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Abstract  

Determination of construction performance 
metrics requires intensive processing of large 
amounts of data collected on construction sites 
including cluttered laser scans. For example, for 
quality control of construction components using 3D 
laser scans, the acquired point cloud should be 
cleaned and the object-of-interest should be extracted 
for measuring the incurred deviations. Such a 
procedure is tedious, time consuming and inaccurate 
due to intensive manual user operations. Although 
automatic extraction of rough and simple 3D shapes 
and features is performed by applying techniques 
such as Hough transform, automatic extraction of 
construction components with complex geometry is a 
challenging research need that must be addressed for 
fully automated modelling and processing. This paper 
presents a framework for automated extraction of 3D 
objects with arbitrary shapes and geometry. A new 
local feature set, which is globally invariant, is created 
in order to represent 3D models. The feature space 
created is then searched for in the cluttered laser scan 
by hashing from a hash table created for the 3D model. 
The best match is then extracted automatically by 
applying a post-processing RANSAC loop. The 
framework is then followed by an ICP-based 
registration in order to refine the best match 
identified. The results show that the method is 
sufficiently robust and quick to be applied for 
effective and efficient post processing of the laser 
scans acquired on construction sites.  
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1 Introduction 

3D imaging systems have become effective and 

accurate tools for acquiring the as-built status on 
construction sites. As-built status acquisition is critical 
due to continuous change and therefore the continuous 
monitoring required for construction components. 3D 
imaging in the construction industry is often referred to a 
set of processes that the built environment containing the 
construction elements are represented by a dense 3D 
point cloud acquired using the appropriate sensor. 3D 
imaging sensors enable the capture of existing structural 
and terrestrial conditions objectively, accurately, quickly, 
and with greater detail and continuity than any manual 
methods. Current applications of laser scanners by 
construction firms include schedule and progress 
tracking [1], creating complex as-built construction 
documents and 3D models [2], quality control and 
assurance, deviation and discrepancy quantification, steel 
column plumbness, etc. 

Despite the capabilities that 3D imaging provides, its 
potential is still limited and challenging, because 
extracting usable information from the collected data 
remains primarily a manual process. Manual extraction 
of semantic and meaningful information from the raw 3D 
images and running analyses is painstaking, requires 
many man-hours and specialized personnel training, and 
is therefore not well suited for real-time or rapid decision 
making on a large scale. Automating this process is key 
for further developments in automated spatial analysis as 
well as automated, integrated and electronic information 
flow. Search and extraction involves many technical 
challenges that stem from the variability of spatial data 
and other operational realities such as non-uniform point 
density, clutter which may be in contact with the object-
of-interest or of similar shape and size to the object-of-
interest, occlusion, missing data, and sensor noise and 
inaccuracy [3].  

This paper presents a method for automated 
extraction of construction components from cluttered 
laser scans acquired on construction sites. A 3D CAD 
model integrated in the building information model (BIM) 
represents the designed status. A local feature is created 
to describe the geometry of the model. This feature-based 
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descriptor is generated and stored in an array for further 
analysis and search in the laser scan. The 3D point cloud 
is then searched for the feature created in the first step. 
Potential matches are tested and the best hypothesis is 
selected for the match between the built and designed 
state. Although there is no limitation for the type of the 
assembly, this paper focuses on industrial components.  

2 Background 

The related background is investigated from two 
different perspectives: (1) Point cloud analysis for as-
built status assessment, and (2) 3D object recognition and 
segmentation. 

2.1 Point Cloud Analysis for As-Built Status 
Assessment 

There has been relatively little work on construction 
specific object recognition from laser-based 3D imaging 
systems. The primary application areas for construction 
are automated dimensional compliance control, progress 
tracking, and equipment guidance. In particular, many 
methods for visual inspection outlined in the literature 
fall short of full automation because of the absence of a 
reliable object recognition method. Fully automated 
frameworks have the capability of being integrated with 
construction product management systems. This will 
improve the construction process performance by 
minimizing the rework associated. In the construction 
literature, rework is defined as the wasteful effort 
involved in redoing work that has not yet yielded a 
product adequately conforming to contractual 
requirements [4,5]. Rework directly and significantly 
contributes to cost and schedule overruns on construction 
projects [6]. The function of QA/QC personnel is to 
perform lifecycle inspections to mitigate these rework 
situations. Inspection is the process of determining if a 
product deviates from a given set of tolerance 
specifications. The predominant processes for 
monitoring the critical dimensions of an assembly 
involve a temporary production stoppage and manual 
direct contact measurement devices such as measuring 
tapes, calipers, custom gauges, squares, and straightedges. 
These processes can help fabricators evaluate whether 
basic assemblies are compliant with design specifications, 
but their effectiveness deteriorates as the assembly’s 
geometric complexity increases. Automated inspection is 
desirable because manual inspection by humans is time-
consuming, and can be excessively subjective, unreliable, 
and boring for humans to perform.  

Using 3D imaging for dimensional compliance 
assessment of construction components has proven to 
have potential for mitigating costly repair and rework 

while tracking progress. 3D image-to-BIM comparison 
requires the superposition of the BIM onto the object of 
interest within the 3D image, i.e. registration of the object 
centred coordinate systems. However, unwanted clutter 
in the 3D image makes automated registration a 
challenge. Within the construction literature, this initial 
registration step has, predominantly, remained a manual 
process and must be resolved before the enormous 
amount of geometric data that 3D imaging makes 
available can be fully utilized. 

2.2 3D Object Recognition and Segmentation 

3D object recognition is the process of detecting the 
presence of an object in a 3D image with similar 
characteristics to a reference image or model and 
mapping the 3D coordinates of the reference to the 3D 
coordinates (or world coordinates) of the detected object 
in 3D space [7,8]. This process requires recognition of 
object and non-object components, which is difficult if 
the position of the object is unknown.  

In order to minimize required computation, the 3D 
image and reference model are abstracted using features 
or descriptors. Then point descriptions from the 3D 
image and the reference model are matched to determine 
the pose of the object in the scene.  Based on the literature 
[9,10], the type of abstraction method may vary but for 
object recognition in cluttered scenes, it must 
demonstrate (1) discrimination between objects of 
dissimilar geometry, (2) insusceptibility to noisy data, (3) 
invariance under transformation and rotation, (4) 
conciseness and ease of indexing, and (5) the ability to 
perform partial matching i.e. describe parts of a point set 
(object of interest) independently of the rest of the point 
set in order to enable recognition of those specific parts.  

Global descriptors consider the point set in its entirety 
and produce contaminated descriptions if clutter is 
present. Conversely, local descriptors abstract a 3D point 
set by considering the point set in subsets or regions. A 
popular subset type is the nearest neighbourhood, which 
is a collection of points in a spherical volume in 3D 
Euclidean space surrounding a query point. Determining 
the optimal nearest neighbourhood size to use for 
applying the shape descriptor is a critical problem in 
obtaining useful results from the abstraction process. 
Local descriptors allow for partial matching, and 
therefore, are ideal for object recognition in cluttered 
scenes. For a detailed review of the state of the art in 
shape descriptors and feature based object recognition 
see [9-11].  
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3 Research Methodology 

As shown in Figure 1, the proposed method for 
automated object isolation has two primary steps: (1) 
feature space creation, and (2) feature matching. 3D CAD 
models are first represented by a local feature descriptor. 
The descriptor is stored in a hash table for further search 
and match in the following step. The first step is 
performed in the offline phase. Two arbitrary points are 
then selected by users and the feature is calculated for the 
selected pair. The potential matches are then tested to 
find the best match for the pair. This is performed using 
a RANSAC (Random Sample Consensus) loop followed 
by an ICP-based registration for refining the match. 

 

Figure 1: General framework for arbitrary shape 
isolation from cluttered and incomplete laser 
scans 

3.1 Calculation of model descriptors 

Our approach requires a point pair to create the 
feature space. The feature created here, identifies the 
pose and orientation of the point pair.   illustrates the 
parameters for creating the feature space for a point pair 
ሺଵ,  .ଶሻ

 

Figure 2: The four-dimensional feature space for 
a point pair ሺଵ,  ଶሻ

As shown in  , for a point pair ሺଵ,  ଶሻ, normal vectors

ሺ݊ଵ, ݊ଶሻ are first calculated (detailed in Section 3.1.1). 
The feature of the pair is therefore calculated as follows: 

 
ܨ ൌ ሾ ଵ݂ ൌ ‖݀‖, ଶ݂ ൌ ∠ሺ݊ଵ, ݀ሻ, 
ଷ݂ ൌ ∠ሺ݊ଶ, ݀ሻ, 
ସ݂ ൌ ∠ሺ݊ଵ, ݊ଶሻሿ 

Eq.  1 

in which, ݀ is the Euclidean distance between ଵ and 
,ݒଶ, and ∠ሺ  ݒ	ሻ returns the angle between two vectorsݓ
and ݓ. In summary, the feature is represented by four 
elements as: ܨ ൌ ሺ ଵ݂, ଶ݂, ଷ݂, ସ݂ሻ. Our feature is similar to 
the feature used by [12], however, we use a different 
representation for the matching. In addition to storing the 
four parameters explained, ሺଵ, ଶሻ  and ሺ݊ଵ, ݊ଶሻ  are 
stored for the matching step. The representation of the 
feature is explained is Section 3.1.2. 

3.1.1 Feature	elements	calculation	

The calculation of feature elements ሺ ଵ݂, ଶ݂, ଷ݂, ସ݂ሻ is 
described in this section. The key parameter for creating 
the feature space is to calculate normal vector at each 
point in the point pair. An illustrative summary of the 
normal vector extraction is shown in  .  

 

Figure 3: Normal calculation procedure. (a) A 
point  is selected in a point cloud  ∈ ܲ. (b) K-
nearest neighbors (KNN) of point , denoted as 
ܰ ܰ ⊆ ܲ, are identified using kd-tree. (c) A plane 
is fitted to ܰ ܰ and the normal vector ܰ of the 
plain is calculated. 

The proposed algorithm for normal vector calculation 
has three primary steps, described as follows: 

1. Finding nearest neighbours 

As discussed earlier and shown in  , each point should 
be grouped with its nearest neighbours in order to 
calculate a plane. For this purpose, a k-nearest neighbour 
(KNN) algorithm [13,14] is employed with k=10. KNN 
algorithm requires a distance calculation step for finding 
the nearest points. A kd-tree searcher is employed for the 
range searching step involved here. The point and its 
nearest neighbours are then stored in an array for the 
further manipulations required in normal vector 
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extraction.  

2. Fitting a plane to a neighbourhood 

Given a dataset including a point, which is being 
investigated, and its k-nearest neighbours, a plane that 
best fits the dataset is calculated. In general, a plane  is 
defined as : ݔܽ  ݕܾ  ݖܿ  ݀ ൌ 0 . Without loss of 
generality, let’s assume that ܿ ൌ 1 ; thus, the plane 
equation can be rewritten as :	ݖ ൌ െܽݔ െ ݕܾ െ ݀ . 
Rewriting the plane equation in matrix form results in 
ݖ	: ൌ 	െሾݔ ݕ 1ሿ〈ܽ ܾ ݀〉் . Given a dataset, the 
plane fitting step results in a least-square adjustment 
problem in the form of a linear matrix equation as: 

൦

ଵݔ ଵݕ 1
ଶݔ ଶݕ 1
⋮
ݔ

⋮
ݕ

⋮
1

൪ ቈ
ܽ
ܾ
݀
 ൌ ൦

െݖଵ
െݖଶ
⋮

െݖ

൪ Eq.  2 

Where, ݊ is the total number of point for plane fitting 
that equals to ݇  1 (݇= number of nearest neighbours). 
The plane equation can be rewritten in the form of a 
standard linear matrix equation ܺܣ ൌ  where ܺ is the ,ܤ
matrix of unknowns. The solution of the linear matrix 
equation is as follows: 

ܺ ൌ ሺܣ்ܣሻିଵܤ்ܣ Eq.  3 

in which, ሺܣ்ܣሻିଵ்ܣ  is also known as the Moore-
Penrose pseudoinverse of matrix ܣ . More details on 
pseudoinverse can be found in [15-17]. 

3. Calculating normal vectors 

Given an equation of a plane in the form of a vector 
்ܺ ൌ 〈ܽ, ܾ, ܿ ൌ 1, ݀〉 , the normal equation can be 
calculated as follows: 

ሬ݊Ԧ ൌ ሺ
ܽ

√ܽଶ  ܾଶ  1
,

ܾ

√ܽଶ  ܾଶ  1
, 

1

√ܽଶ  ܾଶ  1
ሻ 

Eq.  4 

 

The explained feature detection step is applied on the 
CAD model ሼܯሽ, which is being detected in the acquired 
laser scan ሼܵሽ. The output of the feature detection step are 
the descriptors stored in ܨெሺ݉ଵ,݉ଶሻ ⊆ ଶܯ  and 
,ଵݏௌሺܨ ଶሻݏ ⊆ ܵଶ  that describe the point clouds ሼܯሽ and 
ሼܵሽ , respectively. The calculated descriptors are then 
matched in the matching step (Section 3.2.3). Summary 
of the normal vector calculation step explained here, is 
shown in Algorithm 1. 

 
 

Algorithm 1: Normal vector calculation 
Input(s): Point cloud ሼܲሽ  
Output(s): Normal vector features ሼܨሽ  
for each point  ∈ ሼܲሽ 
(1) Finding nearest neighbours 

Apply KNN and find the nearest neighbours  
Store each point with its nearest neighbour in an 
array ሼܰሽ 

(2) Fitting a plane 
Build up matrix ܣ and ܤ for ܰ using Eq.  2. 
Calculate plane parameters (ܺ) using Eq.  3. 

(3) Calculating normal vectors 
Find normal vector parameters using Eq.  4. 
ሼܨሽ ← (point coordinates)   and   (normal vector) 

End for 
Return ሼܨሽ 

3.1.2 Model	representation	

Once the feature ܨெ ൌ ሺ ଵ݂, ଶ݂, ଷ݂, ସ݂ሻ is created for all 
possible pairs in the 3D CAD model ሼܯሽ, it is used as a 
global descriptor for representing the model. In other 
words, the feature created is mapping transformation 
from the model space to the feature space as: ܨெ  .ଶܯ	→
For the 3D CAD model ሼܯሽ, all features are calculated 
and then stored in an array. In order to be efficiently 
searchable, the point pairs with identical features are 
stored in the same cell in a four-dimensional array, of 
which each dimension represents the feature elements 
ሺ ଵ݂, ଶ݂, ଷ݂, ସ݂ሻ. For this purpose, a four dimensional hash 
table is created and the point coordinates along with the 
normal vectors are stored. Figure 4 illustrates how point 
pairs are stored in the hash table, and how they can be 
searched efficiently. 

 
Figure 4: Model representation. (a) Feature 
elements are calculated for point pairs. (b) A 4D 
hash table is created. Each dimension represent an 
element in the feature space ሺ ଵ݂, ଶ݂, ଷ݂, ସ݂ሻ . The 
points having similar feature elements, along with 
the corresponding normal vectors are stored in the 
same cell of the hash table created. The feature is 
then the key to the table and similar pairs can be 

Hash Table

(a) (b)
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efficiently searched for the matching step.  

This algorithm for feature calculation and model 
representation is applied on all possible point pairs in the 
model. Such a procedure is performed in the offline mode 
for the arbitrary objects being searched in a cluttered 
laser scan. In the following section, the matching 
algorithm is explained. 

3.2 Feature Matching 

Once the model features are calculated, they are being 
searched by the features calculated on the laser scan ܨௌ. 
Similar pairs are then matched geometrically and the best 
pair is detected by employing a RANSAC loop on the 
matching pairs. The matching algorithm has three 
primary steps: (1) matching initiation for speeding up the 
search process, (2) finding corresponding features by 
mapping the initial pair being searched in the model and 
the hash table created in the previous step, and (3) 
matching and refining that finds the best pair globally by 
employing a RANSAC loop. These steps are detailed in 
the following sections. 

3.2.1 Matching	initiation	

Once feature space on 3D CAD model is created and 
stored in the hash table, the search phase, in the online 
mode, commences. Two arbitrary points ݏଵ, ଶݏ ∈ ܵ  are 
arbitrarily selected from the scanned point cloud. Once 
these two points are selected, the previously defined 
feature is calculated for the pair ሺݏଵ,  ௌܨ ଶሻ. This featureݏ
is the key to the hash table for finding the matching pairs 
in the model (Figure 4). 

3.2.2 Finding	the	potential	matching	pairs	

All matching pairs stored in the cell with the same 
scan feature values ܨௌ are hashed to test the hypothesis. 
The hypothesis is finding the pair that best matches ܨௌ. 
For this purpose, the distances and the angles 
representing the hash table are sampled in steps of ݀ௗ௦௧ 
and ݀, respectively. For finding the best match, the 
algorithm searches a set of possible matching pairs 
݉௧ ⊆ ଶܯ . The matching pairs are represented as: 
݉௧ ൌ ሼሺ݉ଵ,݉ଶሻሽ. This will improve the accuracy of 
finding the correct match, and it therefore increases the 
robustness of the algorithm. 

3.2.3 Matching	and	Refining	

For matching the scene pair with the model, ሼݏଵ,  ଶሽݏ
are projected along the normal vectors. A set of four 

points is therefore created. This set is aligned with the set 
of four derived from the model, knowing the potential 
pairs and the corresponding normal vectors (see Figure 
5). In order to avoid incorrect matching for symmetric 
sets ݇ଵ and ݇ଶ must be unequal (݇ଵ ് ݇ଶ).  

 

Figure 5: Matching the scene and model. A set of 
four points are calculated for each pair in ݉௧ 
and it is matched with the set resulted from the 
scene.  

In order to match each set of four from the CAD 
model and the scene, Principal Component Analysis 
(PCA) is employed. Principal axes of the two datasets are 
first calculated using singular value decomposition 
(SVD). The principal axes are then aligned by a rotational 
transformation. The centroids of the dataset are then 
coincided with each other. For detailed explanation about 
the rough alignment of point sets see [18]. 

The algorithm is followed by a RANSAC loop to find 
the best set from the model matching the scanned point 
cloud. Once the transformation ܶ ൌ ሺݎԦ,  ,Ԧሻ is calculatedݐ
it is applied on the entire model point cloud. The 
matching closest points with a threshold distance value 
are recorded as the number of inliers for the 
transformation calculated. A certain number of iterations 
will find the best match that has the maximum number of 
inliers. An iterative closest point (ICP)-based registration 
will finally refine the match.  

4 Verification and Validation 

The proposed method for 3D object isolation from 
cluttered laser scans is tested by setting a set of 
experiments. A typical scene containing industrial 
components is scanned (Figure 6). A branch of a pipe 
spool is desired to be isolated from laser scans for further 
analyses and processing such as discrepancy analysis, as 
shown in Figure 6. The explained algorithm is 
implemented in a MATLAB environment. Table 1 shows 
the parameters considered for implementing the 
algorithm.  
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Figure 6: Isolation and extraction of the object-of-
interest from a typical laser scan. (a) A typical 
laser scan containing industrial objects is captured. 
(b) The desired branch is isolated using the 
proposed method. 

Table 1: Values of the effective parameters on the 
algorithm 

Parameter Value 
݀ௗ௦௧ 5 cm 
݀ 12 ° 
݇ଵ 1 
݇ଶ 0.5 

Inlier threshold 
for RANSAC 

1 cm 

ICP iteration 5 

For a typical scene shown in Figure 6, the feature 
space creation step took approximately 26 min. The 3D 
CAD model converted to a point cloud had 5000 points. 
The point cloud was resampled to expedite the algorithm 
and avoid over-interpretation. The resampling factor was 
selected as the maximum value that the distance between 
furthest points in the resampled point cloud is not greater 
than ݀ௗ௦௧. Similar criterion is used for down sampling 
the laser scan representing the as-built status. The search 
and match step for the example provided here, took 
approximately 16 sec.  

5 Conclusions and Recommendations for 
Future Research 

A framework was developed for automated isolation 
of an object-of-interest from a cluttered laser scan. 
Isolation of specific objects is critical because the as-built 
status needs to be automatically assessed and compared 
with the as-designed state integrated in the BIM. The 
method uses a local feature-based descriptor for 

representing the 3D CAD models. The feature space is 
stored in a hash table in order to better search and match 
with the laser scan. This step was implemented in the 
offline mode. The created feature is then searched for in 
a given laser scan. A pair in a given scene is characterized 
using the described feature space, and it is then searched 
from the potential matches in the created hash table. A 
PCA-based rough alignment is first employed to identify 
the matching inliers based on a distance threshold 
between the two point clouds representing the two states. 
The pose with maximum number of inliers is therefore 
selected as the initial match. The results are finally 
refined using an ICP-based fine alignment. Key findings 
are summarized as follows: 

 The feature space creation can be performed in the 
offline phase; meaning that, all 3D objects can first 
be characterized and represented by the local 
feature space explained in the method. The results 
will be stored in a database for further use in the 
framework. This improves the efficiency of the 
framework.  

 The algorithm is capable of finding a suitable match 
in a time effective and cost efficient manner. 
Therefore, it can be integrated with real-time 
frameworks for fabrication and process control. 

Effective parameters such as the threshold values for 
inliers identification and down sampling factors should 
be investigated, and optimum values must be calibrated. 
These values depend on the size of the objects and 
resolution of the scan for capturing the as-built status. 
Improving processing time for real-time applications is 
also a potential for future work, on which the authors may 
expand the work. 
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