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Abstract – 

Construction progress management and work 
analysis are often difficult in building interiors. In 
order to make progress management easier, the 
authors developed methods for recording the interior 
work environment. These methods record data using 
Microsoft Kinect sensors.  

In this paper, the authors describe methods for 
recording work data utilizing several Kinect sensors. 
The authors recorded the following types of data:  

1. The work environment at the construction site  
2. The shape of the building at the construction site 
3. The work efficiency at the site derived from the 

motion capture data  

To record the three types of data, the authors 
developed a method for performing motion capture 
using several Kinects.  

In addition, a shape recognition method for 
identifying building materials was developed. The 
shape recognition method utilizes point cloud data 
and camera image data. The authors also studied 
methods for analyzing the work efficiency data on the 
basis of skeletal tracking information.  
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1 Introduction 

Construction work is broadly divided into outdoor 
work such as building frame construction and indoor 
work such as interior finish work. The progress 
management and observation of outdoor work at a 
construction site are relatively easy to implement using 
methods such as employing the Global Positioning 
System (GPS) to identify worker positions and 
trajectories. 

However, it is difficult to observe indoor work such 
as interior finish work because interior workers are 
located in buildings with room and floor divisions. It is 
generally not possible to use the GPS inside buildings to 

record worker positions and trajectories. Construction 
progress management and work analysis in indoor 
environments require a great deal of effort. 

According to Japan’s Ministry of Land, Infrastructure, 
Transport and Tourism, the cost of renovation and repair 
work in Japan was 11.02 trillion yen in 2013, and the cost 
is expected to increase in the future. 

Moreover, if humans and robots work together on the 
construction site, we need the methods of collaborating 
safely with human workers in the same floor. For safety 
of construction workers, it is important to record 
pedestrian trajectories inside buildings. 

In order to reduce construction costs with improved 
progress management, this paper focuses on methods for 
determining construction-worker positions and 
trajectories inside buildings. This requires shape 
recognition and motion capture devices to identify the 3D 
shape of the building and worker movements inside the 
building. 

Several researchers have developed methods for 
recording pedestrian trajectories inside buildings. Some 
researchers have recently shown interest in 3D image 
sensors such as Kinect. A method for collecting 
trajectories with multiple Kinect sensors has been 
developed by Stefan Seera [1]. 

We also developed methods using Microsoft Kinect 
sensors [2]. The Kinect sensors collect camera data and 
calculate a 3D depth map. In addition, a Kinect sensor is 
able to track the skeletal images of one or two moving 
people. 

In this paper, we describe methods for recording the 
work environment and worker trajectories using several 
Kinect sensors. The authors recorded the following types 
of data: 

1. The work environment at the construction site 
2. The shape of the building at the construction site 
3. The work efficiency at the site derived from the 

motion capture data 
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2 Measurement Technique Using Multiple 
Kinect Sensors 

Kinect sensors can maintain tracking through a range 
of a few meters; however, this is an insufficient range for 
measurements inside buildings. One Kinect sensor 
cannot measure all of the intricacies of building spaces, 
such as stairwells. In order to measure a wide area inside 
buildings, we have developed a measurement technique 
using multiple Kinect sensors. 

2.1 Comparison of the Precision of 3D Point 
Clouds Acquired from a Kinect Sensor 
and 3D Laser Scanner 

A Kinect collects camera data and calculates a 3D 
depth map. We developed a system to create 3D color 
point clouds from camera data and depth maps. 

We then compared the precision of 3D point clouds 
acquired by a Kinect sensor and a Leica HDS3000 3D 
laser scanner. Figure 1 shows a Kinect sensor and 3D 
laser scanner setup in a measurement room with spherical 
targets. The distance between the Kinect sensor and the 
wall is 4 m. Figure 2 shows the 3D point clouds acquired 
by the Kinect (in red) and 3D laser scanner (in green and 
blue). As can be seen in Figure 2, the precisions of the 
3D laser scanner and Kinect sensor are approximately ±3 
and ±10 mm, respectively. 

 

Figure 1. Kinect sensor and 3D laser scanner setup 
in a measurement room with spherical targets 

  

Figure 2. Comparison of the precision of 3D point 
clouds acquired from a Kinect sensor and 3D laser 
scanner 

2.2 Shape Recognition of Circular and 
Spherical Targets 

Two 3D depth maps with separate individual 
coordinate systems were used as inputs to perform the 
registration of point-cloud data based on multiple targets. 
We used spherical and circular targets to register multiple 
individual scans on a single coordinate system. Figure 3 
shows the results for the shape recognition of circular 
targets based on 3D images and the measurement of the 
3D coordinates of the circle center. Figure 4 shows the 
point clouds on spherical targets acquired by a Kinect 
sensor. 

 

Figure 3. Shape recognition of circular targets 
based on 3D images and the measurement of the 
3D coordinates of the circle center 

 

Figure 4. Point clouds of the spherical targets 

2.3 Procedure for Registering Multiple 
Individual Point Clouds on a Single 
Coordinate System 

In order to register multiple individual point clouds 
acquired by Kinect sensors on a single coordinate system, 
we developed a procedure for Kinect registration. This 
procedure consists of the following five steps: 

1. Install more than four spherical targets for each 
Kinect. 

2. Map the depth information from each Kinect. 
3. Import point-cloud data and extract the points on 

the spherical targets. 
4. Calculate the coordinates of the centers of the 

spherical targets using the least-squares method. 
5. Register the target center coordinates into a CAD 

coordinate system. 

Figure 5 shows spherical targets and the importation 
of point-cloud data from two Kinect sensors. Figure 6 



33rd International Symposium on Automation and Robotics in Construction (ISARC 2016) 

shows multiple 3D depth images in a complete 3D model. 

 

Figure 5. Measuring the position of the Kinect 
based on the spherical targets 

 

Figure 6. Multiple images in a complete 3D model 

2.4 Evaluation of Pedestrian Trajectories 
Acquired by Kinect Sensors 

We evaluate the pedestrian trajectories acquired by 
two Kinects. We collected skeletal tracking data in the 
room using two Kinect sensors. 

Our evaluation data consist of two trajectory sets: the 
first data set was acquired by Kinect1 shown in Figures 6 
and 8. The second data set was acquired by Kinect2. Two 
Kinect sensors measure the same pedestrian for 7668 
frames (ൎ 	259	s). The pedestrian walked around the 
perimeter of a triangle with a side length of 1300 mm. 
We analyzed the distance of the two trajectories. 

Figure 7 shows the triangle on the floor and the 
positions of Kinect sensors. Figure 8 shows the point 
clouds and student trajectories acquired by the two 
Kinect sensors. Figure 9 shows the evaluation results of 
the pedestrian trajectories acquired by the Kinect sensors, 

and Table 1 summarizes the statistics of the measurement 
precision of the pedestrian trajectories. 

Figure 9 shows the distribution of the Euclidean 
distance between the Kinect1 and Kinect2 trajectories 
acquired simultaneously. The mean and median distances 
are 82.9 and 70.5 mm, respectively. The deviation in the 
two trajectories is a few centimeters. The reason for the 
deviation is considered to be the deviation due to 
registering multiple individual point clouds on a single 
coordinate system. In addition, the reason for the 
deviation is due to the student’s orientation in the camera 
image. Owing to the differences in the acquisition 
conditions such as the image in the pedestrian facing 
forward or backward, it is assumed that the two skeleton 
positions have different positioning of approximately 70 
mm. 

 

Figure 7. Collecting the skeletal tracking data 

 

Figure 8. Point clouds acquired by Kinect1 (in 
blue) and Kinect2 (in green) and the student 
trajectories obtained by Kinect1 (in red) and 
Kinect2 (in yellow) 
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Figure 9. Evaluation results of the pedestrian 
trajectories acquired by the Kinect sensors. 

Table 1 Statistics for the measurement precision of the 
pedestrian trajectories 

Variable Value 
n 7668 

Mean (mm) 82.9  
SD (mm) 46.3 

Maximum (mm) 325.7  
Median (mm) 70.5  

3 Method for Registering Skeletal 
Tracking Data from Multiple Kinect 
Sensors on a Single Coordinate System 

The registration procedure discussed in the previous 
section is used with point-cloud data and 3D depth maps. 
The registration procedure for skeletal tracking data from 
multiple Kinect sensors is different because the skeletal 
tracking data include a time axis. We developed a method 
of registering skeletal tracking data from multiple Kinect 
sensors on a single coordinate system. 

3.1 Procedure for Registering Skeletal 
Tracking Data from Multiple Kinect 
Sensors on a Single Coordinate System 

In order to register skeletal tracking data from 
multiple Kinect sensors on a single coordinate system, 
we developed the following five-step procedure: 

 
1. Register skeletal tracking data from each Kinect on 

individual coordinate systems (using the procedure 
discussed in the previous section). 

2. Set up the measurement space for each Kinect. 
3. Integrate the skeletal tracking data from all Kinect 

sensors into one dataset according to the data 
acquisition time. 

4. Perform noise reduction on the skeletal tracking data. 
5. Perform smoothing of the skeletal tracking data 

using a simple moving-average technique. 

3.2 Measurement Space Setup for Kinect 
Sensors 

Skeletal tracking data are generated from camera 
images and 3D depth maps obtained from the Kinect 
sensor. The shape of the skeleton is different in images 
obtained from the front and back camera positions. The 
data precision deteriorates at the point of camera 
switching. In order to prevent precision deterioration, the 
measurement space should be set up for each Kinect. 
Figure 10 shows the setup for four Kinect measurement 
spaces. The skeletal tracking data that are outside the 
measurement spaces need to be deleted. 

 

Figure 10. Setup of the Kinect measurement 
spaces 

3.3 Integration of Skeletal Tracking Data into 
One Dataset According to the Acquisition 
Time 

Skeletal tracking data have XYZ coordinates and 
Kinect acquisition times. It is necessary to integrate 
skeletal tracking data into one dataset according to the 
Kinect acquisition time. The method used to integrate the 
skeletal tracking data from multiple Kinect sensors into 
one dataset is shown in Figure 11. 
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Figure 11. Method for integrating skeletal 
tracking data from multiple Kinect sensors into 
one dataset 

3.4 Noise Reduction of Skeletal Tracking Data 

The advantage of motion capture based on a variant 
of image-based 3D reconstruction is that it does not 
require a special marker for motion capture. Owing to the 
occasional erroneous recognition of skeletal positions, 
we have developed a noise reduction method for skeletal 
tracking data. 

If the skeletal points exceed a speed of 6 m/s, noise is 
recognized, and points are deleted as errors. Figure 12 
shows the noise reduction for skeletal tracking data. 

 

Figure 12. Noise reduction for skeletal tracking 
data 

3.5 Data Smoothing of Skeletal Tracking Data 
Using a Simple Moving Average 
Technique 

The skeletal tracking data obtained by a Kinect sensor 
are acquired at an approximate frame rate of 30 Hz. There 
is a large variability in the accuracy of the individual 
points. To reduce this variability, we have developed a 
method to smooth the skeletal tracking data using a 
simple moving average technique. Figure 13 shows the 
method for smoothing the skeletal tracking data. We 
normalize using two data points on both sides of a central 
point. 

 

Figure 13. Method for smoothing the motion 
capture data using a simple moving average 
technique 

4 Collection of Skeletal Tracking Data 
obtained by a Kinect Sensor in a 
Building Stairwell 

We collected skeletal tracking data in a building 
stairwell using four Kinect sensors. In this experiment, a 
student (similar to a worker) hand-carried luggage on 
building stairs located between the eighth floor and the 
ninth floor. The student went up and down the stairs 20 
times, acquiring data that was subsequently analyzed. 

4.1 Kinect Setup in a Stairwell 

To collect skeletal tracking data in a stairwell, we 
installed four Kinect sensors. Figure 14 shows the 
stairwell used in the experiment with the Kinect sensor 
set up on the wall. Using the spherical targets shown in 
Figure 14, we registered multiple Kinect sensors on a 
single coordinate system. The locations of the four 
Kinect sensors are shown in Figure 15. 

 

Figure 14. Stairwell with Kinect sensors set up on 
the wall 

X1‐1  Y1‐1 Z1‐1  Skl1‐1  T1‐1
X1‐2  Y1‐2  Z1‐2  Skl1‐2  T1‐2
X1‐3  Y1‐3  Z1‐3  Skl1‐3  T1‐3

・
・
・

X2‐1  Y2‐1  Z2‐1  Skl2‐1  T2‐1
X2‐2  Y2‐2  Z2‐2  Skl2‐2  T2‐2
X2‐3  Y2‐3  Z2‐3  Skl2‐3  T2‐3

・
・
・

Xn‐1  Yn‐1  Zn‐1  Skln‐1  Tn‐1
Xn‐2  Yn‐2  Zn‐2  Skln‐2  Tn‐2
Xn‐3  Yn‐3  Zn‐3  Skln‐3  Tn‐3

・
・
・

Data 1 Data 2 Data n

Ｘ Ｙ Ｚ

Skeleton position

Date and time information X1  Y1  Z1  Skl1  T1
X2  Y2  Z2  Skl2  T2
X3  Y3  Z3  Skl3  T3

・
・

Skeletal tracking data from 
multiple Kinect sensors 
into a complete dataset

Noise

Skeleton information with linear 
interpolation superimposed

Noise

Motion capture data
at 30 frames per second

Smooth the motion 
capture data by simple 

moving average

About 0.03 seconds
（About 4.4cm on foot）

About 0.17 seconds
（About 22 cm on foot）
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Figure 15. Layout of the stairs and the positions of 
the Kinect sensors 

4.2 Collection of Point Cloud Data and 
Skeletal Tracking Data Obtained by 
Kinect Sensors in the Stairwell 

We collected point cloud data and skeletal tracking 
data using Kinect sensors in a stairwell. Figures 16 and 
17 show the results of this experiment. The raw 3D depth 
data (the point cloud data for the stairwell walls and 
stairs) are shown in gray, and the pedestrian trajectories 
of the student are shown in black. The pedestrian 
trajectories represent 20 round trips. Points A and B are 
on the eighth and ninth floors, respectively. The student 
traversed the stairs 20 times from Point A to Point B. We 
succeeded in measuring the shape of the stairs and 
collecting pedestrian trajectories. 

 

 

Figure 16. Point clouds on walls and stairs (in 
gray) and pedestrian trajectories (in black) 

 

Figure 17. Isometric projection of the point clouds 
on the walls and stairs (in gray) and pedestrian 
trajectories (in black) 

 

Figure 18. Results of the pedestrian position and 
velocity tracking 

4.3 Analysis of the Skeletal Tracking Data in 
the Stairwell 

The skeleton data consist of a set of 20 joints. We use 
the joint that is located at the center of the hip. The 
skeleton data encode a set of three-dimensional points 
pi = [xi, yi, zi, ti] including the acquisition time ti. In this 
study, the Z-values of the center of the hip are zi of the 
skeleton data. 

The results of skeletal position and velocity tracking 
are shown in Figure 18. The horizontal axis represents 
the acquisition time of the skeletal tracking data. The left 
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axis represents the speed (of the center) of the skeletal 
hip. The right axis of the graph represents the Z-values of 
the center of the hip. 

In this experiment, the student pedestrian holds 
luggage at Point A and walks up the stairs. The pedestrian 
then places the luggage on the floor at Point B and walks 
down the stairs back to Point A. 

 From Point A to Point B, the Z-value of the center of 
the pedestrian’s hip increased from −4.0 m in 300 s to 
−0.5 m in 315 s. From Point B, where the pedestrian 
places the luggage on the floor, back to point A, the Z-
value of the hip center decreased from −0.5 m in 320 s to 
−1.0 m in 322 s. There is also a sudden decrease in the 
speed between 320 and 322 s. 

4.4 Human Pose Recognition Using Skeletal 
Tracking Data 

We developed a method for human pose recognition 
using skeletal tracking data. Human pose recognition is 
based on the pedestrian’s speed and movement. This 
section describes the evaluation criteria used for human 
pose recognition. 

The variables used in evaluation criteria for 
movement are the speed of the pedestrian in the X–Y 
plane, Vxy [m/s]; the total distance traveled after the state 
has changed, Dt [m]; and the duration of a human 
movement behavior, t [s]. 

The evaluation criteria for movement are defined in 
Table 2. 

Table 2. Evaluation criteria for movement 

State Evaluation criteria 
Stopped Vxy ≤ 0.3, t ≥ 1 , and Dt ≤ 0.4  
Walking 
slowly 

Vxy ≤ 0.3, t ≥ 1, and Dt ≥ 0.4 

Walking Vxy ≥ 0.5 and Dt ≥ 0.4 
Transition 

state 
None of the above conditions 

 
The variables used in the evaluation criteria for 

standing and sitting are the Z component of the 
pedestrian’s speed, Sz [m/s], and the height between the 
floor and the pedestrian’s hip, Hhip [m]. 

The evaluation criteria used for standing and sitting 
are defined in Table 3. Hhip is calculated from the distance 
between the center of the pedestrian’s hip and the floor, 
as shown in Figure 19. 

Figure 20 shows the results of the height between the 
floor and the pedestrian's hip. 

Figure 19. 3D CAD models of the stairwell and 
floor 

 

Figure 20. Height between the floor and the 
pedestrian’s hip 

Table 3. Evaluation criteria for standing and sitting 

State Evaluation criteria 
Trying to 
stand up 

Sz ≥ 0.8  

Trying to sit 
down 

Sz ≤ −0.8 

Standing −0.8 < Sz < 0.8 and Hhip ≥ 0.8  
Sitting −0.8 < Sz < 0.8 and Hhip ≤ 0.6 

Transition 
state 

None of the above conditions 

 
Using the conditions in Table 2, we analyzed the 

skeletal tracking data with automatic human pose 
recognition. Figure 21 shows the results of the automatic 
evaluation of walking and stopping. 
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Figure 21. Results of the automatic evaluation of 
walking (in gray) or stopping (in black) 

4.5 Automatic Acquisition of Repetitive Tasks 

Construction work often includes repetitive tasks. In 
this experiment, a student pedestrian performed the 
repetitive task of climbing stairs 20 times from Point A 
to Point B. We developed a method for repetitive task 
recognition. This method is based on pedestrian positions 
and the evaluation criteria for walking and stopping. If 
the pedestrian worker has stopped, a task is likely 
finished. 

Therefore, repetitive tasks are identified when a 
pedestrian has stopped by the time and location. Figure 
22 shows the automatic acquisition of pedestrian 
trajectories for the first round-trip on the stairs. 

Figure 23 shows the amount of time taken for each 
task repetition.  

 

Figure 22. Automatic acquisition of pedestrian 
trajectories for the first round-trip 

 

Figure 23. Time used for each task repetition 

Black and white horizontal bars represent nonmoving 
and walking workers, respectively. Gray bars represent 
unmeasured time or transition states. 

5 Conclusion 

 In this study, we have developed methods of 
registering skeletal tracking data from multiple Kinect 
sensors on a single coordinate system. We have analyzed 
the skeletal tracking data obtained in stairwells and have 
developed methods for human pose recognition using 
skeletal tracking data. We have also developed methods 
for the automatic acquisition of repetitive task data. 

References 

[1] Seera S., Brändlea N., and Rattib C. Kinects and 
human kinetics: A new approach for studying 
pedestrian behavior. Transportation Research Part 
C: Emerging Technologies, 48:212–228, 2014. 
 

[2] Kosei I., and Yusuke O. Study on Analytical 
Method of the Workers Movements Monitor on 
Construction Site - Measurement Methods of 
Transport Route of the Worker -. Proceedings of 
Thirty Symposium on Building Construction and 
Management of Project (Architectural Institute of 
Japan), 135-140, 2014.7.31 

 


