, structuring 
elements are used to complete the segmentation. 
Segmentation is followed by feature extraction and 
finally, the study is completed by classification.  

In this paper, a similar methodology for classification 
is followed. First, the defects are segmented as objects by 
using the developed clustering methods. Second, a 
feature set that stores quantitative information on each 
defect cluster is formed. Finally, this feature set is used 
to train, validate and test the neural network classifier. 

3.1 Feature Extraction 

A feature is defined as a set of finite values that 
represents the quantitative attributes or properties of any 
segmented object; in our case, clusters. It is crucial to 
generate an appropriate feature set that includes all the 
important characteristics that helps identifying similar 
patterns. In this paper, a feature set, which is similar to 
the one proposed in [14], is used, with two additions 
representing the properties of intensity distribution, since 
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both application have a similar nature. The feature set 
defined in [14] is extracted by using only the 2D 
properties of the segmented objects; however, since the 
detected defect clusters represent a 3D dataset, for this 
research, some of the described features are extracted by 
using 3D information.  

The features that are included in the feature set can be 
listed as eccentricity, area of the projected cluster divided 
by the area of the bounding ellipse, solidity, absolute 
value of the correlation coefficient, compactness, and 
mean and standard deviation of intensity values. The 
definitions of each item in the listed feature set could be 
found in both [14] and [5]. 

These features listed above are computed for each 
defect cluster, and the values are stored in a feature 
matrix. This feature matrix is then used for training, 
validating and testing the neural network classifier. 

3.2 Classification 

There are several classifier options that can be used 
for this application. Some of the possible classifiers can 
be listed as Bayes classifier [15], k-nearest neighborhood 
classifier [16], multilayer feed-forward artificial neural 
networks [17], support vector machines [18], and etc. 
However, in most of the recent studies performed for 
crack detection, where several classifiers are compared, 
the accuracy of the results obtained by using neural 
network classifiers is shown to be higher than the other 
listed methods ([8]; [9]; [14]; [19]). Thus, for this 
research, the neural network classifier is selected to be 
used for classification.  

An artificial neural network, which is composed of 
processing elements that are interconnected via synaptic 
or weighted connections, is a parallel processing 
optimization system. In a neural network, weighted 
interconnections are used to process inputs received at a 
processing element in a layer, and then the resulting 
outputs are transmitted to the following set of processing 
elements. For nonparametric pattern classification, feed-
forward neural networks, which are trained by using a 
back-propagation algorithm, are the most commonly 
used neural approaches [20]. This type of neural network 
can be composed of three or more layers of processing 
elements: the input layer, hidden layer/layers, and output 
layer. Through weighted interconnections, each 
processing element in a layer is connected with all 
processing elements in the preceding and following 
layers. For pattern classification applications, the input 
layer consists of a set of feature vectors; thus, the size of 
the input layer is always equal to the number of features. 
However, it should be noted that the number of 
processing units in hidden layers is completely dependent 
on the complexity of the pattern recognition problem. 
The number of neurons in the hidden layer is generally 

empirically determined by trial and error [21]. The 
number of layers and the number of neurons in the hidden 
layers of neural networks have to be chosen carefully in 
order to obtain good classification results. Since the 
computed feature matrix is composed of similar entities, 
in this research, the neural network configuration given 
in [14] is used. The classifier used for this application is 
a three-layer feed forward neural network, which has 2 
output neurons and 10 neurons in the hidden layer. 

4 Results 

The developed damage detection algorithms are used 
to process 106 randomly selected surface patches from 
the concrete testing frame. As a result, 201 candidate 
defect clusters are detected and separated for further 
analysis. These defect clusters are plotted, and the actual 
defects and the false positives are manually separated for 
every patch.  

The generated feature set is composed of 201 damage 
and non-damage feature vectors. Out of 201 feature 
vectors, 74 vectors represent the properties of actual 
defects, whereas 127 vectors are composed of features 
extracted from false positives. For training, % 70 of the 
complete feature set is used; 15% is used for validation 
and finally, 15% is used for testing.  

The performance of the selected classifier is shown 
by using four items: accuracy, precision, sensitivity, and 
specificity. Accuracy shows the proportion of true 
classifications in the test set (15% of the entire feature 
set). Precision is defined as the proportion of the true 
positive classifications against all positive classifications. 
Sensitivity is the proportion of actual positives that were 
correctly classified, and specificity is the proportion of 
negatives that were correctly classified. The results are 
shown in Table 1.  

Figure 2(a) shows a portion of the concrete testing 
frame, and Figure 2(b) presents the post-classification 
damage detection results on the corresponding region of 
the point cloud.  

Table 1 Performance results for the neural network 
classifier 

 Percentage (%) 
Accuracy 93.51 
Precision 94.45 

Sensitivity 95.89 
Specificity 90.38 

5 Conclusions 

The results show that the accuracy of the neural 
network classification is high for this specific application. 
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However, it should be noted that the detected defect 
clusters sometimes fail to represent all the surface 
damage that is present on an investigated patch. Some of 
the defects may not be detected depending on the 
properties of the point cloud. For these cases, even 
though the accuracy of the classifier is high for the 
generated feature set, the obtained results may not 
represent the overall efficiency of the developed damage 
detection algorithm. At the same time, it should be 
mentioned that the performance of the trained neural 
network on another structure cannot be estimated from 
the obtained results; however, in literature, there are 
several examples that show the accuracy of a trained 
neural network reduces when the classifier is tested on 
different structures.  

Further study on the subject, which includes the 
application of the learning algorithms on larger datasets 
with varying surface properties, needs to be performed, 
in order to build a comprehensive understanding on the 
use of supervised learning algorithms for laser scanning-
based damage detection and classification applications. 

 
(a) (b) 

Figure 2. (a) Image of a portion of the concrete testing 
frame, and (b) defect detection results shown on 

corresponding portion of the point cloud 
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