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Abstract – 

Accurate and rapid condition assessment of in-
service infrastructure systems is critical for system-
wide prioritization decisions. One major assessment 
consideration is structural section loss due to 
deterioration, for instance from corrosion. Modern 
3D imaging, which generates high-resolution 3D 
point clouds, is capable of measuring this 
degradation. Despite growth in the fields of point 
cloud analysis, few studies have addressed the 
potential of using such data for creating and 
updating numerical finite element models of 
structures. This paper presents a framework for 
automatic and systematic 3D section loss detection in 
structural components, followed by a corresponding 
update to a finite element model. Point cloud data of 
a targeted structure is obtained by using recently 
developed Dense Structure from Motion (DSfM) 
algorithms. Section loss damage is then located and 
identified by using computer vision techniques. In 
order to preserve data integrity and resolve localized 
high fidelity details, direct 3D point cloud 
comparisons are applied instead of 3D surface 
reconstruction or curve fitting techniques that limit 
the accuracy of the structural analysis. An 
experimental case study validating the developed 
approach is presented, along with a discussion of 
potential uses for the analysis framework. 

This study aims to prototype a method for fast 
and reliable detection, structural model updating, 
and tracking of deterioration in structures, for use 
by infrastructure managers and engineers. The 
proposed methodology will enable engineers to use 
the updated structural model to determine the 
reserved capacity and remaining service life of 
structural elements in both in-service structural 
systems and under severe loading conditions. 
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1 Introduction 

Existing infrastructure systems are faced with 
serious durability problems due to increasing service 
demand and natural aging. Current field inspection 
protocols are subjective, primarily based on visual 
inspection, and cannot be directly incorporated into 
existing numerical models of structures. Thus, there is a 
growing need for accurate, low cost, and consistent 
inspection and evaluation processes that enable more 
sustainable decision-making about how to repair or 
replace infrastructure. 

3D imaging techniques are increasingly used in civil 
engineering applications for making 3D geometric 
measurements [1-3]. The fast acquisition speed, high 
accuracy, and portability of these modern remote-
sensing tools make them an efficient and economically 
justifiable alternative to conventional methods. While 
laser scanning and photogrammetry have been used as 
efficient 3D measurement techniques for decades, the 
idea of using the acquired 3D point clouds to generate 
numerical structural models is relatively new. Despite 
the fast growth in the fields of point cloud analysis and 
surface reconstruction algorithms, few studies have 
addressed the potential of using such data for creating 
and updating computational models, e.g. finite element 
(FE) models, for structural analysis. A review of the 
literature [4,5] in this field not only presents a wide 
range of the possible applications for 3D imaging in 
structural engineering, but also highlights the need to 
develop robust methodologies for creating and updating 
3D structural models. Further research is needed into 
the use of reconstructed 3D models of a damaged 
structure for updating a finite element model for the 
strength analysis of structural elements under in-service 
and severe loading conditions. The current practice of 
converting 3D point clouds to watertight surfaces using 
commercially available software in order to generate 
structural models may fail to preserve highly localized 
details of the damaged component and also limits the 
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scope of the anticipated structural analysis by imposing 
a specific type of finite element mesh.  

In the current study, image-based 3D reconstruction 
is used to generate point cloud models of structural 
elements. Computer vision algorithms are then utilized 
to automatically locate and identify the damage in the 
inspected element, and finally, the structure’s finite 
element (FE) model is updated accordingly by using an 
integrated methodology. The objectives of this study are 
1) to evaluate the efficiency of 3D computer vision 
algorithms in detecting section loss in various structural 
element shapes, 2) to compare and evaluate the 
efficiency of surface reconstruction techniques in 
restoring the geometry and fine details of damaged 
regions, 3) to use the findings from Objective 1 and 2 to 
develop a methodology to update the structural 3D 
model that preserves highly localized damage on 
structural elements.  

2 Methodology Description 

The proposed methodology (Figure 1) is composed 
of several steps that are described in the following 
subsections. This methodology requires an initial solid 
model and point cloud data of both initial (as-built) and 
current conditions of the structure (i.e. undamaged and 
damaged) as input data. The point cloud data can be 
obtained by using Dense Structure from Motion (DSfM) 
algorithms or LIDAR. In absence of as-built condition 
point cloud data, a 3D solid model of the initial 
structure (ISM in Figure 1) can be used as a basis for 
sampling surface points so as to generate a synthetic 3D 
point cloud model. In such cases, the ISM is created 
based on structural drawings or the building information 
model (BIM). The damaged and undamaged state point 
clouds are then compared on a point-to-point scale to 
detect structural deformations in the damaged 
component.  

2.1 Data Collection 

3D point cloud data of the current condition of the 
structure (CPC in Figure 1) is collected via a 3D laser 
scanner or photogrammetry (or a combination of both). 
Another set of point cloud data for the initial or as-built 
condition of the structure (IPC in Figure 1) is also 
generated based on the initial condition or the original 
structural detail drawings of the structure, respectively. 
The latter can be done based on the computer-aided 
design (CAD) model of the structure in order to 
generate a synthetic point cloud. The goal here is to 
directly compare the point cloud data of the damaged 
and undamaged states of the structure on a point-to-
point scale and plot a deviation map. This will help to 

visually represent the visible deformations in the 
damaged structure, detected by using 3D reconstruction 
and computer vision methods.  

 

Figure 1. Flowchart of the proposed 
methodology 

2.2 Data Preparation 

The generated initial (IPC) and current (CPC) point 
clouds then undergo pre-processing. The goal is to 
create a subsampled point cloud from the initial model 
(IPC-U in Figure 1) in which the points are 
approximately spaced at an equal distance of r. In other 
words, the nearest neighbor point for each point in IPC-
U is located at a distance equal to or slightly greater 
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than r. One of the most efficient ways to achieve this 
uniform sampling of the point cloud is by building a 3D 
voxel grid with the input data and taking the centroid 
(average point inside a voxel) of the voxel grid as a key 
point. The number of points in the resulting point cloud 
is then reduces and down-sampled uniformly. In this 
paper, the open source software package CloudCompare 
[6] is used for this purpose. The value for r is 
empirically determined and should be set by considering 
the desired flaw detection precision, the UPC density, 
and the IPC surface density. For an initial value, a 
radius corresponding to 24 points per square unit for the 
IPC model is suggested. To obtain the local point 
density ρ at a point p, ρ = k / r2, where r is the radius of 
the enclosing sphere of the k-nearest neighbors of p, 
denoted by the index set Np, given by: 

ݎ ൌ max
ఢே

‖ െ  ‖ (1)

After determining the r value and generating the 
IPC-U model, a de-noised version of the current 
condition point cloud (CPC-D) is created by deleting all 
the points that have only one or two neighboring points 
within their specified r distance.  

2.3 Density Analysis for Damage Detection  

Intuitively, surfaces that are present in IPC-U but are 
not present in CPC-D correspond to deformed regions 
or section loss. These regions can be detected by the 
merging-and-isolating procedure described as follows. 
First, IPC-U and CPC-D are merged and, consequently, 
all of the points in IPC-U will find at least one 
neighboring point in CPC-D with a distance less than r, 
except for those points corresponding to the damaged 
regions. By isolating the points with no neighbor within 
their r distance, point sets corresponding to the damaged 
surfaces (DPS) can be found. In case of multiple 
scattered damaged regions, a simple segmentation 
procedure can be used to break DPS into i distinct 
separated regions (DPSi) where each DPSi represents a 
deformed surface in IPC, each composed of j points. 

2.4 Cloud-to-cloud Distance Analysis for 
Damage Quantification 

Typically, another surface is present in CPC-D for 
each DPSi within a damaged region. An exception is a 
through hole for which there are two DPSi on two 
opposite sides of IPC-U. Thus, the distance from each 
DPSi to its corresponding surface in CPC-D can be used 
as a quantification measure for the extent of the damage. 
There are different definitions and methods to calculate 
the distance between two point clouds (or point sets). In 

the current study, a definition based on [7] is used. For 
each DPSi, the distance (dj) from each point to CPC-D is 
then calculated. Using the method in [7], the Hausdorff 
distance for each point p in a reference cloud S is the 
distance to the nearest point in the other cloud S’: 

݀ሺ, ܵᇱሻ ൌ min
ᇱ∈ௌᇱ

‖ െ  ଶ (2)‖′

The octree-based C2C plugin implemented in 
CloudCompare is used in this study to calculate vector 
dj for each point in each DPSi. In addition, the normal is 
estimated for each point within the point clouds using 
Principal Component Analysis in a local neighborhood 
of p as described in [8]. 

2.5 Reconstruct Damaged Surface 

Each damaged surface in CPC-D can be estimated 
by offsetting the points in each DPSi by each point’s 
displacement vector dj. This can be used to create an 
offset point set (O-DPSi) for each DPSi. The 
implementation of the code for this purpose was done in 
Matlab. At the end of this stage, there are two point sets 
for each damaged regions: a DPSi corresponding to the 
original surface and an O-DPSi corresponding to the 
estimated new surface in the current condition (see 
Figure 4h). If DPS and O-DPS are converted into their 
corresponding surfaces, the volume encompassed 
between these two surfaces will correspond to a section 
loss damage or surface expansion (depending on the 
direction of vector dj) in the initial solid model (ISM). 

2.6 Create Solid Model of the Damaged 
Region 

The goal of this step is to use O-DPSi and DPSi to 
create a watertight volume for each of the i damaged 
regions. This can be done by generating a watertight 
surface (mesh) encompassing the volume created 
between each O-DPS and DPS. The created watertight 
surface will be then converted to a solid model. 
Fundamentally, surface reconstruction algorithms 
generate a polygonal mesh from a dense point cloud 
model in order to recover the original surface on which 
those points lie. The method developed in [9] is used in 
this study. The basic idea behind this method is to 
reconstruct triangulated surfaces that are formed by a 
subcomplex of Delaunay triangulation. The created 
mesh is then converted into a solid model (DSM) using 
Autodesk Inventor software.  

2.7 Update the Initial Solid Model 

Prior to updating the FE model, the last step of the 
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procedure involves subtraction (or addition in the case 
of expansion) of the solid model of the damage (DSM) 
from the initial solid model (ISM) via Boolean operators. 
This operation can be performed in several ways. In the 
current study, Autodesk Inventor software is used for 
this purpose. The final updated solid model (USM in 
Figure 1) can then be exported into a finite element 
program for further analysis. 

3 Application and Results 

For experimental validation, the presented 
methodology was tested using two specimens. The 
specimen geometry and material were chosen in order to 
easily fabricate proof-of-concept specimens and 
controlled damage patterns. The specimens (shown in  
Figure 2) included a built-up section made from 
medium-density fiberboard (MDF) material, and a 
cardboard tube. The 19 mm thick I-profile specimen 
represented a structural component with planar surfaces 
and several controlled flaws were machined using a 
CNC machine. The 12.7 mm thick tube specimen had 
an outer diameter of 127 mm and represented a 
structural component with a curved surface. The 
damage in the tube specimen included a randomly 
shaped hole.  

In order to create accurate and highly dense 3D point 
cloud data for the targeted specimens before and after 
being damaged, an image-based 3D reconstruction 
technique called Hierarchical Point Cloud Generation 
(HPCG) [10], an adaptation of the well-known Semi-
Global-Matching (SGM) algorithm [11], was employed. 
One of the key features of this multi-scale 3D 
reconstruction process is its ability to control the 
resolution of the point clouds at different locations, 
which was essential in capturing localized details of the 
damage in each of these specimens. Throughout this 
study, a Nikon D-800E (36.3 mega pixels resolution) D-
SLR camera with a Nikon AF-S 50mm lens was used to 
capture images. All images were taken with a sensitivity 
(ISO) of 200 and an aperture of f/8. 

The undamaged and damaged point clouds for the I-
profile were generated using 165 and 293 images that 
resulted in dense 3D point clouds with 27,120,412 and 
35,610,062 points, respectively. For the tube specimen 
test, there were 92 images and 2,405,713 points for the 
undamaged condition and 83 images and 11,655,611 
points for the damaged condition. The average local 
density of points for the damaged specimen point clouds 
was approximately 600 and 550 points per bounding 
box volume (cm3) for the I-profile and tube specimens, 
respectively. 

3.1 I-Profile Specimen 

In total, 9 defects of different shapes and sizes (DPSi) 
were machined in the I-profile specimen’s web. These 
defects are listed in Table 1 and are shown in Figure 4n. 
The ISM was created in AutoCad Inventor based on the 
actual dimensions of the specimen. Each defect was 
modeled separately following the methodology 
described in the previous section and the ISM was 
updated with one defect at a time.  

  
 Figure 2: Undamaged and damaged specimens: (a) 

MDF I-profile; (b) cardboard tube 

As can be seen in Table 1 and Figure 4, the first part 
of the methodology (i.e. the point cloud density analysis) 
successfully detected all of the 9 defects (DPS in 
Section 2.3) and the second part of the methodology (i.e. 
the cloud-to-cloud distance analysis) was able to 
provide a quantification estimate for 6 of them (O-DPS 
in Section 2.4). Generally, better damage extent 
estimations were achieved with an increase in the defect 
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dimensions and volume. For the defects with a 
minimum dimension of less than 10 mm, it was 
observed that the captured volumes were systematically 
lower than the measured values. For instance, the 
captured defect volume for DPS9 (5 mm deep transverse 
groove) was significantly lower than the actual volume.  

To further study the correlation between the 
captured and actual volume of the defects, the point 
cloud-based measurements are plotted versus the actual 
measurements in Figure 3. According to this figure, the 
correlation between the measurements improves for 
10,000 mm3 and larger defects; however, the point 
cloud-based measurements were significantly lower 
than the direct measurements for smaller volumes. 

Table 1: DPSi on I-profile web 

i Defect  Depth 
(mm)/ Area 

(mm2) 

Actual 
Volume 
(mm3) 

Captured 
Volume 
(mm3) 

1 Circular 
hole 

19/ 30.66 583 0 
(detected) 

2 Circular 
groove 

4.1/ 30.66 126 0 
(detected) 

3 Circular 
groove 

3.1/ 30.66 95 0 
(detected) 

4 Circular 
groove 

5/ 449 2,242 607 
 

5 Circular 
groove 

10/ 433 4,335 1,163 

6 Square 
groove 

3.2/ 351 1,124 133 

7 Connected 
circles 

3, 5, 7, 
10,19/  

98,318 88,490 

8 Edge 
defect 

19/ 288 5,472 3,214 

9 Transverse 
groove 

5.1/ 7437 37,929 6,920 

 

Figure 3: Captured vs. actual defect volumes 

 

Figure 4: Updated I-section solid model: (a) IPC; 
(b) CPC; (c) CPC-D; (d) IPC-U; (e) merged IPC-
U and CPC-D (web only); (f) detected DPSi’s; (g) 
calculated dj for DPS7; (h) O-DSP7; (i) DSM7; (j) 
ISM and DSM7 alignment; (k) first ISM update; 
(l) and (m) USM; (n) DPSi’s  
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The employed cloud-to-cloud distance measurement 
technique was found to be the main reason for the 
systematic underestimation of the defect volumes. As 
can be seen in Figure 4g, the current distance definition 
intrinsically results in varying depth estimation 
(rendered as a heat map) for all of the defects. This 
leads to an inherently built-in defect damage threshold 
(here about 10 mm) that can be quantified. 
Consequently, the volume encompassed between the 
initial and offset point sets for each defect (DSP and O-
DSP, respectively), will be automatically smaller than 
the real volume (see Figure 4h). This was particularly 
the case for DSP7 where the captured volume for the 
through hole portion of the defect was in the form of a 
cone rather than a cylinder (Figure 4i and m).  

3.2 Tube Specimen 

To simulate a field condition assessment of a 
structural component, the point cloud data for the 
undamaged and damaged conditions of the tube 
specimen were collected at different times and light 
conditions. The undamaged data (IPC) was collected on 
a sunny day in November 2015 and the damaged data 
(CPC) was collected on a cloudy day in February 2016. 
This change in the condition of data collection can be 
seen in the RGB color information of the point clouds 
shown in Figure 5a and b. The defect for this specimen 
was a randomly shaped through hole in the pipe to 
simulate a burst pipe. The methodology was applied to 
the collected data and a summary of the results is 
presented in Figure 5.  

Similar to the I-profile specimen, the damaged 
region on the specimen was detected using the density 
analysis described in the previous sections. As can be 
seen in Figure 5d, the cloud-to-cloud (C2C) distance 
pattern for the detected hole in the tube was similar to 
the pattern to the through hole in the I-profile (Figure 
4g). In other words, the employed C2C distance 
definition provided a gradual DSM. 

4 Finite Element Model Updating 

Once updated, the updated solid model (USM) can 
be exported to a finite element program to study the 
structural behavior of the damaged component. In this 
study, the finite element (FE) program Abaqus was used 
to create the FE models of the ISM and USM.  

 

Figure 5: Updated solid model for the tube 
specimen: (a) IPC; (b) CPC; (c) merged IPC-U 
and CPC-D; (d) calculated d for DPS; (e) surface 
reconstruction based on DPS and O-DSP; (f) 
DSM; (g) ISM and DSM alignment (close up); (h) 
USM 

The initial and updated solid models were exported 
in the form of an .igs file into Abaqus. After importing 
the geometry of the model, other model parameters 
including material properties, boundary conditions, and 
loading conditions can be defined for the FE model. 
Prior to the analysis, however, the model must be 
discretized into a finite element mesh. Typically, a finer 
mesh (i.e. smaller element size) is required at locations 
with complex geometry to capture the induced stress 
concentration effects. Figure 6 presents the FE mesh for 
the undamaged and damaged conditions of the tube 
specimen. As can be seen in this figure, a uniform, 
structured FE mesh was created for the ISM whereas a 
rather complex FE mesh was required for the USM to 
facilitate the FE analysis. In particular, a biased, fine FE 
meshing scheme was employed around the damaged 
region (through hole) as can be seen in Figure 6c.  

Defining the desired type of analysis (e.g. linear or 
nonlinear analysis), assigning material type and 
properties, and defining the boundary and loading 
conditions will be the final steps in completing the 
developed point cloud-FE model updating pipeline that 
was presented in this study.  
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Figure 6: Finite element mesh in Abaqus: (a) 
undamaged model (I-FEM); (b) damaged model 
(U-FEM); (c) refined mesh in the damaged 
region  

5 Comparison with the Current Practice 

The proposed methodology has several advantages 
over the current practice of using commercial software 
for surface reconstruction (also called meshing). A 
number of these advantages are: 

 The proposed methodology avoids applying a 
surface reconstruction scheme on a global scale. 
Instead, meshing techniques are applied at a local 
scale that reduces the computation time and cost 
significantly. For instance, the damaged I-profile 
specimen was reconstructed using the Screened 
Poisson surface reconstruction algorithm described 
in [12] with spatial octree depth equal to 12 and is 
shown in Figure 7. This model consists of more 
than 7 million triangles whereas the USM shown 
in Figure 4l had less than 15,000 triangles. The 
key reason for this substantial difference is that 
most of the triangles in the reconstructed ISM 
were used to model essentially flat and flawless 
parts of the specimen (Figure 7). The inevitably 
large number of triangles used in the reconstructed 
model makes it very difficult to perform the 
subsequent structural analysis. Still, the final 
reconstructed model will fail in preserving some 
basic features of ISM such as the flat surfaces and 
sharp edge boundaries, which due to the intrinsic 
definitions of these methods, will be transformed 

into wavy surfaces. 
 Reducing the number of triangles (decimation) 

and/ or smoothing the surfaces in the reconstructed 
model will result in the loss of important features 
that were already captured in the point cloud data. 
Using a point cloud-based approach, such as the 
one introduced in this paper, helps to accurately 
represent the localized details of the model 
through the model updating procedure.  

 It is not easy to further update a reconstructed 
model based on the subsequent point cloud data 
obtained from future field inspections. Considering 
that civil structures are inspected on a regular basis, 
a new reconstructed model is required for each 
inspection. In the proposed methodology, however, 
the model (USM) is updated one defect at a time 
and, thus, damage propagation as well as new 
damage can be easily accommodated and tracked 
based on new inspection data. 

  
Figure 7: Reconstructed damaged I-profile with more 

than 35 million vertices and 7 million triangles 

6 Conclusions and Future Work 

In this paper, a methodology to update the finite 
element model of a damaged structural component 
based on comparative point cloud analysis was 
introduced. The methodology was successfully used to 
detect and quantify the extent of different types of 
damage and to then update the solid model of the 
member, for further finite element analysis. The 
proposed point cloud-based methodology has a number 
of advantages over the current practices, which are 
mainly based on localized surface reconstruction 
approach taken. These advantages include a 
significantly lower computation time and cost, the 
ability to preserve highly localized details of the original 
point cloud data, providing quantitative metrics for the 
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extent of damage, and the capability to further update 
the model based on future inspection data and for future 
referencing. 

Based on the measurements conducted in this study, 
the following observations and consequent 
recommendations are made, with regard to FE model 
updating based on point cloud data: 

 Good agreement was observed between the point 
cloud-based and direct measurements when all of 
the dimensions for the defect were about 10 mm or 
larger. The results generally improved as the 
magnitude of the measured dimensions increased. 

 The methodology in its current form is capable of 
modeling section loss and corrosion expansion 
damage. 

 The employed cloud-to-cloud distance definition 
caused a systematic underestimation of defect size 
and volume.  

 A distinct distance deviation pattern was observed 
for the through hole defects that resulted in a cone-
shaped defect rather than a cylindrical shape one. 

This study was part of an on-going research program 
and several aspects of the presented methodology are 
being considered for further improvement. These 
aspects include: 

 More advanced and robust direct cloud-to-cloud 
comparison techniques such as the Multiscale 
Model to Model Cloud Comparison (M3C2) 
proposed in [13]. 

 Using Non-Uniform Rational Basis Spline 
(NURBS) to create a DSM instead of using surface 
reconstruction methods. 

 Evaluating and incorporating different registration, 
alignment, and de-noising algorithms to facilitate 
automatic updating of the FE model. 

 Designing and fabricating large-scale specimens to 
assess the performance of the proposed 
methodology on large-scale specimens and 
possibly full-sized structural components. 

This study also shows that 3D vision-based 
techniques offer an appropriate and practical means for 
structural inspection because of their portability, the 
relative ease of use, and the ability to archive the data 
for future referencing. 
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