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Abstract –  

Vision-based automated recognition of worker 
actions has gain lots of interest during the past few 
years. However, existing research all requires pre-
segmented video clips, which is not applicable in the 
real situation. Furthermore, pre-segmented videos 
abandon the temporal information of action 
transition. A joint action segmentation and 
recognition method, which can segment continuous 
video stream while recognizing the action type for 
each segment, is an urgent need. In this paper, we 
model the worker actions with a discriminative semi-
Markov model. In the model, a set of features is 
defined to capture both the local and global 
characteristics of each action cycle. Then the semi-
Markov model is formulated as an optimization 
problem and solved by the cutting plane method for 
simultaneous action segmentation and recognition. 
Scale-Invariant Feature Transform (SIFT) is applied 
to detect feature points in the region of interest in 
every frame. Two descriptors (Histograms of 
Oriented Gradients – HOG, Histograms of Optical 
Flow – HOF), are computed in the feature points to 
encode the scenario and motion flow simultaneously. 
Finally, the Bag-of-Feature strategy is adopted for 
feature representation. Experimental results from 
real world construction videos show that the 
proposed method is able to segment and recognize 
continuous worker actions correctly, resulting in a 
prospecting application in automated productivity 
analysis. 
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1 Introduction 

Worker activities have strong impact on 
productivity, progress and quality of construction 
projects. Traditional activity analysis usually involves 
foremen collecting data through onsite observations, 
survey or interview, and analyzing data offline [1, 2]. 
This procedure is labor intensive, cost sensitive and can 
be prone to error. Lacking of real-time information is 
another major concern.  

With the prevalence of onsite cameras and the 
emergence of advanced computer vision technologies, 
video based construction operation analysis has become 
a new trend in recent years [3, 4]. Either workers or 
equipment are detected and tracked through image 
sequences for further activity analysis [5-9]. Or spatial-
temporal features are extracted directly from videos for 
action recognition [10-12]. The latter, for being robust 
to changing view angle and moving cameras, has 
attracted lots of attentions. 
       Gong et al. [10] adopted the Bag-of-Feaures 
pipeline to recognize worker and equipment activities. 
Spatio-temporal features were extracted, clustered and 
quantized for motion pattern learning and prediction.  
Golparvar-Fard et al. [11] also adopted similar strategy 
for action recognition of earthmoving equipment. Yang 
et al [12] established a bigger worker action dataset and 
achieved a state-of-art performance on the new dataset 
by using dense trajectories for feature description.  
        Though the above mentioned research has made 
remarkable achievement, their limitation is obvious. 
They are all based on pre-segmented video clips by 
assuming that each clip only contains a single action 
cycle. In real world application, analyzing a continuous 
video stream with repetitive actions or sequential 
actions is often expected. What is more, pre-segmented 
video clips abandon the temporal information of action 
transition, which is valuable for operation flow analysis. 
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Hence, an automated action segmentation and 
recognition method is needed for continuous operation 
analysis.  

In computer vision field, traditional solution is to 
treat action segmentation and recognition separately. 
Temporal segmentation is applied to partition videos 
into coherent constituent parts and recognition could 
then be simply carried out as categorization of the 
action classes corresponding to the segments.  Typically 
three types of methods can be applied for segmentation: 
boundary detection, sliding windows and compositional 
approaches [13]. 
       However, it is often difficult to segment a video 
into actions purely based on low-level cues. What is 
more, separating segmentation from classification may 
result in important loss of information related to the 
actions. A recent trend is to solve segmentation and 
classification jointly [14, 15].  

Hoai et al [14] proposed a discriminative temporal 
extension of the spatial bag-of-words model for joint 
segmentation and recognition of human actions. A 
multi-class SVM was applied for classification and 
segmentation inference was done with dynamic 
programming. Shi et al [15] presented a discriminative 
semi-Markov model to define features over boundary 
frames, segments and also neighboring segments. The 
inference problem of simultaneous segmentation and 
recognition was solved efficiently using optimization 
algorithms. Their method exhibited good performance 
on repetitive action segmentation and recognition.  

Inspired by Shi et al [15], in this paper, we adopt 
the discriminative semi-Markov model to represent 
continuous worker actions. Scale-Invariant Feature 
Transform (SIFT) is applied for feature point detection. 
Two descriptors (Histograms of Oriented Gradients – 
HOG, Histograms of Optical Flow – HOF), are 
computed in the feature points to encode the scenario 
and motion flow simultaneously. Then the semi-Markov 
model is solved by the cutting plane method for 
simultaneous action segmentation and recognition.  

The rest of the paper is organized as follows. 
Section 2 illustrates the algorithm in detail. Section 3 
gives out the experimental results. Section 4 concludes 
the paper. 

2 Methodology 

The paper aims at designing a joint action 
segmentation and recognition system for worker activity 
analysis. Some basic assumptions are as follows. 

First, the system input is continuous video stream 
captured from construction site either by mounted 
surveillance cameras or hand-held cameras. Hence no 
static background is required. What is more, the 
algorithm is expected to handle various points of view. 

Second, cyclic worker actions, such as bricking or 
nailing, are the major concern. That is to say, the action 
should have clear starting point and ending point.  

The overall workflow of the proposed system is 
shown in Figure 1. As can been seen, the system flow is 
divided into two pipelines: training and testing. First, 
feature points in labeled video clips are extracted by 
SIFT detector. Then, HoG and HoF descriptors are 
computed on the feature points. Feature vectors are 
quantized using the Bag-of-Features strategy. After that, 
feature functions are formed according to their 
definitions. Semi-Markov Model is learned through 
optimization. During testing, feature functions are 
formed using the codebook generated in the training 
stage. Then the trained SMM model is applied to infer 
the continuous action boundaries and types. More 
details are illustrated as follows. 

 
                           Fig 1. System Overview 

2.1 Semi-Markov Model 

The joint action segmentation and recognition 
problem is formulated as a convex optimization over a 
probabilistic semi-Markov model [15]. To make the 
paper self contained, a brief description of the model is 
provided as follows. 

Considering a graph model, each node corresponds 
to a segment of video frames having the same action 
label, and each edge depicts the statistical dependency 
between adjacent segments. Let {1, }C c  represent 

the action labels. Given a video sequence X of length 
m , assume there are l segments with 

boundaries 1
0{ }m

k kn 
 . Then action sequence label Y can 

be represented as 1
0{( , )}l

k k kY n c 
 , where each pair 

( , )k kn c denotes the starting position and the 

corresponding action label for the k th segment.  

Model parameter is denoted as W . And 
( , )X Y represents a feature map over the joint input-

output space. Assume that the conditional probability 
distribution over action sequence label Y given current 
observation sequence is a log-linear model, 

log ( | , ) , ( , ) ( )Wp Y X W W X Y A X    

Where ( )WA X is a normalization constant to ensure 
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( | , )p Y X W  is a valid probability distribution. And 

( , )X Y is defined as, 
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In which, 1  and 2  depicts the observation-label 

dependencies within the current action segment with 1  

focusing on the segment’s boundary frame and 

2 describing the global characteristics of the current 

segment. While 3  encodes the interaction between two 

neighboring segments.  
       Given an unseen video sequence X , its action 
sequence can be labeled optimally by solving the 
following maximum likelihood decoding problem 

* arg max log ( | , )
Y

Y p Y X W . 

        Learning is accomplished by solving a regularized 
optimization problem with respect to the parameter W . 

The goal is to make W be bounded to avoid over-fitting, 
while maximizing the minimum log ratio of the 
conditional probabilities,  

2

,
min

2

. . , ( , ) ( , ) ,

t
W

t

t t t

W

T

s t W X Y Y Y t Y



 





    

  

for the set of video sequences { : 1, , }t t T  . In the 

equation, ( , ) : ( , ) ( )t t t tX Y X Y X Y      and 

t  is a non-negative slack variable to account for the 

non-separable case.  
        For the sake of completeness, the dual program is 
given as 
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Where M  represents the probability simplex 
constraints. 

 The above problem can be solved approximately 
using optimization techniques such as cutting plane [16] 
or the bundle method [17].  

2.2 Feature extraction and description 

A frame based feature representation is expected to 

encode the feature map ( , )X Y . Considering the 

need for robustness to illumination, scale and view 
angle change, a local feature detector SIFT [18] is 
adopted. After feature points being detected, technically 
the SIFT descriptor can be applied for feature 
description. However, considering that action 
segmentation and recognition is not a task based on a 
single frame but usually requiring dynamic information 
from neighboring frames, we adopt HoG  (Histograms 
of Oriented Gradients) [19] and HoF (Histogram of 
Optical Flow)  [20] descriptors instead. HoG is used to 
encode static appearance information, while HoF is to 
capture the local motion information. 

Descriptor are computed on a 3D video patch in the 
neighborhood of each detected SIFT point. The patch is 
partition into a grid with 3x3x2 spatio-temporal blocks. 
4 bins HoG descriptors and 5-bin HoF descriptors are 
then computed for all blocks and concatenated into 72-
element and 96-element descriptors respectively, finally 
forming a 168-dimensinal feature vector. For dimension 
reduction, the Bag-of-Features strategy is applied. A 50-
dimensinal codebook is formed by clustering on all 
features.  Then each feature vector is mapped to 
codebook centers, resulting in a quantized histogram. 

Finally, feature functions 1 2 3, ,    are computed. 

1  describes the boundary frame features.  

1 1( , , ) ( , )i i i iX n c X n c    

Where  denotes the tensor products. 1  is the 

concatenation of a constant 1 and the histogram vector 
on the boundary frame.  

       2  captures features on the current segment.  

       2 1 2 1( , , , ) ( , , )i i i i i iX n n c X n n c     

Where 2 1( , , )i iX n n   contains three components: the 

length of the segment, the mean and the variance of the 

histogram vector of the segment (from frame in to 

1 1in   ). 

        3  is used to depict features on neighboring 

segments.  

 3 1 1 3 1 1( , , , , ) ( , , )i i i i i i i iX n n c c X n n c c        

It is the concatenation of four components: the mean of 

the histogram vector from frames in to 1 1in   , and 

from frames 1in   to 1in d  ; the variance of the 

histogram vector from frames in to 1 1in   , and from 

frames 1in   to 1in d  . d is the minimum duration of 

a segment defined by the user.  
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3    Experimental results 

This section describes experimental results on two 
groups of data: the repetitive actions and the sequential 
actions.  

The original data is selected from the worker action 
dataset proposed by the authors previously [12]. Four 
types of worker actions are selected: ‘Nailing’, 
‘TieRebar’, ‘Shoveling’ and ‘LayBrick’. These actions 
are all cyclic with starting and finishing points for each 
cycle, offering a clear sign for segmentation. For each 
action type, we pick 3 workers. Each one performs the 
action 6 times. So there are totally 72 video clips (in 
resolution 320*240，frame rate 25 fps).  

Figure 2 displays sample frames extracted from the 
dataset. As can be seen, various points of view are 
covered in the dataset. Furthermore, different workers 
may execute the same action differently. These all 
propose difficulties for action segmentation and 
recognition. 

For algorithm evaluation, the segmentation 
performance and the recognition performance are 
measured separately. The algorithm will assign each 
frame a segment label and an action label. By 
comparing the segmentation and recognition results to 
the ground truth, the overall frame-level accuracy can 
be calculated as the ratio between the number of 
agreements over the total number of frames. Confusion 
matrix is computed to further evaluate the recognition 
performance.  

 
        Fig 2. Sample frames of the dataset (From top row 
to bottom: nailing, kntRod, shoveling and bricking, 
respectively) 

 

3.1 Repetitive actions 

Video clips from the same action type and the same 
worker are concatenated into longer video sequences. 
For each action type, two workers are used for training. 
One worker is left out for testing. Eventually, 8 video 
sequences are for training, 4 for testing. Each sequence 
contains 6 action clips.  

The overall frame-level accuracy for action 
segmentation is 88.3%.  The results for each sequence 
are shown in Fig. 3, in which different color represents 
different action type and black boundary of each bar 
gives the segmentation result. In each subfigure, ‘Truth’ 
represents the ground truth and ‘Ours’ represents the 
algorithm output. It can be seen that the number of 
segments is correct for all sequences. The segments 
boundaries are not very satisfying.  

The recognition results are all correct for ‘nailing’ 
and ‘bricking’. One segment in ‘knitRod’ is 
misclassified as ‘nailing’. And all segments in 
‘shoveling’ is misjudges as ‘bricking’. The confusion 
matrix is shown in Fig. 4. The average recognition 
accuracy is 72.0%. 
 

 

 
Fig.3 Automatic segmentation-recognition versus 

human labeled ground truth for repetitive actions. The 
segments are color coded; red, green, blue and yellow 
correspond to nailing, shoveling, bricking and knitRod 
classes, respectively. This figure is best seen in color. 
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Fig. 4 Repetitive action - confusion matrix for action 

recognition in frame-level. 

3.2  Sequential actions (Synthetic Dataset) 

To simulate workers doing different task 
sequentially, video clips from different action types are 
concatenated into longer video sequences in the order of 
‘Nailing’, ‘Shoveling’, ‘LayBrick’ and ‘TieRebar’, 
ending up 18 video sequences. 12 of them are training 
and the rest 6 are for testing.  

The overall frame-level accuracy for action 
segmentation is 93.7%.  The results for each sequence 
are shown in Fig. 5. It can be seen that the number of 
segments is correct for all sequences. The segments 
boundaries are close but not very accurate. Compared to 
the repetitive action result, the segmentation is slightly 
better, which is foreseeable because boundaries between 
two different actions are apparently easier to distinguish.  
 

 

 
Fig. 5 Automatic segmentation-recognition versus 

human labeled ground truth for sequential actions. The 
segments are color coded; red, green, blue and yellow 
correspond to nailing, shoveling, bricking and knitRod 
classes, respectively. This figure is best seen in color. 

   
All action type is recognized correctly per segments. 

The frame level confusion matrix for recognition is 
depicted in the confusion matrix in Fig. 6. The average 
accuracy is 93.7%.  
 

 
Fig. 6 Sequential action - confusion matrix for action 

recognition in frame-level.  

3.3 Comments 

      From the two groups of experiments, we can see that 
the Semi-Markov Models method can segment 
continuous long construction videos and recognize 
worker action type for each segment. The action 
recognition rate is comparable to the state-of-art on pre-
segmented videos [12]. The number of segmented are 
all correct in all testing sequences, which is important 
when applying the method to productivity analysis. 
However, the segmentation boundaries are not very 
accurate. One possible explanation is: worker actions 
are recorded from multiple points of view and different 
worker usually have different poses and various action 
length. These all introduce difficulties in segmentation.  
      Comparing the two groups of experiments, it can be 
concluded that the Semi-Markov Model can model the 
sequential action better than repetitive actions.  

4    Conclusions 

In this paper, we applied a Semi-Markov Model 
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method for joint action segmentation and recognition in 
construction videos. Experimental results showed that 
the method can recognize worker action type at a state-
of-art accuracy while segmenting long videos into 
individual segments correctly in numbers. Joint action 
segmentation and recognition can be used for further 
productivity analysis and may supply useful information 
for workflow analysis. Future study may seek to test the 
methods on bigger datasets, improve the feature 
description method for better segmentation result.  
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