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Abstract – 

An energy audit is a standard process to support 
the decision-making in the area of energy 
management. Nevertheless, an energy auditor does 
not succeed as easily and quickly in identifying all 
the energy streams in a facility in order to decide 
whether retrofitting the audited object is beneficial. 
In fact, energy auditing of buildings is usually a time 
consuming and expensive process, due to efforts 
required for data collection and modelling of audited 
objects. Therefore, a decision-making tool should 
support the modelling phase and this purpose might 
be achieved by means of reduced-order modelling, 
after a quick data acquisition, through on-site 
measurements. As highlighted in literature, reduced-
order models, also called grey-box models, showed 
their reliability to achieve a suitable description of 
the thermal response of buildings in a short time. 
Besides, they are more cost-effective and their 
thermal parameters can be usually extracted in short 
time. Consequently, deriving a lumped parameter 
model, by means of measurements collected in a 
rather short period, could allow the owners and 
managers of real estates to perform fast and cheap 
preliminary assessment on the opportunity to 
implement energy renovation actions. Starting from 
a test performed in the machine laboratory of our 
department at the Università Politecnica delle 
Marche, the investigated empirical procedure for 
deriving grey-box models will be provided and 
energy saving opportunities, within an energy 
retrofit, will be analysed as an example about the 
application of this procedure. 
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1 Overview of the energy management 
system 

Buildings are responsible for almost half of the total 
primary energy use and the consequent greenhouse 
emissions worldwide. Even if current energy systems 
are improving, they do not satisfy yet the acceptable 
limits for the efficiency [1]. In this regard, the European 
Commission puts effort in promoting measures for the 
reduction of energy needs and greenhouse gas emissions, 
by recommending energy retrofitting projects. One of 
the targets of the European Directive 2012/27/UE is to 
retrofit 3% of the existing public stock, while upgrading 
it to current legislation [2]. Several actions in favour of 
the Energy Performance Contracting (EPC) market in 
Europe have been put into practice, e.g. within the 
Intelligent Energy - Europe (IEE) programme. The 
Energy service companies (ESCos) have been identified 
as key players in the implementation of EPC 
investments [3]. The EPC is a contractual arrangement 
between the beneficiary and the provider of an energy 
efficiency improvement, where investments in an 
energy efficiency project are paid in relation to the 
achievement of energy savings produced [2]. About this, 
contracts offered by ESCOs usually concern all the 
energy services, included energy audits. In such a way, 
facility owners and managers are supported in 
improving ageing and inefficient assets, transferring 
risks and reducing meanwhile energy costs [4]. The 
methodology of EPC is oriented to ensure the quality of 
performance. In fact, a strong commitment from the 
government to the use of EPC has been observed in 
several countries [5]. However, the success of EPC 
projects depends the most on the correct estimation of 
the expected energy savings. For the ESCOs, it is 
crucial to evaluate the feasibility of the proposed energy 
conservation measures (ECMs) to achieve an acceptable 
energy use baseline, according to a contractually agreed 
level of energy performance. A detailed energy audit is 
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typically carried out at a first stage, in order to identify 
the energy saving opportunities.  

Therefore, a decision support system for energy 
auditors might be beneficial in several scenarios, as for 
example:  

- in case owners of multiple buildings must give a 
prority for refurbishment or every 
requalification; 

- in case the energy enhancement of any existing 
buildings is conditioned upon the possibility of 
repaying back the initial investment with annual 
savings from energy reduction; 

- in any case it is essential to select the most 
appropriate actions or strategies to reduce 
buildings’ environmental impact. 

Despite the fact that building simulation models are 
more effective to understand the implications in the 
energy use policies, they usually entail an expensive and 
time-consuming implementation process [6].  

What makes the things worse, referring to an Ashrae 
level 3 of energy auditing [7], is that a detailed audit 
needs a substantial time to set the data and provide the 
detailed dynamic model of the audited object; besides, a 
considerable computational effort is necessary to run the 
large number of simulations, usually required. 
Furthermore, uncertainty in model inputs often does not 
guarantee an accurate prediction of the energy 
performance, particularly for existing buildings, in 
which a lot of information about intrinsic characteristics 
remain unknown. In order to develop quick and efficient 
diagnoses, reduced-order models represented by grey-
box models are preliminary assessed in this paper. The 
reduced modelling can be applied in many fields in 
construction (i.e. safety, occupancy dynamics and 
structural damages) because of its reliability and 
usefulness for simulations, advanced controls, real-time 
predictions. Recently, it is widely used to improve 
energy management strategies. Relevant literature 
provides many examples and case studies about 
modelling the energy dynamics of buildings. In fact, 
parameters of the reduced models are extracted in real 
time; this makes the estimation of the thermal response 
of a building in its current state feasible, and this 
information reusable to make predictions about its 
expected behaviour in further analyses. 

Our study started with a fact-finding survey on the 
reduced-order models and the use of identification 
techniques from literature. Then, we investigated the 
robustness of such techniques in a real case, with the 
purpose of defining experimentally an efficient decision 
support tool for the energy retrofitting. Therefore, we 
studied the possibility of identifying the unknown 
properties of a mathematical model based on partial 
observations of the heat dynamics of the building, that is, 
in our case, a small data collection of temperature 

measurements. To sum up, the modelling phase is 
discussed in Section 2. The preliminary test is described 
in Section 3, including the experimental set up and data 
generation. The results of the study are provided in 
Section 4. Conclusions are given in Section 5. 

2 The modelling phase 

Buildings modelling for advanced control, in 
particular to derive a total model for the heat dynamics 
of buildings, has been the purpose of several research 
groups in the last years, also related to the increasing 
attention for the energy savings. Therefore, several 
different approaches have been described and many 
different methods for the dynamic analysis of energy 
use in buildings have been developed. In literature, the 
problem of deriving a suitable reduced model is solved 
referring to two different approaches. The first one is a 
purely physical approach, in which it is possible to 
investigate the physical behaviour of a building. 
However, the inaccuracy of control strategies relying on 
these detailed models represents a clear weakness, since 
the real building parameters are often unknown in 
existing buildings [8]. Contrarily, the second approach 
concerns the statistical black-box models, in which the 
parameters result from a statistical relation between the 
input and the output of the system, because they are 
generally disconnected from physical systems. The later 
introduction of the grey-box models represents a “half-
way” modelling to overcome the lacks of both 
modelling methods. In this work, the word “grey” is 
meant as defined by Reynders and Madsen [8-9], 
namely the combination of a prior knowledge of system 
dynamics, to define the model structure, and statistic 
methods, to estimate the unknown parameters.  

In order to turn energy audits into fast and cheap 
processes, no effort must be employed for extensive 
simulations, thus our proposal is to train the model from 
a limited set of experimental data. Consequently, grey-
box modelling represents an interesting solution because 
of the direct link between the physical laws of building 
dynamics and a strong framework of continuous 
stochastic differential equations formulated in a state 
space form [10]. The state-space representation provides 
a mathematical description to analyse dynamical 
systems with multiple inputs and outputs. A dynamical 
system is characterized by its state variables. The state 
variables are stacked in a time varying state vector, 
referred to as the system state.  

Regarding grey-box models, the state-space form 
derives from the physical laws, which are formulated by 
first-order stochastic differential equations. Therefore, 
the model structure is a linear time-invariant model, 
represented by the following equations: 
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݀ܺሺݐሻ ൌ AሺߠሻXሺtሻ ൅ BሺߠሻUሺtሻ ൅ σሺߠሻdω (1) 
ܻሺݐሻ ൌ ሻݐሻܺሺߠሺܥ ൅ ሻݐሻܷሺߠሺܦ ൅ ߝ (2) 

The states of the system are represented by the 
vector X(t) which correspond to the temperatures of the 
relevant building components, in the case of modelling 
the thermal response of buildings. U(t) is a vector 
containing the measured inputs of the system, which can 
be either inputs or controlled outputs (heating and 
ventilation system, solar gains, outdoor temperature, 
etc.). The measured output Y(t) is function of the states 
and the inputs. A, B, C, D are nonlinear functions, 
depending on the parameters’ vector θ. The matrix A 
characterizes the dynamic behaviour of the system and 
the matrix B concerns the influence of input signals 
entering the system. ⍵ is a random function of time, 
assumed as a standard Wiener process with independent 
increments; the mutual independent ε is a white noise 
process representing the measurement error. 

To identify the unknown parameters of the vector θ, 
the ML estimation method is adopted, because it was 
validated by Madsen [9-11] and successfully applied in 
several applications. According to statistics, the MLE is 
the hypothetical population value that maximizes the 
likelihood of the observed sample, that is, the value 
most likely to have generated the sample actually 
observed. The maximum likelihood method thus 
provides a means of estimating a set of parameters 
characterizing a distribution of an observed 
phenomenon, if we know the form of this distribution. 

The structures for modelling the heat dynamics are 
derived from the analogy with electric circuits. 
According to the model order, the thermal mass of the 
building is lumped to a discrete number of capacitances. 
In the thermal network, the capacitor C represents the 
active thermal capacity of the building zone for storing 
heat, while the thermal resistance R is linked to material 
properties and affects the heat flow across building 
layers at different temperatures. However, a given 
parameter is not identified with the same physical 
correspondence in each model. The models used in this 
work (Figure 1) are referred to the 1st, 2nd and 3rd-order 
models. To simplify the problem, in this early stage, the 
case study does not entail the internal and solar gains. 

 

Figure 1. RC-networks of the grey-box models: 
1st, 2nd, 3rd order models, from top to bottom 

The stochastic differential equations, related to the 
state space form, are deduced from principles of energy 
balance at nodes and of heat transfer. For the first order 
model (Figure 1a), the only state is described by: 

݀ܶ ൌ
1
RC

ሺT௔ െ Tሻdt ൅
1
C
Φ௛dt ൅ σdω (3) 

The two states grey-box model TiTe (Figure 1b), is 
defined by the following equations: 

݀ ௜ܶ ൌ
1
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 (5) 

Consequently, the third order model (Figure 1c) is 
represented by these ordinary differential equations: 

݀ ௜ܶ ൌ
1

RଷC௜
ሺTଶଷ െ T௜ሻdt ൅

1
௜ܥ
Φ௛dt ൅ σଵdωଵ (6) 
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1
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൅
1
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 (7) 

݀ ଵܶଶ ൌ
1

RଶCଵଶ
ሺTଶଷ െ Tଵଶሻdt ൅ 

൅
1

RଵCଵଶ
ሺT௔ െ Tଵଶሻdt ൅ σଷdωଷ 

 (8) 

Whereas Фh [kW] and Ta [°C] constitute the input 
measured values of the power provided by the heater 
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and the ambient temperature, the resistance/capacitance 
parameters, R [°C/kW] and C [kWh/°C], are estimated 
as well as the stochastic terms [°C] and the initial values 
of the other temperatures [°C]. The time is expressed in 
hours. For every system of differential equations, the 
output equation is represented by the discrete time 
measurement equation, which takes into consideration 
the data-driven: 

௞ܻ ൌ ௜ܶ௞ ൅ ݁௞ (9) 
 

where k is the point in time tk of a measurement, 
where Yk [°C] is the measured interior temperature, 
where Tik [°C] is the state at the time tk, 
where ek [°C] represents the measurement error, which 
is assumed to be a Gaussian white noise process with 
variance σ2 [9]. In fact, a real context provides a number 
of disturbances to be taken into account in the 
modelling of the system, to not obtain largely distorted 
results.  

3 The preliminary test 

The main purpose of our experimental approach is 
the investigation of grey-box modelling in simulating 
real and complex cases, in order to implement it in a 
decision support tool for energy audits of existing 
buildings. To this aim, a first controlled situation was 
simulated in a machine laboratory at the Università 
Politecnica delle Marche and it will be described in this 
section. 

3.1 Experimental set up 

The entire laboratory of our department was used to 
create a first controlled situation. The changing room of 
our laboratory was chosen as the test-room, while the 
entire laboratory was one of the boundary conditions of 
temperature. The floor of the changing room, whose 
area is about 13 m2, was covered with polystyrene 
sheets and bricks to insulate it from the ground. Besides, 
in this testing area an electric heater of nominal power 
400 W and real measured power 377,6 W, generated the 
heat flux. This heat input was controlled by means of a 
timer, programmed with the sequence of PBRS signal, 
according to Madsen’s procedure [11].  

 

Figure 2. Map extracted from HoboNode 
Manager, representing the laboratory with 
sensors deployment 

3.2 Data generation 

A Hobo Zw Series Wireless Network was installed 
in the test room to measure temperatures of the various 
environments. The map in Figure 2, extracted from the 
hobo software interface (HoboNode Manager), shows 
the deployments of the data node, the routers and the 
receiver. The receiver was connected to a computer, 
which was used to set up the network and to offload the 
data from the receiver at the site. The six available 
sensors were installed in the area: three in the test-room, 
two on the internal walls and one hanging from the 
ceiling; one close to in the bathroom; another one in the 
laboratory and the last sensor was hung in the archive. 
This deployment of the sensors was dictated by the 
requirements posed by the adoption of numerical 
techniques (see section 2). In addition, a thermo-
anemometer, VT200 Kimo, was placed in the changing 
room with two probes to measure the temperature of the 
internal air and of the floor. Finally, a Kestrel climate 
station was positioned on the roof of the changing room. 
These measurements were useful to test the network 
acquisition. Only the Hobo monitoring network 
provided the data for the identification process. The 
applied data covered a period of about 18 days, from 2nd 
to 20th July 2015. The number of total observations was 
equal to 27131, corresponding to an acquisition per 
minute. Prior to estimating the model parameters, the 
data were resampled at a sampling time of 15 minutes. 
This sampling time was chosen, according to Shannon’s 
theorem, based on the smallest period of the electric 



33rd International Symposium on Automation and Robotics in Construction (ISARC 2016) 

heater that is 30 minutes. Temperature data from the 
sensors on the walls of the changing room were not 
considered in computing because too much affected by 
the convective motion of the air inside. At the same 
time, also temperature measurements of the bathroom 
were later excluded because they were too similar to the 
ones of the laboratory. Data of the first day of the test, 
July 2nd, were cancelled because corrupted. Some 
photos of the test set up are shown in Figures 3 to 6.  

 

Figure 3. The testing area of the changing room 

 

Figure 4. The sensor positioning in the laboratory 

 

Figure 5. Overview of the laboratory  

  

Figure 6. The archive bordering the laboratory 

4 Results 

In order to evaluate the robustness and reliability of 
the reduced-order modelling, in the data elaboration 
both the suitable structure of the lumped model and the 
influence of data period were investigated. 

As found in the referenced literature, the simplest 
model, that is 1R1C network (Figure 1a), was analysed 
in the data period 3-10 July. As already known, the first 
reduced-order model was quite unrealistic, in fact it 
revealed insufficient to describe the heat dynamics of 
our test room. In fact, evaluating results of parameters 
estimation in CTSM-R, errors were meaningful and 
model validation [12] was not satisfied. After that, the 
2R2C network (Figure 1b) was considered in the same 
data period of the first model, because measured data 
were more stable. The estimated results of this second-
order model better fitted with measured plots. Three 
second-order models were tested, differentiated as for 
the boundary condition Ta in Equation 5. In the first 
case, the ambient temperature Ta was represented only 
by the laboratory temperature Tl. In the second case, the 
weighted average of the laboratory temperature (Tl) and 
the archive one (Ta), weighted on the respective surface, 
calculated it. In the last case, a coefficient (Ka) was 
introduced to weight the archive temperature as 
compared to the one of laboratory. This coefficient was 
estimated by CTSM-R improving estimation results and 
the Equation 5 was rewritten in this way: 

݀ ௘ܶ ൌ
1

R௜௘C௘
ሺT௜ െ T௘ሻdt ൅ 

൅
1

R௘௔C௘
ሺܭ௔T௔ ൅ ሺ1 െ ௔ሻܭ ௟ܶ െ T௘ሻdt ൅ σ௘dω௘ 

 
(10) 

Then, to fix the best data period for the parameters 
estimation, a 3C3R model (Figure 1c) was considered; it 
was a natural extension of the second-order model 
(including the Ka parameter), for taking into account the 
more variable dynamics of the last test. 
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Four intervals were implemented for the ML 
estimation: 3-10 July, 8-15 July, 3-15 July, 3-20 July. 
The root of the mean squared error for the 1-step 
prediction and simulation of the identified model were 
investigated for each data set. The best data set was 
chosen depending both on the long period of acquisition 
and on the smallest RMSE value in simulation, that  was 
equal to 0.1574. It corresponded to the period 3-15 July.  

4.1 The reduced model validation 

Finally, the last portion of data was used to validate 
the model of Equations 6-7-11. The validation was 
carried out by performing a simulation of the test-room 
indoor temperature from 16th until 20th July, using the 
3C3R model with the estimated values in CTSM-R. 

݀ ଵܶଶ ൌ
1

RଶCଵଶ
ሺTଶଷ െ Tଵଶሻdt ൅ 

൅
1

RଵCଵଶ
ሺܭ௔T௔ ൅ ሺ1 െ ௔ሻܭ ௟ܶ െ Tଵଶሻdt ൅ σଷdωଷ 

 
(11) 

The validation phase was alike performed for the 
second and the first reduced-order models seen before, 
using the best data set for both the parameter estimates 
(always including the Ka parameter). The first order 
model resulted as non-representative of the heat 
dynamics of the test room, while the third order model, 
which fitted better, presented some parameters with a 
Pr-value over 0.05 that indicated an over-
parametrization of the model. Thus, the second order 
model was considered the best choice in terms of 
parameters validation in R and in terms of RMSE value 
in simulation, which was equal to 0.0745, as shown in 
Figures 7-8. 

 

Figure 7. The 2nd-order model in simulation 
environment 

 

Figure 8. Results of the 2nd-order model for the 
validation phase 

It was also possible to verify that replacing the Ka in 
the Equation 10 with its estimated value, that was 
0.13307, the results of the estimation (Table 1) were the 
best for model validation, without any Pr-value over 
0.05 (Table 2), that is, the model is not over-
parametrized. The Pr-value represents the probability 
that the particular initial state or parameter is 
insignificant, i.e. equal to zero [12]. The variance of the 
system noise is represented in CTSM-R by the 
exponential function of the estimated parameters p11 
and p22; while the variance of the measurement error in 
the output equation (see Equation 9) is the exponential 
function of the estimated parameter e11 (Tables 1-2). 

Table 1. Parameter estimation in CTSM-R for the 2nd 
reduced-order model with fixed Ka 

 Estimate Std. error t value 
Ti0 2.9692e+01 4.9569e-02 5.9901e+02 
Te0 2.9224e+01 5.7916e-02 5.0458e+02 
Ce 7.4006e+00 9.8259e-01 7.5317e+00 
Ci  1.7640e-01 1.6073e-03 1.0974e+02 
e11 5.6405e+00 4.8150e-02 1.1714e+02 
p11 1.0883e+01 1.6143e-01 6.7417e+01 
p22 2.9891e+00 8.6550e-02 3.4536e+01 
Rea 1.4677e+00 1.8143e-01 8.0896e+00 
Rie 3.4447e+00 4.8751e-02 7.0658e+01 

Table 2. Validation of the estimation results in CTSM-R 
for the second reduced-order model with fixed Ka 

 Pr(>|t|) dF/dPar dPen/dPar 
Ti0 0.0000e+00 -5.2349e-05 0 
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Te0 0.0000e+00 -4.8034e-06 0 
Ce 9.7255e-14 -1.2173e-05 0 
Ci 0.0000e+00  5.2610e-05 0 

e11 0.0000e+00 -4.9432e-06 0 
p11 0.0000e+00  8.7844e-05 0
p22 0.0000e+00  2.1533e-05 0 
Rea 1.3323e-15 -1.3020e-05 0 
Rie 0.0000e+00 -4.9613e-05 0

4.2 A validation of the reduced model for the 
energy audit 

Grey-box modelling was applied to set reduced 
models and estimate thermodynamic properties of a 
building, starting from a data acquisition campaign. In 
the end, in order to provide the auditor a further support 
in decision-making, the influence of data acquisition 
period was investigated. Thus, identified the reduced 
model structure, a parametric study was carried out to 
evaluate the optimal season for a data acquisition 
campaign. In this validation for the energy audit, the 
annual energy consumptions of the heating system were 
analysed. Results were provided in terms of NMBE and 
CV-RMSE values, calculated on an hourly basis 
relatively to the reduced model and to the baseline. 
Therefore, they were compared and limits imposed by 
the ASHRAE guidelines were verified [13]. The 
followed procedure is summarized below. 

Using our case study (see Section 3), the input data 
implemented in the identified 2nd-order model (see 
Paragraph 4.1) were derived from an annual simulation 
of the detailed building model (Figure 9), which was 
carried out by means of the Dymola software.  

Then, the parameters estimation was run in CTSM-R, 
varying the data input period, that is a month of the year. 
In this case, the heat input was a PRBS signal. At this 
level, the reduced model was defined in its physical 
properties, as seen before. Subsequently, the dynamics 
of the model was simulated in Dymola environment, 
according to the different simulation periods for the 
comparison. In the simulations, the heat input was 
represented by a thermostatic control, in which the set-
point temperature was fixed at 18°C (Figure 10).  

Before comparing the energy consumptions, a 
comparison of temperatures between the reduced model 
and the baseline was carried out. ASHRAE limits of 
NMBE and CV-RMSE [13] were verified; moreover, it 
was observed that temperatures simulated in the model 
had the same trend of the baseline ones, even with a 
thermostatic control operating. Ultimately, the 
comparison of the energy consumptions in terms of 
NMBE and CV-RMSE showed that the optimal season 
for data acquisition campaigns must match the one of 
the heating system operating (Figure 11).  

 

 

Figure 9. Detailed model of the building in 
Dymola environment (a) and the top layer of 
Dymola model (b)  

 

Figure 10. Identified reduced model of the 
building with thermostatic control  

 

Figure 11. Comparison between CV-RMSE 
values in terms of energy consumptions for the 
different simulation periods 
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5 Conclusions 

An empirical approach based on reduced-model 
strategy is provided to support energy audits of 
buildings. For this purpose, a preliminary test of a 
controlled real situation is performed, starting from a 
very little set of data. The influence of the data period is 
investigated and the results show the importance of 
measurements containing adequate dynamics, for the 
robustness of the identified reduced models.  

The best predictions are obtained for the 2nd-order 
model; nevertheless, the reliability of the procedure is 
balanced on the comparison with real conditions.  
Subsequently, results of the parametric study prove that 
annual predictions on energy consumptions require a 
model structure of limited complexity; besides, the 
procedure shows its reliability in real operating 
conditions. 

Further research should be able to generalize, as 
much as possible, this model identification approach. 
Future work should aim at testing other real and more 
complex cases, finding out saving opportunities of 
energy retrofits, in order to provide an efficient decision 
support tool for the energy audits of buildings. 
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