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Abstract  

Nuclear power plant (NPP) outages involve a large 

number of maintenance activities with a tight 

schedule and zero-tolerance for accidents. Outage 

projects thus need real-time control to ensure safety 

and productivity. During outages, crane lifting is 

critical for outage control and risk management. An 

effective outage control method should monitor 

detailed interactions between human and workspaces, 

and streamline the workflows of cranes to control 

both productivity and risks. Unfortunately, current 

approaches of outage control rely heavily on tedious 

and error-prone manual inspection that can hardly 

achieve detailed spatiotemporal monitoring. 

This paper presents an automated outage control 

framework that enables detailed human behavior 

analysis, automatic comparison of as-planned and 

actual crane-related operations, and effective 

decision-making for crane-related workflow control. 

In this framework, a real-time human tracking 

algorithm uses 2D/3D imagery to automatically 

derive the status of workspaces (e.g., waiting, active). 

Then a change-analysis algorithm detects and 

diagnoses differences between as-is workflow 

information against as-planned schedules, and thus 

enables field managers to implement a close-loop 

outage control. Preliminary results indicate the 

potential of this integrated outage control in 

improving the safety, productivity, and quality of 

outages, as well as outage project planning.   
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1 Introduction 

In the United States, many nuclear power plants 

(NPPs) were built for more than 40 years [1] and they 

require regular maintenance. For example, the 

management company of Palo Verde Nuclear Power 

Plant needs to shut down each reactor every 18 months 

to refuel and repair degraded infrastructures. Such 

processes are called “outages” at NPPs. NPP refueling 

outages are challenging because they require tracking 

and coordinating thousands of activities in a short span 

of time, usually between twenty to thirty days. Moreover, 

any delays in the NPP outage processes will cause 

significant economic losses. If the Palo Verde Nuclear 

Power Plant is shut down for one more day because of a 

delay from an outage, the deficiency of power would lead 

to one to two million dollars’ loss for the energy company. 

Therefore, to prepare for an NPP outage, an outage group 

in the Work Management department spends months on 

the outage planning, together with the occasionally long 

range plans that projects many years into the future. NPP 

outages require a significant supplemental workforce that 

consists of thousands of contract personnel, which 

increases the complexity of communication and 

information flows [2]. Other challenges, including 

scheduling, work group coordination, nuclear safety 

concerns arising from different system configurations, 

and resource allocation issues, can create delays and 

schedule overruns, driving up outage costs [3]. All these 

features of the NPP outage process appeal for an efficient 

and effective workflow control framework to reduce its 

cost, duration, labor, and accident rates. 

With outage processes, crane-related tasks are critical 

for maintaining the safety and productivity of related 

workflows. Crane related tasks often involve lifts of over 

30 tons, which are defined as “very heavy lifts” that can 
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significantly increase the damages caused by crane-

related accidents [1]. In addition, crane activities often 

require large moving spaces, increasing the difficulty of 

coordinating different labors, workspaces and tasks in 

spatial and temporal domains. Finally, a crane is usually 

a shared resource for multiple tasks involving different 

groups of workers, which creates a higher chance of 

encountering problems of communication, collaboration, 

and scheduling. Any accidents or delays related to crane 

are likely to propagate to relevant tasks, affecting the 

safety and productivity of the entire workflow. Therefore, 

crane-related tasks are critical for the NPP outage 

workflow control. 

Crane-related safety and productivity are heavily 

discussed topics in the domain of construction 

engineering and management. For example, researchers 

tried to solve this problem by predicting and planning the 

moving path of the lifted object in order to prevent people 

from injury under its path [4,5]. Admittedly, previous 

studies are necessary but cannot handle the problems 

faced by the nuclear industry. People from both academy 

and industry still lack of an efficient and effective method 

to monitor and control human behavior in order to reduce 

crane-related errors and accidents caused by human 

factors, which is the major reason of crane-related 

accidents and near-misses in NPP. Such a deficiency is 

caused by two reasons. First, people from nuclear 

industry still lack a systematical understanding about 

how the features of NPP outage could influence crane-

related anomalies and how such anomalies could 

influence the downstream tasks in NPP outage processes 

[1]. Any human error in crane-related construction 

workflows could cause delays that impact productivity 

and accident rates and such anomaly propagation effect 

will be amplified by extremely limited time, space, and 

critical facility resources (e.g. cranes) on the NPP outage 

jobsite. Second, NPP outages need an efficient and 

reliable data collection method for human behavior 

monitoring. In real-world NPP outages, the management 

team suffers from large amounts of manual data 

collection and analysis to monitor and maintain the safety 

and productivity of crane-related tasks and workflows [2]. 

As lengthy manual data collection and processing could 

seriously delay the information needed for timely 

decision-making, manual approaches for crane-related 

safety and productivity diagnosis cannot meet the 

requirements of efficient and effective workflow control 

in outages. 

The contribution of this research address this gap 

through integration of computer-vision-based human 

behavior monitoring and simulation models that predict 

how anomalies in workflows escalate into delays and 

risks. A workflow control methodology that integrates 

real-time human behavior monitoring and decision 

making could reduce the labor-intensive work of 

maintaining the safety of crane-related tasks. The 

proposed framework consists of two parts. The task-

duration anomaly propagation modeling will provide the 

decision-making methodology according to the as-

planned workflow and the monitoring data. The 

computer-vision based human behavior monitoring 

algorithm will identify delays of tasks and the anomalies 

happening on the job site based on the as-planned 

workflow. This proposed methodology will help prevent 

the accidents in advance and quickly identify and 

diagnose the deviations between as-planned and as-is 

workflows for decision support. 

2 Literature Review 

Because of the huge size, mass and range of motion 

of cranes, any anomalies in crane-related activities could 

cause catastrophic consequences, such as injuries and 

fatalities. Beavers et al [6] determine the proximal causes 

and contributing physical factors of accidents by 

analyzing the Occupational Safety and Health 

Administration’s (OSHA) case files during the years of 

1997–2003. However, this approach only analyzed the 

direct causes of crane-related fatalities (e.g. falls, struck 

by load, and electrocution) instead of various indirect 

influential or casual factors (e.g. human misbehaviors, 

equipment quality issues, etc.). Such direct causal 

analysis cannot provide suggested adjustments about 

indirect factors for reducing the high fatality rates related 

to crane activities.  In order to understand the causal 

factors of the accidents, the authors analyzed the newest 

accident cases of Fatality and Catastrophe Investigation 

Summaries from OSHA [7]. In addition, the authors 

determined the influential tree of an accident to see 

whether it has multiple indirect causal factors. The result 

of the influential tree analysis shows that 60% of the 

accidents have multiple indirect factors in their 

influential trees. These results indicate that on 

construction job sites, “domino effects” could enable 

small anomalies to trigger severe accidents [8]. In 

addition, human behavior is directly or indirectly related 

to more than 80% of the reported crane-related accidents 

in OSHA records. 

Currently, few studies focus on the outage control of 

nuclear plants. Germain et al. [2] stated that the 

deficiency of communication and collaboration is due to 

large numbers of personnel and activities on outage job 

sites. That fact argues for the concept of “advanced 

outage control center (AOCC),” which is specifically 

designed to maximize the usefulness of communication 

and collaboration technologies for outage coordination 

and problem resolution. However, using the proposed 

AOCC cannot completely solve the problem of 

automatically and rapidly detecting the detailed deviation 

between as-is and as-planned workflows during outage, 
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because detailed spatiotemporal data comparison and 

analysis is still manual in the current AOCC conceptual 

framework. Without efficient deviation detection 

between as-planned and actual workflows, diagnosing 

indirect impacts of propagative deviations is unrealistic. 

A report from NEUNG analyzed all accidents related to 

cranes in all nuclear plant in the U.S. from 1968 to 2002 

[1]. According this report, the major reason that caused 

crane-related accidents in NPP is human behavior, which 

causes over 80 percent of the accidents. That report, 

which is specific to NPPs, corroborates the more general 

crane-related accident database of OSHA. 

Researchers have developed many approaches to 

improve the safety and productivity of crane-related tasks. 

Tracking the position of crane loads enables nearby 

workers to keep away from zones in danger of load falls. 

Fang et al [5] used an inertial measurement unit (IMU) 

module for measuring load orientation and then predict 

the load sway trajectories. Yang et al. [9] demonstrated 

the use of a surveillance camera for measuring the jib 

angle and the trolley position of a tower crane during a 

work day. In construction projects, failing to acquire 

timely, detailed, accurate spatial information for 

decision-making can cause low project quality, low 

productivity, and accidents. Computer vision has drawn 

attention because it is useful for automated and 

continuous monitoring of construction sites. Seo et al [10] 

states that technical challenges exist for achieving 

efficient and effective safety and health monitoring for 

construction projects using computer vision techniques. 

These challenges include sufficient high-quality imagery 

data collection, automatic scene understanding, and 

activity recognition of equipment/workers. In the domain 

of human behavior modeling and analysis, Shappell and 

Wiegmann [11] stated that studies should focus more on 

human misbehaviors if accidents are to be further 

reduced, because human misbehavior occupies a 

significant part in accident causation. Garret et al [12] 

proposed a general human misbehavior framework 

originally developed and tested as a tool for investigating 

and analyzing the human causes of accidents. That 

research also emphasizes the importance of effective 

investigation in safety.  

However, previous studies have not provided an 

unified framework for improving the safety and 

productivity of crane-related tasks considering human 

behavior and propagations of various errors. In busy and 

safety-sensitive NPP outages, such a framework is 

important for timely decision support. In outage 

processes, perpetuation of errors, delays and other 

propagative factors will be enlarged by the extremely 

limited time, space, labor, and availability of cranes and 

relevant resources. Any delays in an outage process may 

increase the worker’s stress, which increases the 

misbehavior rate and causes accidents [13]. As a result, 

the workflow control system should be able to monitor 

crane-related human behaviors to discover the anomalies 

as early as possible, while limiting the propagation of 

anomalies according to the as-designed workflow and 

real-time monitoring data. 

3 Task-duration Anomaly Propagation 

Model  

In order to prevent possible anomalies from 

influencing the productivity of the entire workflow, 

researchers and people from industry have applied 

different methods involving training, planning, and 

inspection to prevent human misbehaviors at the front 

end [14] to stabilize the workflow. Such approaches 

bring a huge amount of manual work in the busy NPP 

outage projects and rely heavily on the experience of the 

management team, which is error-prone and inefficient. 

Therefore, it is very important to have a sensor-based 

workflow control system. This proposed computer-

vision based workflow control system first automatically 

identifies all anomalies, which are defined as any 

differences between as-is and as-planned workflow, on 

the jobsite. Then the system will identify critical 

anomalies which influence more tasks or causing severer 

delays to help project managers adjust the schedule in 

order to limit the influence of anomalies in a controllable 

range. In nuclear power plant outages, cranes are always 

a key resource that influences the scheduling of multiple 

tasks. As a result, crane-related tasks will be the major 

focus of this workflow control system.  

The first step of workflow control is to generate a 

mathematical model that describes how a task duration 

anomaly will influence the schedule of other tasks in 

order to identify these critical anomalies. A task-

duration-anomaly propagation model describes how an 

anomaly in one task influences the starting time of other 

tasks. This model will show the critical tasks whose 

duration will possibly influence the productivity of the 

entire workflow, which provides a mathematical model 

of real-time decision making for scheduling and resource 

allocation. In this section, the authors identified three 

types of basic relationship types between tasks that 

repeatedly appear in outage projects: Linear, Co-

prerequisite, and Resource sharing. A task-duration 

anomaly propagation model can help the project manager 

to understand the most influential tasks after an anomaly 

is discovered, thus optimizing decision-making.  

3.1 Relationship Type 1: Chain 

Figure 1 shows the structure of tasks that follow the 

“Chain” relationship. The authors define the duration of 

Task 1 as 𝐷1 , which follows the normal distribution 
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𝑁(𝑇1, 𝜎1
2) and so on. Therefore, the finish time of this 

workflow equals 𝐷1 + 𝐷2 + 𝐷3  which still follows the 

normal distribution: 

𝑁(𝑇1 + 𝑇2 + 𝑇3 , 𝜎1
2 + 𝜎2

2 + 𝜎3
2) (1) 

As a result, all tasks that have a chain relationship 

with each other can be combined into a new task when 

scheduling. 

 

Figure 1. Structure of tasks that follow “Chain” 

relationship 

3.2 Relationship Type 2: Co-prerequisite 

Figure 2 shows a structure of tasks that follow the 

“Co-prerequisite” relationship. This is a very typical 

critical path problem. However, outage projects often 

have a very busy schedule. The float of the non-critical 

activities is usually very small. The authors define the 

duration of Task 1 as 𝐷1 , which follows the normal 

distribution 𝑁(𝑇1, 𝜎1
2)  and so on: 𝐷1: 𝑁(𝑇1, 𝜎1

2) , 

𝐷2: 𝑁(𝑇2, 𝜎2
2) , 𝐷3: 𝑁(𝑇3, 𝜎3

2) . The finish time of this 

workflow equals:   

{
𝐷1 + 𝐷3: N(𝑇1 + 𝑇3, 𝜎1

2 + 𝜎3
2),   if 𝐷1  ≥ 𝐷2

𝐷2 + 𝐷3: N(𝑇2 + 𝑇3, 𝜎2
2 + 𝜎3

2),   if 𝐷1 < 𝐷2
 

(2) 

(3) 

In order to identify the probability of (2) happening, 

we have: 

𝑃( 𝐷1  ≥ 𝐷2) = 𝑃(𝐷1 − 𝐷2 ≥ 0) (4) 

and 𝐷1 − 𝐷2 follows: 

𝑁(𝑇1 − 𝑇2, 𝜎1
2 + 𝜎2

2) (5) 

 

Figure 2. Structure of tasks that follow “Co-

prerequisite” relationship 

Equation (5) enables us to calculate the probability of 

changing of critical path. In outage projects, the floats (or 

slacks) of tasks not on the critical path are usually small. 

A slight delay of tasks that have a Co-prerequisite 

relationship with tasks on the critical path (most likely 

crane-related tasks) may cause the critical path to change 

and result in hardly predictable durations of the entire 

workflow. 

3.3 Relationship Type 3: Resource Sharing 

Figure 3 shows a structure of tasks that follows 

“Resource sharing” relationship. Tasks with sharing 

resources cannot be processed at the same time. The tasks 

with shared resources (Task 2A and Task 2B) follow the 

“first come, first serve” rule. Using similar signs to 

represent the duration of the tasks, the authors derived the 

finishing time of team A (finishing time of Task 3A) as: 

{
  
 

  
 

𝐷1𝑎 + 𝐷2𝑎 + 𝐷3𝑎 ∶

N(𝑇1𝑎 + 𝑇2𝑎 + 𝑇3𝑎 , 𝜎1𝑎
2 + 𝜎2𝑎

2 + 𝜎3𝑎
2 ),

  if 𝐷1 ≤ 𝐷2       
𝐷1𝑏 + 𝐷2𝑏 + 𝐷2𝑎 + 𝐷3𝑎 ∶

 N(𝑇1𝑏 + 𝑇2𝑏 + 𝑇2𝑎 + 𝑇3𝑎 , 𝜎1𝑏
2 + 𝜎2𝑏

2 + 𝜎2𝑎
2 + 𝜎3𝑎

2 ),

 if 𝐷1 > 𝐷2       

 

(6) 

(7) 

Similarly, in order to identify the probability of 

having (6) happening, we have: 

𝑃( 𝐷1𝑎 ≤ 𝐷1𝑏) = 𝑃(𝐷1𝑎 − 𝐷1𝑏 ≤ 0) (8) 

and 𝐷1𝑎 − 𝐷1𝑏 follows:  

𝑁(𝑇1𝑎 − 𝑇1𝑏 , 𝜎1𝑎
2 + 𝜎1𝑏

2 ) (9) 

 

Figure 3. Structure of tasks that follow “Resource 

sharing” relationship 

Resource sharing triggers uncertainties on the 

sequences of tasks, making the duration of the entire 

workflow unpredictable and causing the critical path to 

change. The proposed workflow control method will use 

simulation to understand the influence of the uncertainty 

of these “resource sharing” tasks and use computer vision 

technology to reduce their uncertainty in order to ensure 

the productivity of the entire workflow. 

Table 1 shows the features of the proposed three types 

of relationships of tasks. In outage projects, tasks can 

have more complicated relationship types other than the 

three cases listed above. For example, two tasks can be 

executed at the same time but with a lower productivity 
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(e.g. two tasks need material from the same tooling 

trailer). We will leave these more complicated 

relationship types for future researches. 

Table 1. Features of different relationships 

between tasks 

Relationship 

type 

Changing 

critical 

 path? 

Changing 

task  

sequence? 

Uncertainty 

bringing to 

the 

workflow 

Chain No No Small 

Co-

prerequisite 

Yes No Medium 

Resource 

sharing 

Yes Yes Large 

3.4 Simulation of the Task-Duration Anomaly 

Propagation Model 

This research uses a simulation to show how different 

relation types of tasks influence the uncertainty of the 

duration of a workflow. Figure 4 shows the as-designed 

workflow of this simulation. First, the workers will be in 

the waiting area for completing the security check, which 

takes about 10 minutes. They have a 10% chance of 

failing the security check, causing a 15-minutes’ security 

rework. After passing the security check, the team will 

work with a crane operator for about 30 minutes. On the 

other hand, another crane operation task on a different job 

site (defined as Site B) is also on the crane operator’s 

schedule, and the crane operator will work on whichever 

site is ready first. As a result, when the crane operator is 

called for the box moving task, he or she needs to finish 

the task on Site B first if he already starts. This “first 

come, first serve” rule of the crane operator results in 

uncertainties in the workflow of Site A. The authors run 

the Monte Carlo simulation of the proposed workflow for 

1,000 times, and Figure 5 shows the histogram of the 

workflow durations for this 1,000 simulations.  

 

Figure 4. As-designed workflow of this indoor 

experiment  

Ideally this workflow consists of tasks with “Chain” 

relationships between each other, which will finish in 

about 50 minutes and its standard deviation is 2.44 

minutes. However, the simulation result shows that the 

average workflow duration is 56.0 minute with a standard 

deviation of 9.2 minutes and two peaks exist in the 

histogram. This result means that the “resource sharing” 

relationship between tasks and the possibility of rework 

can cause uncertainties to the duration of the entire 

workflow. 

 

Figure 5. Histogram of the workflow duration 

4 Computer-vision Based Real-time 

Outage Control 

The previous section shows that the critical path 

method does not work well in outage projects because 

this method only works when the uncertainties of task 

durations is small. An effective outage control method 

should inspect the spatiotemporal details of human, 

workspace (including materials, equipment and 

environment), and all tasks related to cranes in order to 

reduce the uncertainties in the workflows. According to 

the causal factor analysis of OHSA report [7], human 

behavior is the most frequent cause of crane-related 

accidents. In outage projects, furthermore, human 

behavior become more complicated and unpredictable 

because of stress (nuclear safety), fatigue (working 

around the clock), and limited time and space (busy site 

and complicated environment). However, current 

approaches about outage control rely heavily on manual 

inspection and analysis, causing less-detailed or delayed 

job site information and inefficient diagnosis of 

deviations against the as-planned workflow. Such 

information deficiency brings difficulties to effective 

control of crane-related tasks. Furthermore, the 

systematic approach of human behavior monitoring and 

understanding in such a busy construction job site is not 

yet mature.  

This method uses an algorithm that automatically 

detects real-time human activities in certain areas of a 

NPP outage job site, which can be compared against as-

planned workflows in these areas for anomaly 

identification. This algorithm enables the real-time 

monitoring of human behavior in critical area of the 
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jobsite, which helps identify the deviations between as-

designed and as-is workflow while discovering 

misbehaviors as early as possible. This algorithm could 

reduce the uncertainty of the duration of the critical tasks 

in the workflow and thus expedite the decision-making 

by limiting the searching space of options.  

This research will focus on monitoring human 

activity patterns in certain areas to reduce the 

uncertainties in the actual field workflows in a NPP 

outage project. A real-time and robust human tracking 

algorithm that uses 2D/3D imagery can automatically 

observe the critical areas that related to the tasks with co-

prerequisite or resource sharing relationships. Then a 

deviation-detection algorithm will detect differences 

between as-is workflow information against as-planned 

workflows and human errors (e.g. queue jumping, chaos 

when distributing tools, idling around, etc.). Finally, a 

deviation assessment algorithm will diagnose the 

potential impacts of detected deviations according to the 

task-duration anomaly propagation model, thus enables a 

close-loop control of the workflow schedule. In this 

section, the authors will introduce two scenes of using 

computer vision techniques to reduce the uncertainties in 

various outage workflows.   

4.1 Scene 1: Human Counting & Tracking 

Outage management teams often struggle with 

understanding the real-time progress and transportation 

time of certain tasks. The human counting technique can 

identify each person, and then label all humans to 

different groups according to their visual features (e.g. 

hard hats with different colors) in the neighborhood of a 

crane, as shown in Figure 6. With this technique, the 

workflow control system will be able to estimate the 

transportation time of different groups of workers. 

Furthermore, human counting & tracking technique 

provides the possibility of identifying the collaboration 

status between teams (e.g. well collaborated, quarreling, 

having difficulties) by analyzing the trajectory of each 

individual worker, which can reduce the uncertainty 

caused by human behavior. 

4.2 Scene 2: Waiting Line Monitoring 

The crane is a critical resource that is always shared 

by multiple tasks. To predict the finishing time of tasks 

precisely, the workflow control system needs to monitor 

workers’ activity at a relatively early stage of the 

workflow. Activities in nuclear power plant often involve 

strict clearance at its beginning, which leads to waiting 

lines at the checkpoints. A waiting-line monitoring 

technique thus enables the workflow control system to 

reduce the uncertainty of the duration of each task, shown 

in Figure 7. The waiting line monitoring technique will 

track each person in the waiting line area, acquiring the 

line-moving speed and whether people are jumping 

within a queue, which may indicate the level of 

experience and training of the team. Moreover, this 

technique will track the location of certain tools and 

equipment together with their users. With this 

information, the workflow control system will 

automatically identify possible anomalies in the 

workflow (e.g. shortage of tools, poor-trained team, and 

accidents), providing efficient indicators to estimate the 

task duration precisely. 

 

Figure 6. Scene of human counting & tracking 

 

Figure 7. Scene of waiting line monitoring. 

W=Worker; E=Equipment; WE# = Worker with 

the No. # Equipment. Barcode or RFID can help 

identify the equipment. 

Within the proposed framework, the 2D/3D imaging 

data of captured human behaviors of related personnel 

(e.g. video recording the job site activities related to the 

crane) will help the management team identify the pattern 

of anomalies that seems to commonly happen on the job 

site to trigger other accidents or delays. Also, a real-time 

and robust object tracking algorithm could use 2D/3D 

imagery to automatically derive the status of outage 

workspace, including as-built conditions of structures, 

materials and equipment, which will be helpful to support 

the workflow anomaly analyses. In addition, databases 

that record field activities (especially near-misses, 
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activities that different from the plan, emergencies, etc) 

can restore the identified anomaly information and its 

propagation pattern instead of the raw 2D/3D field 

imageries, which saves data storage space while keeping 

the detailed jobsite activity information.  

5 Experiment and Discussion 

5.1 Experiment Setup 

The authors designed an indoor experiment to 

observe how different types of task relationships 

influence the workflow duration and to test the as-is 

workflow capturing capability of the proposed workflow 

control system. This experiment involves three sites: one 

real site (Site B) in our lab and two virtual sites (Site A 

and Site C) in computer simulation.  Participants will do 

activities mimicking different tasks in Site B; tasks in 

Site A and C as well as the transportations between sites 

will be simulated by people waiting outside the lab for a 

certain amount of time that is calculated by a simulation 

algorithm. Figure 8 shows the overall workflow in real 

and virtual sites. Each site will have the same workflow 

(shown in Table 2) and share three resources: crane, 

electricians, and mechanics. 

 

Figure 8. Overall workflow of the experiment 

Table 2 Experiment workflow 

No. Task name Resource 

1 Remove the valve Crane 

2 De-term the motor operator Electricians 

3 Perform valve maintenance Mechanics 

4 Re-term the motor operator Electricians 

5 Re-install the valve Crane 

  

 Figure 9 shows the layout of the experimental site 

(Site B) as well as the position of the sensors wherein 

light blue areas indicate the view of two Kinect V2 

sensors. In site B, volunteers will walk slowly passing the 

Waiting line area mimicking the security check process 

and then move and stack some boxes in in the Working 

area. In this preliminary experiment, only one person will 

be in the view of the sensors at one time. This experiment 

uses both GigE Camera and Microsoft Kinect V2 as the 

sensors of collecting data (shown in Figure 10) for 

supporting computer vision and spatiotemporal analysis 

of the scene. Kinect sensors can easily track individual 

human and capture human action in a relatively short 

range (maximum 10 meters). On the other hand, GigE 

camera can monitor a large space with a fast data transfer 

rates up to 1000Mb/s. The combination of the advantages 

of these two types of sensors enables the precise tracking 

of human behavior in an indoor environment.  

 

Figure 9. Layout of the experimental site 

5.2 Experiment Results and Discussions 

 

Currently, the proposed multi-visual sensor system 

can capture the human behaviors in the indoor 

environment. The system can also acquire the start/end 

time of each task by automatically counting the number 

of people in both working area and waiting line area in 

real-time. In the future, the authors plan to focus on 

estimating potential delays of future tasks according to 

the human behaviors of current tasks and predictive 

simulations by enabling multi-human tracking and 

human-behavior anomaly detection. 

 

Figure 10. Collected Kinect 3D data (left) and 

video data (right) 

In the indoor experiment, the authors observed that 

one communication mistake (the participant who 



Conference Topic 

represented crane did not inform other participants when 

it finished one of the critical tasks) delayed the overall 

workflow by 30%. This mistake influenced the starting 

time of 60% of the following tasks because many tasks 

are sharing the resource of crane. Due to the page limit, 

the complete analysis of the experiment will be in another 

publication. Overall, the results indicate that it is 

necessary to have a workflow diagnosis and control 

method to design the topology of the workflow that 

restrict the propagation of anomalies from one task to the 

whole workflow, and monitor and control the real-time 

status of workflows for proactive rescheduling and 

resource allocation in order to achieve effective and 

efficient NPP outage control. 

6 Conclusion 

Crane safety problems in a Nuclear Power Plant (NPP) 

outage are exascerbated due to the heavy lifts, busy 

construction site, and dangerous environment with 

nuclear facilities. Therefore, a reliable and efficient 

control framework that control human behavior and tasks 

related to the crane will potentially improve the safe, 

efficient proceeding of outage project in a nuclear power 

plant. This need relies on systematic theories and 

technologies of human error patterns, anomaly 

propagation patterns in the project, and efficient and 

effective inspection of the jobsite. This integrated outage 

control framework will not only improve the safety, 

productivity, and quality of current outage project, but 

also provide sufficient data for future outages to reduce 

excessively long planning stage of an outage project. In 

addition, the techniques demonstrated for improving 

crane safety and productivity may be transferable to other 

outage processes and bottlenecks to further improve 

overall outage performance. 
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