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Abstract –  

Building designers have increasingly looked at 
simulation to improve the performance of building 
systems with the primary objective of simultaneously 
maximizing comfort, and minimizing energy use. 
The quality of the simulations depends on the quality 
of the data being input into the models. The input 
data for simulation comprises the current real state 
of a building which encompasses several components 
that include the state of occupants, comfort 
parameters, and the building systems. Typically, 
such data is aggregated using preinstalled Building 
Automation Systems (BAS) with the help of 
stationary wired or wireless sensor networks. Such a 
process is cost-prohibitive, time consuming, and 
often impractical in existing buildings without BAS. 
This paper proposes mobile platform based robotic 
data collection for gathering energy and comfort 
related data in real-time which can be utilized for 
further simulation analysis and decision-making. 
The fiducial marker based navigation and drift 
correction algorithms developed to facilitate the 
robotic platform navigation in a building are 
discussed in detail. This method successfully achieves 
the navigation task by providing directional 
navigation information along with drift correction at 
critical discrete locations instead of the traditional 
continuous updating process, which is 
computationally intensive. An experimental study 
validating the statistical equivalence of the two data 
sets gathered by the traditional preinstalled fixed 
sensor networks and the multi-sensor fused robot 
was performed. The results demonstrate the 
feasibility of the proposed methodology in efficiently 
collecting large datasets in buildings using only a 
single set of sensors in contrast to the scads of similar 
sensors required by traditional data collection 
methods. 

Keywords – 
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robots, Navigation and Drift correction algorithms.  

1. Introduction  

Buildings are responsible for 40% of the total energy 
consumption in the Unites States (US) [1]. According to 
US EIA 2014, future predictions show that these energy 
demands will continue to increase indicating a 
significant need for innovative efforts to optimize the 
energy consumption of buildings. The United States 
Green Building Council (USGBC) suggests that 
commissioning and/or retrofitting is the process through 
which buildings can be efficiently operated to achieve 
high performance [2].  

Effective energy retrofits or commissioning process 
requires a comprehensive understanding of all the 
building systems, energy use behavior of the occupants, 
energy performance of the building, and changing 
weather patterns [3]. It is thus apparent that a significant 
amount of data needs to be continuously collected, 
managed, and analyzed in a building at the room and 
floor level in order to effectively optimize energy use in 
buildings while maintaining comfort of the occupants. 
Building energy simulation plays a key role in analyzing 
the aforementioned building energy data [4]. Several 
existing studies demonstrate how the data in real-time or 
near real-time or in offline/batch processing mode can 
be used for critical decision making in buildings [5,6].    

Building energy and comfort parameter data 
collection has progressed significantly in the past few 
years because of the advancements in technology. In the 
early stages, inspectors used to collect data manually by 
inspecting different locations in the building, a process 
considered to be extremely tedious, time consuming and 
generates limited amounts of data which limits its 
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practical applicability in large buildings [7-9]. 
With the advent of wired and wireless sensors, 

significant effort was saved by avoiding the need of 
manual inspection during the operation and maintenance 
phase of the buildings. Instead, in the newer buildings, 
sensors are installed, calibrated, and integrated with 
building systems before the operation and maintenance 
phase as part of a Building Automation System (BAS). 
However, this process is not very feasible for the 
existing buildings because of the challenges involved in 
installing the wiring, integrating with existing building 
systems, and calibrating the sensors.  

Wired systems are most commonly used for video 
surveillance applications in residential or commercial 
buildings because of higher band width and power 
needs [10]. These are economically feasible for smaller 
buildings compared to larger buildings (e.g., dormitory 
buildings, academic institutions, and office spaces) 
where there are a large number of rooms that need to be 
monitored. This is because installing a wired system in 
an existing building requires additional costs associated 
with material (e.g., wiring) and labor intensive task of 
installation [11,12]. In addition, wired installation 
process is time consuming and sometimes limits the 
extent of space that can be monitored [12-14].  

On the other hand, wireless systems have a 
capability to monitor, process, analyze the data locally, 
and eliminate the need of wires [13,15]. Wireless sensor 
networks are widely used for monitoring and controlling 
various indoor parameters such as temperature, 
humidity, CO2 levels, occupancy level, occupancy 
comfort, and water use [14]. However, they are 
expensive (due to a lot of initial upfront investment for 
large buildings), complex (due to installation of lot of 
sensors), time consuming (due to periodic calibration 
and maintenance requirements), and not feasible in 
existing buildings due to the need to install a BAS. In 
addition, existing buildings undergo retrofitting or retro-
commissioning to improve the energy performance, 
which makes it even more time consuming, tedious, and 
expensive to uninstall, reinstall, recalibrate, and 
integrate with the BAS of the building. Wireless 
systems also suffer from power consumption, scalability, 
and limited information storage capacity issues limiting 
the extent and quality of the data that can be collected 
[7,16]. Further details about these data collection 
methods along with a thorough analysis of the 
respective characteristics can be found in [17]. 

In an aim to mitigate the aforementioned issues, this 
paper introduces a mobile platform based data 
collection process that uses mobile indoor robot 
equipped with single set of sensors. The mobile robot is 
capable of navigating in a known indoor environment 
with the help of onboard sensor suite (for data 
collection), onboard computing capabilities, and a RGB 

camera (for localization, navigation, and drift 
correction). The entire process of robotic navigation 
along with the localization, data collection, and 
geotagging are discussed in detail in the methodology 
section of the paper. One of the main advantages of the 
proposed data collection method is that it eliminates the 
need for instrumenting different locations in existing 
buildings with the same set of sensors [18]. The case 
study described at the end of this paper illustrates how 
the robot is capable of providing a rich data set for 
energy retrofit and/or retro-commissioning decision 
making purposes. 

2. Research Objectives 

The main goal of this study is to introduce a new 
data collection technique for gathering information 
regarding energy and comfort related parameters in 
buildings. The proposed approach is more economical 
and feasible compared to the existing techniques. The 
data collected using this approach has the potential to 
assist building managers in making timely and informed 
decisions about retrofitting and/or commissioning of the 
buildings which does not have the latest BAS installed. 
Thus, the primary objectives of this paper are to 1) 
Introduce a novel concept of using mobile indoor robots 
for collecting energy and comfort related data in 
buildings, 2) Discuss in detail the localization, 
navigation, and drift correction algorithms for two of 
the three robotic platforms developed. 3) Statistically 
compare the quality of the data sets collected using the 
traditional BAS and the mobile robot to illustrate the 
applicability of this framework for energy analysis in 
buildings. 

3. Design of the Robot 

One of the main contributions of this paper is the 
design of the robot along with its respective algorithms 
which are the basis for robots’ navigation. Some of the 
other crucial aspects in the design of the robot are 
determining the type of data that needs to be collected 
(accordingly the type of sensors to be placed on the 
robot), frequency of data collection (how frequently the 
data needs to be collected at every location), waiting 
time at each location of data collection, algorithms that 
will help decide the number of mobile robots required to 
monitor (depending on the size of the buildings) the 
entire building, optimizing the travel time and path. 

The TurtleBot robot platform, equipped with the 
iCreate base is chosen as the mobile data collection 
platform and sensors such as Cozir® CM 0199 (for 
temperature, humidity, and CO2 levels), HOBO U12 
(for light and occupancy levels), Lutron (for natural 
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light levels), NinjaBlocks (for air speed), Smart meters 
(for electricity consumption) is used for the data 
collection. Figure 1 shows the robot with the following 
components 1) TurtleBot – for navigating the indoor 
environment; 2) On-board netbook – to communicate 
with the TurtleBot; 3) RGB Camera - for the TurtleBot 
to detect fiducial markers, localize, and estimate its 
relative pose in an indoor environment; 4) Remote 
laptop for executing the corresponding navigation 
programs on the on-board netbook; and 5) Sensors – for 
monitoring and data collection of various occupant 
comfort and building energy parameters. 

 

Figure 1. Components of the robot used for 
occupant comfort and indoor environmental data 
collection 

4. Methodology 

In order for the robot to autonomously navigate 
indoors and collect energy and comfort related data, it 
needs to 1) localize in the indoor environment, 2) 
navigate to the intended data collection locations, 3) 
collect the respective data (such as temperature, 
humidity, and light intensity), and 4) geo-tag (record the 
collected data with the physical location) for further 
analysis.  

In the current context, localization of a robot means 
that the robot needs to be able to identify its current 
location in a known indoor environment setting. For 
example, a robot being able to recognize its current 
location to be in room 201, or knowing its xy location 
and orientation in the global coordinate reference 
system. The robot’s navigation can be briefly defined as 
the robot’s ability to plan a course of action to reach the 
destination location while accurately localizing itself in 
its frame of reference at strategic locations [19]. 

Many non-visual sensor based (non-vision based) 
techniques such as Global Positioning System (GPS) 
[20], Radio Frequency Identification (RFID) [21,22], 
Wireless Local Area Network (WLAN) [21,23], Ultra-
Wide Band (UWB) [24], Bluetooth [25], and Inertial 

Measurement Unit (IMU) [26] used to be the primary 
focus of many studies for localization and navigation 
indoors. Though GPS and UWB have good accuracy, 
they require Line Of Sight (LOS) and tend to be costly. 
RFID is comparatively cost effective but for good 
accuracy a large number of tags are required. WLAN 
and IMU suffer from dynamic environment changes and 
drift accumulation respectively. Bluetooth based 
technologies require dense instrumentation of the 
beacons in the environment.  

With the advent of efficient computing capabilities 
and developments in the field of computer vision, 
techniques such as Simultaneous Localization and 
Mapping (SLAM) [27] and visual registration which 
utilize visual sensors such as cameras, laser scanners 
[28,29] or LIght Detection And Ranging (LIDAR) were 
developed. Though 3D pose estimation is possible in 
most of the vision based techniques, they suffer some of 
the disadvantages such as requirement of high 
computational power, infrastructure dependency, and 
higher costs.  

One of the vision-based methods reviewed (Fiducial 
Markers), however, is particularly immune to the 
aforementioned disadvantages afflicting other methods. 
Fiducial markers [30] offer high accuracy in 
determining and estimating their relative 3D pose in an 
environment, require relatively less computing 
capabilities, are cost-effective, and are easy to install 
[31]. 

4.1 Localization 

In this section, the general computing framework 
that is developed as part of this research is described. 
This framework uses fiducial markers to link between 
actual physical locations and virtual information stored 
regarding those locations) for indoor robot localization. 

Fiducial markers have the capability to store virtual 
information regarding multitude of things such as 
information regarding physical location (floor and room 
level information), emergency evacuation directions, 
indoor navigational information, and inspection related 
data regarding building systems helpful for facility 
managers [32].  For this study, unique fiducial markers 
are required to be placed along the navigational path of 
the robot (e.g., corridors, entrances to rooms etc.) as 
shown in Figure 4. More information on characteristics 
and properties of the markers is available in [30]. These 
markers, which are printed on regular paper, are used to 
store the physical location information (e.g., Room 101) 
and navigational information (e.g., take right) which is 
necessary to help the robot determine its current 
location and its targeted headed direction. 
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4.2 Navigation 

Three different kinds of navigation techniques 
namely tele-operated, predefined path mode, and 
dynamically configurable path mode were developed by 
the authors. The former is discussed in [18] and the 
latter two are discussed in detail in this study. The 
complexity of the algorithm increases and human 
involvement decreases respectively. Tele-operated 
navigation (where human operator drives the robot 
remotely using a laptop or a wireless controller) is most 
suited for places which are highly reconfigurable and 
need sporadic data collection such as banquet halls, 
training rooms, and convention facilities. Predefined 
path mode navigation is mostly suited for places with 
regular occupancy and almost fixed spaces which 
require periodic data collection (Every 15 minutes or 30 
minutes) such as offices, data centers, and ware houses. 
Dynamically configurable path mode is highly 
applicable for flexible/ dynamically changing 
occupancy buildings where data collection locations 
change dynamically depending on occupancy all 
through the day such as retail stores, schools, colleges, 
shopping malls, and airports. The navigation logic for 
each of these two types is described in detail in the 
following paragraphs. In addition, they are semi-
autonomous because obstacle avoidance is not 
considered in the navigation.   

4.2.1 Predefined path mode 

In this mode, the robot is given a predefined path 
with a start location, end location, the path it needs to 
autonomously traverse to reach the end location, and 
also the data collection locations along the way. Several 
markers whose global positions and orientations are 
known in advance are placed at regular intervals along 
the navigational path as shown in Figure 4.  

The overview of the navigational algorithm logic is 
represented as a flowchart in Figure 2. First, the aboard 
traditional RGB camera continuously captures images 
that might potentially contain a known fiducial marker. 
The images are processed by the marker recognition 
module (an algorithm which detects the presence of the 
marker). If a known marker is detected by the marker 
recognition module, the ID and relative pose of the 
robot with respect to the fiducial marker (in the 
camera’s reference frame) is outputted by the module. 
Each ID is associated with a physical location in the 
indoor environment as shown in Figure 4. Current 
location of the robot based on the aforementioned 
information is estimated and pose correction is 
calculated based on the drift correction algorithms 
discussed later in this section of the paper. The current 
approach of navigation can be termed as treasure hunt 

based navigation because the robot traverses the path 
from one marker to another marker with the help of 
clues provided at each marker. This means that robot 
will follow the previously known navigational direction 
(or clue provided by the last seen marker) until it finds a 
new marker. To avoid the cases of obstruction (robot 
not being able to see one or two markers in the 
navigation path), it can be easily programmed to store 
information regarding next couple of markers and still 
traverse the navigational path accordingly.  

 

 

Figure 2. Indoor treasure hunt based navigation 
algorithm with the help of network of fiducial 
markers 

Drift Correction (Predefined path): Drift is one of 
the major areas of concerns in the field of autonomous 
robots [33]. One of the most important factors that have 
a direct impact on whether the robot will traverse the 
entire path is drift accumulation of the robot. In this 
study, negative drift (-ve drift) means that the robot has 
drifted inwards (towards the marker) and conversely 
positive drift (+ve drift) means that the robot has drifted 
outwards (away from the marker). 

The current drift correction algorithm developed is 
based on the relative pose information estimated with 
the help of the onboard camera, computer, the known 
marker’s pose, and the known location in the fiducial 
markers network. The algorithm returns 3D relative 
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pose information (as shown in Eq. 1) in camera 
reference frame with respect to the marker. From that, 
the lateral distance information (distance between the 
camera and marker), d as shown in Figure 3, is extracted 
and the drift at each location (݀ߜi) is estimated. After 
that, the pose correction (turning angle (݅ߙ) in this case) 
is calculated based on the equations developed as shown 
in Eq. 2 and 3 along with a detailed description of 
various parameters are shown in Figure 3. Since the 
drift at each location might be different, the turning 
angle at each location also differs.  
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H is the part of Homogeneous transform matrix returned 
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T:  Translation matrix 
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4.2.2 Dynamically configurable path mode 

In this mode, navigation is based on user inputted 
coordinates which also allows the user to configure the 
robot’s path dynamically. This mostly resembles and 
matches the criteria for real-world applications where 
the robot might have to traverse different paths during 
different times of day.  

The overarching logic of the entire algorithm is the 
same as previously discussed and shown in Figure 2. 
However, the drift correction technique differs in this 
algorithm when compared to the previously discussed 
(Predefined path mode) algorithm. The navigational 
direction is estimated with the help of user inputted 
coordinates by generating vectors based on adjacent pair 
of coordinates and calculating the angle between the 
pair of vectors 

Drift Correction (dynamically configurable path): 
Similar to the drift correction algorithm discussed in the 
previous section, the current drift correction algorithm 
also works based on the relative pose information 
estimated with the help of the onboard camera, 
computer, the known marker’s pose, and the known 
location in the fiducial markers network. However, 
instead of calculating the lateral distance between the 

camera and the fiducial marker detected, this system 
estimates the relative pose angle between the plane of 
the marker and the plane of camera in cameras reference 
frame. The angle determined is termed as adjusted angle 
and it is added to the calculated angle in the navigation 
logic discussed above. Thus, a net corrected angle 
(based on the calculated angle and adjusted angle) is 
calculated and the robot instead of turning the entire 
calculated angle, rotates only the amount of corrected 
angle thereby, correcting its drift. The same process is 
continued at every marker location until the destination/ 
targeted location is reached.  

 

Figure 3. Visual representation of the drift error 
and respective terminology used in the drift 
correction algorithms.    

4.3 Data Collection and Geo Tagging 

The immediate next step once the robot is cognizant 
of its surroundings and capable of navigating indoors is 
collecting data. In the context of this paper, the 
parameters of interest are occupants comfort data in 
buildings such as temperature, humidity, indoor air 
quality, and light intensity.  

In this study, geotagging is associating the building 
energy/ thermal comfort data collected along with its 
location information such as room number and floor 
number. To achieve this, a programmable interface is 
developed which bridges the communicated physical 
location information (as given by the fiducial markers) 
with the sensor data (obtained from the data collection). 
A python program is written which subscribes the 
published ROS data regarding the location of the robot 
(given by the fiducial marker), concatenates it with the 
retrieved sensor data along with the time stamp, and 
exports the data to an excel file locally stored in the on-
board netbook. This data then can be stored in a local 
server or can be updated to an online big data set 
interface for further real-time processing/ analysis. 
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5. Case Study 

A case study was performed to show the validity of 
all the four steps of methodology. Experiments were 
conducted in the Ross School of Business at the 
University of Michigan - Ann Arbor campus with the 
help of turtlebot as a mobile platform (as discussed in 
section 3 of this paper). The selected building is 
equipped with a BAS that collects different types of 
data at the room, system, and the building level. For 
example, different types of data gathered by the BAS of 
Ross are control temperature, supply air damper point, 
room temperature, hot water valve pint, and damper 
status operation. The basement floor comprising of an 
open study lounge (monitored by four thermostats) and 
the open corridor (monitored by three thermostats) were 
chosen as the test bed for the case study experiments. 
Figure 4 shows the locations of the thermostats and/or 
the locations in the basement where the temperature 
readings are recorded by the BAS. Since the case study 
location chosen consists of public spaces (corridors and 
open student lounge) with dynamically changing 
occupancy levels, dynamically configurable path mode 
technique as discussed in the navigation section of the 
methodology is chosen for the robot data collection path. 
However, the type of navigation technique used will not 
have any effect on the quality of the data collected.   

 

Figure 4. Fiducial marker network with the 
virtual information regarding the location stored 
in each of the markers along with the data 
collection locations in the basement floor of Ross 
School of Business, University of Michigan – 
Ann Arbor. 

5.1 Validation 

The data collected with the help of the proposed 
methodology is verified with data collected by existing 
technique using BAS. The BAS is programmed to 
collect data every 30 minutes in all the locations around 
the clock. For example, the BAS collects and time 
stamps data samples at 10:30:00 AM, 11:00:00 AM, 
11:30:00 AM, and so on. Since the data collected with 
the proposed methodology is done with a mobile robot, 
it is not possible to sample data in all the locations in a 
time synchronized way. However, the data is collected 
at all the locations within a stipulated time range so that 
it can be compared to the BAS data. Also, it is assumed 
that there were no significant differences in temperature 
values within that time frame. 

There are many statistical methods to assess two 
types of data sets. However, given the context of 
comparing two data sets, t-statistic hypothesis testing 
was done to compare the data collected by the BAS and 
the robot. The absolute difference between every pair of 
the readings was calculated and hypothesis testing was 
performed for the resulting data set. Prior to the data 
collection, experiments were also conducted in the same 
setting to find the difference in recorded temperature 
values from both the sensors (the sensor used on the 
robot and the thermostat in the BAS). The maximum 
absolute difference in the value observed was 0.8. 
Hence, for the statistical analysis, the null and alternate 
hypothesis were considered to be |μௌ െ μோ௧| 
	0.8  and |μௌ െ μோ௧|  	0.8	 respectively. The 
sample size of data at each location is 202 and hence the 
degrees of freedom are considered to be 201. The 
analysis and results are listed in Table 1. 

Table 1 Results of paired test analysis done for 
comparing the data sets collected using BAS (1) and 

Mobile robot (2). 
Location |µ1 - µ2| |σ1 – σ2|  t statistic p 

value  

1 0.283 0.184 -39.90 1 

2 0.491 0.347 -12.67 1 

3 0.466 0.262 -18.09 1 

4 0.446 0.366 -13.76 1 

5 0.647 0.491 -4.44 0.99 

6 0.603 0.389 -7.20 1 

7 0.493 0.453 -9.63 1 

Considering α=0.05 (confidence level of 0.95), it can 
be noted from the p-values in Table 1that there is no 
evidence to reject the null hypothesis. Hence, it is 
evident that the data collected by the mobile data 
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collecting platform is equivalent to the data collected by 
densely instrumented sensor network of BAS. 

6. Conclusion  

The proposed methodology of mobile indoor robotic 
monitoring and data collection of indoor environmental 
and occupant comfort parameters discussed in this paper 
offers an effective and economical method as compared 
to the traditional state of the art (Fixed stationary sensor 
network) data collection methods. This method involves 
using mobile indoor robots equipped with sensors to 
monitor and collect energy and comfort related data in 
buildings. It is particularly significant for old buildings 
that do not have an installed sensor network. With 
meager instrumentation of markers in buildings, the 
required data can be collected with the help of mobile 
robots. 

Some of the main characteristics of the traditional 
(stationary/fixed) sensor networks and mobile robotic 
data collection are descried as follows. A) Upfront 
Costs: Fixed sensor networks need astronomical amount 
of sensors, while mobile based systems need only one 
set of sensors. B) Initial setup: Need to install and 
calibrate thousands of sensors in each room in a 
building. Though mobile based system requires 
installing markers in the environment, they are easily 
configurable and the calibration needs to be done only 
on one set of sensors. C) Operational and Maintenance 
Costs: For fixed systems, high manual and 
administrative costs are incurred for periodic battery 
replacement, maintenance, and calibration for each of 
these sensors. Locating these sensors may prove to be a 
challenge in complex buildings. On the other hand, it is 
comparatively a lot easier to perform the 
aforementioned tasks on one set of sensors. With regard 
to the runtime power consumption of the robot, it is 
envisioned that the robot will autonomously charge 
itself (similar to existing robotic platforms such as 
Roomba) when the battery is running low and resume 
the data collection. D) Frequency of data collection: 
Fixed systems are capable collecting data with any time 
interval, but mobile platforms are limited based on the 
area that needs to be monitored.  

In addition, the limitations of the proposed system 
include requirement of marker instrumentation in the 
environment and occlusions. Careful consideration is 
required for determining the placement of the markers, 
as they might suffer from occlusions. However, with 
minor alterations in the algorithm, it can be 
programmed to account for the occluded markers. These 
markers are very easy to deploy and configure [32].  

Future planned work includes addition of obstacle 
avoidance methods to the existing algorithms and 
subsequently testing the robot in more complex indoor 

environments.  
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