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Abstract – 

The aim of this paper is to introduce a novel 
method that automatically registers colored 3D point 
cloud sets without using targets or any other manual 
alignment processes. For fully automated point cloud 
registration without targets or landmarks, our 
approach utilizes feature detection algorithms used in 
computer vision. A digital camera and a laser scanner 
is utilized and the sensor data is merged based on a 
kinematic solution. The proposed approach is to 
detect and extract common features not directly from 
a 3D point cloud but from digital images 
corresponding to the point clouds. The initial 
alignment is achieved by matching common SURF 
features from corresponding digital images. Further 
alignment is obtained using plane segmentation and 
matching from the 3D point clouds. The test outcomes 
show promising results in terms of registration 
accuracy and processing time. 
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1 Introduction 
Virtual 3D scenario modelling and mapping is critical 

for construction applications for understanding the scene 
of interest, monitoring construction progress and 
detecting safety hazards. The abundant amount of point 
cloud data can be used to efficiently model a construction 
site. In most situations, the construction site has to be 
scanned from many different viewpoints in order to 
obtain a complete reconstruction of the site. This is due 
to the fact that some scans may be affected by occlusion 
and each scan position has its own local coordinate 
system. Therefore, all the individual point clouds 
collected in the local coordinate frame must be 
transformed to a global coordinate system in a procedure 
known as point cloud registration. However, most of the 
current methods used for point cloud registration work 
properly only if there is a good initial alignment or 
manually marked correspondences and targets [1]. 
Therefore, an effective point cloud registration method is 

an indispensable tool to merge several acquired point 
cloud data from different scanning points in the as-built 
construction site modelling pipeline. In this study, a 
target- free automatic point cloud registration framework 
is introduced.  

2 Literature Review 
Target-free automatic point cloud registration 

methods have been widely studied in the literature to 
overcome the limitations of target-based registration 
methods. There are three types of point cloud registration 
methods in existence: 1) ICP based, 2) feature-based, and 
3) geo referencing based. 

2.1 Iterative Closest Point (ICP) based 
The most popular method for point cloud registration 

is the iterative closest point (ICP) algorithm developed 
by Besl and McKay [2], Chen and Medioni [3]. In the 
ICP algorithm, the closest points in two different scans 
are used as relative control points. Furthermore, the 
iterative closest compatible point (ICCP) algorithm has 
been presented to reduce the search space of the ICP 
algorithm. In the ICCP algorithm, the minimization of 
distance is accomplished only between the pairs of points 
considered compatible on their viewpoint invariant 
properties[4].In addition, Men and Pochiraju [5] 
integrated Hue values in the registration process to 
achieve a 4D ICP algorithm. With the Hue values, the 
ICP algorithm is able to achieve higher accuracy and 
faster convergence. However, ICP-based registration 
methods still incur problems with calculation time due to 
the heavy computation load involved in the ICP 
algorithm. Also, the performance may not be reliable 
depending on the overlapping area and the initial starting 
points [6]. 

2.2 Feature based 
Feature-based registration can be realized without 

knowing initial starting points since 2D images are used 
to assist the recognition of feature points. The feature 
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point extraction based method utilized 2D intensity 
images with Scale-invariant feature transform (SIFT) [7]. 
However, this method is very sensitive to the overlapping 
area size. In addition, a large number of scans are 
necessary to achieve good performance, and the image 
feature extraction process can be heavily affected by the 
environment due to illumination changes. Another 
significant disadvantage of feature-based registration is 
that a heavy amount of calculation is involved [8]. Even 
though thousands of feature points can be extracted from 
each scan based on geometry or image information, most 
of them are filtered out because of incorrect matches.  

2.3 Geo referencing based 
Olsen and Johnstone [9] proposed a registration 

method where the position of each scan spot is derived 
from GPS. This method is widely used in outdoor studies, 
but suffers from a lack of accuracy in the registration 
process because of the low accuracy of GPS. For indoor 
registration, an automatic construction of 3D basic-
semantic models of inhabited interiors was developed 
using laser scanners with RFID [10]. This method is 
applicable only for indoor spaces, and the laser scanner 
is required to be set up in close proximity to the objects 
in order to recognize the RFID tags. Thus, geo-
referencing based registration using sensors such as GPS 
and RFID is not suitable for all situations because of the 
limitations in sensor performance [11]. 

 
Therefore, there are significant challenges involved in 

order to achieve a target-free automation point cloud 
registration method in complex data collection 
environments in a rapid and accurate manner. 

3 Hybrid 3D LIDAR system 
In this study, a robotic hybrid Light Detection And 

Ranging (LiDAR) system was used, consisting of four 
SICK LMS511 2D line laser scanners (65 meter working 
ranges at 25Hz scan speed, 200 sec / 360º scan, 190º for 
vertical line), and a regular DSLR 2D camera, as shown 
in Figure 1. The resolution of each line laser is 0.1667 
degrees in a vertical direction and 0.072 degrees in a 
horizontal direction. The customized 3D LiDAR system 
provides more flexibility in hardware control and 
software programming compared to a commercial 
LiDAR scanner. 

 

Figure 1  Hybrid 3D LIDAR system 

3.1 Data fusion of point clouds and digital 
images 

      A digital camera captures RGB texture data from the 
surroundings, which can be mapped on the 3D point 
clouds. In the texture mapping process, a camera 
calibration step is necessary for the digital camera. There 
are two kinds of matrices for camera calibration. The 
camera calibration process is finding internal and 
external parametric matrix for the camera which affect 
the image processing process. The internal parametric 
matrix, also known as intrinsic parameters, consist of 
focal length, image sensor format, and principal point 
that could be estimated by the pinhole camera model. The 
intrinsic parameters can be denoted by Equation (1). 
 

𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖 = �
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

� (1) 

 
The parameters𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦are associated with the focal 
length whereas the parameters 𝑐𝑐𝑥𝑥  and 𝑐𝑐𝑦𝑦  representthe 
principal point [12]. 

 
The external parametric matrix, also known as 

extrinsic parameters, denote the coordinate 
transformation from 3D world coordinates to 3D camera 
coordinates. This transformation is necessary since the 
laser scanned 3D point cloud data is obtained in 3D world 
coordinates. The extrinsic parameters can be obtained 
through a kinematic relationship based on the mounting 
configuration. 
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Using these intrinsic and extrinsic parameters, the 

laser scanned 3D point cloud can be transformed to 3D 
camera coordinates according to Equation (3). 
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Figure 2  Projection from world coordinate to image plane 

Then, the 3D camera coordinates can be transformed 
to the 2D digital image plane by the Equation (4). 

 

�
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖� = �

𝑢𝑢
𝑤𝑤
𝑣𝑣
𝑤𝑤

� (4) 

 
Thus, the coordinate systems of 3D point cloud data 

and RGB image data are aligned using the concept of 
perspective projection [13]. Figure 2 shows how the point 
cloud of scene transforms to the image plane. This 
enables a correct texture mapping between a point cloud 
and digital camera images. 

3.2 RGB feature point based transformation 
There are many techniques for detection of points of 

interests in an image such as Harris corners, SIFT, and 
SURF. The method of Harris features was proposed by 
Harris and Stephens in 1988. The notion of corner should 
only be taken in a general sense as it includes not only 
corners, but edges and keypoints. The limitation of Harris 
features is that they are not scale invariant and need to be 
recomputed for different scales. On the other hand, the 

Scale Invariant Feature Transform (SIFT) presented by 
David Lowe detects scale-invariant image feature points, 
which can easily be matched between images to perform 
tasks such as object detection and recognition, or to 
compute geometrical transformations between images. 
Additionally, the Speeded Up Robust Feature (SURF) is 
a robust descriptor motivated by the SIFT descriptor, 
both of them using local gradient histograms. The main 
difference between the two descriptors is the 
performance, where SURF decreases the computation 
time by using integral images for image convolutions and 
a Hessian matrix-based detector. The standard version of 
SURF is several times faster than SIFT and is claimed by 
the authors to be more robust against different image 
transformations than SIFT [14]. 

 
In this study, SURF feature points are used to obtain 

the initial transformation between point clouds. Once the 
feature points of each image are extracted, we can track 
points in the 3D point cloud by matching feature points 
in the image plane to the RGB-fused point cloud data set. 

 
The Kabsch algorithm (root mean square distance 

concept) is used to estimate the transformation matrix 
between point clouds. The algorithm starts with two sets 
of paired points, P and Q, where each set of points are 
represented as an N×3 matrix.  
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Both sets of points should be translated, so that their 

centroid corresponds with the origin of the coordinate 
system. This could be achieved by subtracting from the 
point coordinates the coordinates of the respective 
centroid. The next step consists of calculating a 
covariance matrix A. The optimal rotation matrix U can 
be computed by singular value decomposition (SVD) of 
the covariance matrix A. 

 

A = PT𝑄𝑄 = VSWT (5) 

 
Next, we decide whether we need to correct our 

rotation matrix in order to ensure a right-handed 
coordinate system using the variable d. 

 

d = sign(det(WVT)) (6) 

 
Finally, we can calculate our optimal rotation matrix, 

U, as 
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and the translation matrix D can be obtained by the  

difference between the centroid of each point cloud [15].  
 
To match each point cloud set, the initial rigid 

transformation matrix is defined. In this case, the 
transformation is a perspective projection for 6 degrees 
of freedom, composed of a rotation matrix and a 
translation vector in 3 dimensions. This transformation 
can be written as 3x4 matrix. We can then project a point 
P where P = [𝑥𝑥  𝑦𝑦  𝑧𝑧  1]𝑇𝑇 simply by applying this 
transformation matrix to the point: 
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The summary of finding an initial transformation 

using RGB feature points is as follows: 
1. SURF features are extracted from RGB 

panorama images using only 2D information 
2. Identify coordinates in the image frame for each 

extracted feature 
3. Track the feature points on the corresponding 3D 

point cloud with RGB-fused point cloud data  
4. Compute an initial transformation matrix using 

Kabsch algorithm 
5. Transform a point cloud to the reference point 

cloud 

3.3 Point cloud registration using plane 
matching and corner points 

Two point clouds can be further registered using the 
method of plane-to-plane matching. This method relies 
on finding three plane correspondences between the point 
cloud to be registered and the reference point cloud. The 
selected planes have to be linearly independent and 
intersect at a unique point in order to fully recover the 
transformation parameters. For example, one of the 
planes can be the ground plane whereas the second plane 
is a vertical wall in the x-axis whereas the third plane is 
a vertical wall in the y-axis. First, the Random Sample 
Consensus (RANSAC) algorithm is used to perform 
plane segmentation for each point cloud. The RANSAC 
algorithm works by iteratively sampling points from a 
given point cloud and estimating a set of plane 
parameters of the form 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐𝑧𝑧 + 𝑑𝑑 = 0. The best 
estimate is determined as the set of plane parameters that 
maximizes the number of points that are considered 
inliers [16]. The obtained plane parameters are used to 
segment the original point cloud into points belonging to 

the plane and the remaining points. This procedure is 
repeated until three suitable plane candidates are found 
that satisfy the linear independence criteria. Then, plane 
correspondences between the input point cloud and the 
reference point cloud are determined by finding the 
closest match between normal vectors. Second, the 
rotation component R of the transformation matrix is 
calculated using the plane normal vectors found in the 
previous step. The rotation component is determined 
such that the normal vectors (𝑛𝑛1,𝑛𝑛2,𝑛𝑛3)in the input point 
cloud will be transformedin order to match the normal 
vectors (𝑛𝑛1,𝑛𝑛2,𝑛𝑛3)in the reference point cloud [17]. An 
intermediate rotation matrix that rotates a vector 𝑣𝑣1  to 
another vector 𝑣𝑣2 is derived using Equation (9). 

 
𝑅𝑅 = 𝐼𝐼 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤(𝑣𝑣1 × 𝑣𝑣2)

+ 𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤(𝑣𝑣1
× 𝑣𝑣2)2

1 − 𝑣𝑣1 ∙ 𝑣𝑣2
‖𝑣𝑣1 × 𝑣𝑣2‖

 

(9) 

 
Three intermediate rotation matrices are calculated 

for each plane correspondence as shown in Equation 2. 
The final rotation matrix is then obtained by multiplying 
the intermediate rotation matrices together. 

 
𝑅𝑅1 = 𝑔𝑔𝑠𝑠𝑔𝑔𝑅𝑅𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛(𝑛𝑛1,𝑛𝑛1′) 

𝑅𝑅2 = 𝑔𝑔𝑠𝑠𝑔𝑔𝑅𝑅𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛(𝑅𝑅1,𝑛𝑛2,𝑛𝑛2′) 
𝑅𝑅3 = 𝑔𝑔𝑠𝑠𝑔𝑔𝑅𝑅𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛(𝑅𝑅2𝑅𝑅1,𝑛𝑛3,𝑛𝑛3′) 

𝑅𝑅 = 𝑅𝑅3𝑅𝑅2𝑅𝑅1 
 
Third, the translation component T of the 

transformation matrix is calculated by comparing corner 
points between the point cloud to be registered and the 
reference point cloud. A corner point is defined as the 
unique intersection point between three planes. The 
corner point can be calculated by solving three plane 
equations simultaneously for the (𝑥𝑥,𝑦𝑦, 𝑧𝑧) values. This in 
turn can be formulated as a matrix-vector multiplication 
operation using the corresponding plane parameters. 
Once the corner point is obtained for each point cloud, 
the translation vector is determined as the difference 
between the positions of the two corner points. The 
calculations involved in this step are shown in detail in 
Equation (10). 
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Finally, a registered version of the input point cloud 

is obtained by applying the rotation and translation 
operations to each point in the point cloud. 

4 Test 
The data acquisition process for validating the 

proposed framework is performed at the Bunger-Henry 
building in Georgia Tech.Figures3 and 4 show the two 
sets of RGB-fused point clouds scanned at different scan 
positions with the proposed texture mapping algorithm. 
 

 

Figure 3  3D RGB-fused point cloud at first scan position 

 

Figure 4  3D RGB-fused point cloud at second scan 
position 

 

Figure 5  Original point clouds from different scan 
position 

Figure 5 visualizes the two raw point cloud data set 
from the different scan positions. The two scan data 
collected as viewed are in the local coordinate system so 
the origin is the same. In this experiment, the first scan 
data set will be transformed and the second scan data set 
will be used as the reference data set. Each scan data 
collection occurred in an indoor environment where there 
are fewer visual features. Figure 6 shows the RGB feature 
extraction results using SURF features for the collected 
panoramic images. However, not all the feature points are 
correctly matched between the two panoramic views due 
to similar feature points in both images. For this reason, 
the final plane-to-plane matching step is necessary to 
achieve the desired accuracy for the presented framework.  

 

 

Figure 6  Feature point extraction for panoramic images 

 

Figure 7  Transformed and reference point cloud after 
feature point matching step 

      Figure 7 visualizes the point cloud sets after the initial 
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transformation using RGB feature extraction. As shown 
in this figure, the point cloud sets are better aligned 
compared to the raw data set in Figure 5. It can be verified 
from the reduced deviation angle in Table 1. Then, we 
can apply the third step which is the plane-to-plane 
matching algorithm. The initial alignment is sufficient 
that we can easily find plane correspondences in the final 
step. Finally, Figure 8 represents the final result for the 
proposed framework. To verify the result for this test, the 
second point cloud set is assumed as a true ground and 
measured the deviation angle from each reference axis at 
each step of the proposed framework.  

Table 1  Deviation angle 

Dev. angle 
measured 

from 

Original 
point 

clouds 

After  
initial 

transform 

After 
final 

transform 
X axis -17.404 -7.188 0.549 
Y axis -3.155 -1.702 0.342 
Z axis 29.899 9.430 -0.811 

 

 

Figure 8  Transformed and reference point cloud after 
plane-to-plane matching step 

5 Conclusion 
In conclusion, a novel method for target-free 

automatic point cloud registration was demonstrated and 
validated. A laser scanning system with a digital camera 
was used to obtain point clouds with mapped RGB 
texture data. The proposed framework consists of three 
steps. The Figure 9 indicates the flow diagram for the 
presented framework. The first step involves 
constructing RGB-fused point clouds with collected 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  position data from laser scans and RGB 
information from digital images. The next step involves 
obtaining an initial transformation matrix by extracting 
common SURF feature points in digital images and 
tracking its corresponding (𝑥𝑥,𝑦𝑦, 𝑧𝑧)  position. Lastly, 
plane-to-plane matching algorithm is utilized for accurate 
registration. 

 

Figure 9  Procedure of proposed framework 

Even though the proposed framework should have 
three plane with one corner point on overlapped area, it 
achieved automatic point cloud registration without the 
need for target references and manual adjustments. This 
framework consist of two sequential methods: RGB 
feature matching and plane-to-plane matching. The 
plane-to-plane matching algorithm only works fine, 
when the RGB feature matching method get a good 
results. For future work, we focus on how to get more 
good result for RGB feature point matching and how to 
apply this framework for more complex and large areas 
with scans from multiple viewpoints. 
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