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Abstract –  

Ironwork is considered one of the most dangerous 
construction trades due to its fall-prone working 
environment. Since safety-hazard identification is 
fundamental to preventing ironworkers’ fall 
accidents, engineering measures have been applied to 
eliminate fall hazards or to reduce their associated 
risks. However, a significant quantity of hazards 
usually remains unidentified or not well assessed 
because most current efforts rely on human judgment 
to identify hazards. To enhance hazard identification 
efforts, this paper develops a technique for detecting 
the jobsite safety hazards of ironworkers by analyzing 
their gait anomalies. Using wearable inertial 
measurement units (WIMUs) to record kinematic 
data about ironworkers’ gait, this study collected 
kinematic data while the workers interacted with two 
types of jobsite hazards. The anomaly level of each 
gait was modeled using diverse gait-related metrics. 
Moreover, relationships between safety hazards and 
worker gait abnormalities were examined through 
extensive experiment evaluations. The results reveal 
opportunities for enhancing hazard identification 
performance by monitoring workers’ bodily response.   

 
Keywords – Hazard Identification; Gait Analysis; 
Inertial Measurement Units; Safety management 

1 Introduction 

Hazard identification is the critical first step in the 
construction industry’s safety-management programs [1] 
since unidentified hazards negate the whole safety-
management process [2]. However, a significant quantity 
(on average 10 ~ 57%) of hazards in a construction 
project still go unidentified or not well-assessed, and 
these unidentified hazards present the most 
unmanageable risks [1,3,4]. Poor hazard-identification 
performance stems from the fact that most current efforts 

rely on human judgment to identify hazards [1,4,5], a 
reality that faces twofold challenges: 1) It is unlikely that 
an individual possesses all the knowledge and experience 
necessary to identify every potential hazard [1]. 2) 
Dynamic and unpredictable construction environments 
compound the complexity for individuals seeking to 
recognize hazards [1,4]. Furthermore, considering the 
fact that most hidden hazards are beyond the threshold of 
human recognition or are not defined with explicit 
knowledge, there is a critical need to enhance hazard 
recognition capabilities beyond the threshold of human 
recognition abilities.  

In this context, our study examines whether recording 
data about workers bodily and behavioral response 
patterns can enhance hazard-identification capabilities in 
construction. Thanks to the fact that safety hazards 
generally cause disruptions in workers’ behavior patterns, 
the analysis of workers behavioral and bodily response 
patterns provides valuable information that can be used 
to identify hazards. Toward this end, this paper 
investigates the feasibility of utilizing workers gait 
information—specifically, the spatiotemporal features of 
workers’ gaits—to estimate the existence of fall hazards 
on the surface. In particular, this study develops wearable 
inertial measurement units (WIMU) -based Gait 
Abnormality Score (I-GAS) to effectively represent 
multiple gait features in a single score for detecting the 
existence of hazard. In turn, this study examines to what 
extent I-GAS’s performance reveals hazards in a 
laboratory setting. For validation, this study designed and 
conducted laboratory experiments simulating 
ironworkers’ working environment. Through these 
experiments, we collected participants’ gait data using 
WIMUs. The results of the experiments demonstrate the 
potential of using collective gait information to detect fall 
hazards in construction.  
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2 Research Background 

Most current hazard identification techniques in a 
construction project rely on individual workers’ 
recognition skills. Previous studies on safety hazard 
identification have thus focused on enhancing individual 
workers’ hazard-recognition abilities via training 
programs and virtual environments [1,5]. While these 
studies have advanced hazard responsiveness, they are 
still limited by workers’ ability to recognize hazards 
and/or by workers’ existing knowledge of known hazards. 
Furthermore, human recognition abilities are highly 
subject to diverse environmental factors, such as low 
light, noise, and jobsite organization. For instance, a 
slippery/contaminated surface—the destructive causal 
factor of fall accidents in several trades—is hard to 
identify in low-light conditions. Moreover, manual 
material handling (e.g., carrying, pulling and pushing) is 
generally required during the construction work process, 
and it often interferes with visibility in the workplace [6].  

To mitigate this reality, several studies examined the 
potential of applying diverse sensing approaches [7–11] 
to construction safety. Computer vision-based techniques 
are used to detect workers’ unsafe behaviors [7] and 
hardhat wearing [8] in a construction environment. 
However, the applications of vision based techniques 
have several challenges, including the limited sensing 
range of a camera and visual occlusions.  

With the development of wearable sensing devices 
and technology, workers’ physiological responses—such 
as heart rates, breathing rates, and postures—have been 
monitored and studied for enhancing safety and 
productivity in previous studies [9–12]. Our previous 
studies [13,14] also investigated the feasibility of 
detecting near-miss falls of ironworkers using sensed 
bodily response. However, previous studies focused on 
detecting workers’ unsafe behaviors and/or their 
exposure to recognized jobsite hazards, rather than on 
identifying and assessing a hidden hazard discovered 
through sensed data. 

It is well known that safety hazards can cause 
disruptions in workers’ behavior patterns, which may 
then result in undesired events or accidents [15]. 
Therefore, analyzing the abnormality in workers’ 
behavior patterns provides an opportunity to identify 
hidden hazards. In particular, by analyzing workers’ gaits, 
researchers can gain valuable insights regarding fall 
hazards that may cause slips, trips, and falls.  

Gait analysis in clinical applications has been widely 
used to assess the fall risks of health-care patients or 
elderly individuals who have gait disorders [16,17]. Gait 
is defined as a particular way of walking [18]. For gait 
analysis,  a maker-based system and a floor sensor-based 
system have been widely used in previous studies [17,19]. 
However, these systems are only able to collect gait 
information in the laboratory setting. Given the need for 

an ambulatory gait-monitoring system, some studies used 
WIMU sensors in gait analysis for fall-accident 
prevention and evaluated these sensors’ performance [17, 
18]. Using the kinematic data captured via WIMUs, 
researchers computed spatiotemporal gait features (e.g., 
stride time and stride distance) to assess abrupt changes 
in patients’ gait patterns and to measure the risk of falls 
[20,22,23]. While such gait analysis has been used for 
patients, there are no previous attempts to use it for 
identifying hazards in construction environments.  

Computed gait features may capture the disruption in 
workers’ gait patterns caused by safety hazards, but it is 
not certain whether each feature is sensitive to all types 
of hazards. Moreover, each gait feature has a different 
range of values with different measurement units. Thus, 
to comprehensively assess the gait abnormalities caused 
by hazards, it is necessary to represent the deviations of 
all the gait features from a normal gait in a single score. 
Expanding upon previous studies, this paper will 
compute the gait features of workers and use them to 
analyze the abnormality in workers’ gait patterns. 

3 Methodology 

3.1 Gait Analysis and Gait Feature 
Computation   

During a gait, the sensor coordinate system—the 
coordinate axes of the WIMU sensors attached to 
workers’ ankles—are not aligned with the human body 
coordinate system—the coordinate system of the workers’ 
body represented by the anterior-posterior, mediolateral, 
and vertical axes. This misalignment is due to the 
difference between the ankle-movement direction (cyclic 
between the floor, the height of the step, and the foot’s 
forward motion) and the gait direction (i.e., walking 
forward). Thus, determining the angle between the body 
coordinate system and the sensor coordinate system 
(theta in Figure 1) is necessary to calculate the workers’ 
gait features (such as stride length and velocity) using the 
data garnered from the WIMU attached on the ankle. 

As illustrated in Figure 1 (left), the orientation angle 
between these coordinate systems continues to change by 
the location of the ankle during a gait. To calculate 
orientation angle of WIMU, this study utilized the 
rotation matrix to project the acceleration from the sensor 
coordinate system to the body coordinate system; this 
study used the quaternion (q ൌ 	q௥ 	൅	q௜i	 ൅ q௝j	 ൅ q௞k) 
format, which is available method to represent the 
rotation of an object using a complex number [24]. 

 



33rd International Symposium on Automation and Robotics in Construction (ISARC 2016) 

 

Figure 1. Sensor coordinate system and body 
coordinate system during gait 

Projected acceleration for the gait analysis (i.e., for 
the body coordinate system) were then computed by 
multiplying the rotational matrix (Rm)—which we 
derived from the quaternion (See Equation 1)—and the 
collected acceleration values from the WIMU sensors. 

቎
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To compute the horizontal velocity (i.e., velocity of 
anterior-posterior axis, ௛ܸ ) and vertical velocity (i.e., 
velocity of vertical axis, ௩ܸሻ, this study found the integral 
of the projected horizontal and vertical acceleration 
values (ܣ௛	and ܣ௩ in Figure 1). Since acceleration data 
from WIMU sensors already contain the effect of gravity 
(9.81 m/ sଶ ), this effect was offset from the rotated 
acceleration value of the vertical axis.  

The next step for computing the gait features is to 
detect gait events, such as toe off (TO) and heel strike 
(HS), to define the gait cycle. The gait cycle is defined as 
the time between two successive occurrences of one of 
these events during walking [25] (See Figure 2).  

 

 

Figure 2.  Definition of a gait cycle and gait events  

In general, heel strike, the moment when a foot 
contacts the ground, is widely used to define a gait cycle, 
although any gait events can be used [26]. Thus, based on 
other gait analysis studies [15,16,19,20], this study 
defined a gait cycle as a gait between consecutive heel 
strikes of one foot. Since this study utilized heel strike as 
the starting point of the gait cycle, the initial gait cycle 
before the first heel strike point is neglected in our gait 

feature computation. 
The gaits events (HS and TO) can be directly 

identified from the pitch angle of a gyroscope [28] inside 
the WIMU sensor (see Figure 3). 

 

 

Figure 3. Heel strike, toe off and zero-velocity 
points with angular velocity in pitch 

 Based on the defined gait cycle, this study computed 
the four gait features—stride time, stride distance, 
average velocity and maximum foot clearance—for each 
gait cycle as follows:  

 Stride Time, ST:  
Time between heel-strike points of one foot.  

ܵܶ ൌ ܪ ௜ܵାଵ െ ܪ ௜ܵ (2) 

 Stride Distance, SD:  
Distance covered during a gait cycle. 

SD ൌ න V௛ሺݐሻ	݀ݐ
ுௌ೔శభ

ுௌ೔

 (3) 

 Average Velocity, V௛തതത:  
Average of horizontal velocity during a gait cycle. 

V௛തതത ൌ
1

ܪ ௜ܵାଵ െ ܪ ௜ܵ
න V௛ሺݐሻ	݀ݐ
ுௌ೔శభ

ுௌ೔

 (4) 

 Foot Clearance, FC(t) 
Foot height from the ground during gait at time (t), 
finding an integral of vertical velocity ( ௩ܸ) at time 
(t). 

FCሺtሻ ൌ න V௩ሺݐሻ	݀ݐ
௧

௢
 (5) 

 Maximum Foot Clearance, FC௠௔௫:  
The maximum value of foot clearance during a gait 
cycle. 

FC௠௔௫ ൌ max
௧ ∈ ሼுௌ೔,⋯,	ுௌ೔శభሽ

 ሻ (6)ݐሺܥܨ

where ܪ ௜ܵ, ܪ ௜ܵାଵare the time of ith and (i+1)th heel strike 
events.  

Gait Cycle

Stance Phase Swing Phase

Heel Strike Toe Off Heel Strike
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Sensor drift is another issue in computing gait 
features from WIMU measurements [29]. This study 
used the zero-velocity assumption and zero-velocity 
update (ZUPT) to compensate for drift errors in gait-
feature computations. Previous studies [22,28,30] have 
widely used the zero-velocity assumption to offset sensor 
measurement errors and drifts; this assumption says that 
the velocity of the foot is zero when the foot is located 
horizontally on the ground, which is why this location 
(the ground) is also known as the zero-velocity point. The 
zero-velocity update (ZUPT) method compensates for 
drift errors in velocity computations by updating a zero 
value for each zero-velocity points during a gait. This 
study used the pitch angle of the WIMU’s gyroscope to 
identify the zero-velocity point same as gait event 
identification (see Figure 3). 

3.2 Gait Abnormality Score Measurement   

The clinical domain develops and uses the Gillette 
Gait Index (GGI) to measure the gait abnormality of 
patients in a single score [16]. GGI utilizes 16 gait-related 
features (e.g., mean pelvic rotation, total range of knee 
flexion–extension and mean foot progression angle) 
computed from an optical device with markers (e.g., 
VICON). Then, it performs principal component analysis, 
which is a widely used method to remove correlation 
between features, and measures the distance (i.e., 
Euclidean) of gait feature values between a specific test 
subject and a healthy subject group. While GGI has 
successfully quantified the extent of gait abnormality of 
Parkinson’s [31] or cerebral palsy [28] patients compared 
to normal subjects, GGI has not been used to quantify a 
single subject’s abnormal gait compared to his/her 
normal gait to capture the moment when hazards affect 
his/her gait pattern. Furthermore, GGI requires a total of 
16 gait features to compute, which makes GGI hard to 
apply in a dynamic construction environment.  

To respond to the need for such a gait abnormality 
assessment tool for construction workers, we used 
WIMU data to develop the IMU based Gait Abnormality 
Score (I-GAS) to measure the deviation of a single 
subject’s momentary gait stride (i.e., hazard) from his/her 
normal gait strides. We used the Mahalanobis Distance 
(MD) to measure the abnormality (i.e., deviations) of gait 
between normal and hazard. The MD is a distance 
measurement method that measures the distance between 
a sample point and group of reference samples while 
simultaneously considering the distribution of reference 
samples [33]; this measure is widely used in multivariate 
outlier detection and clustering algorithms.  

Thanks to MD, the correlation between computed gait 
features can be removed, and measurement unit 
difference between gait features can also be removed 
since MD rescales each feature to have unit variance. 

This paper calculated the I-GAS using Equation 7. 

–ܫ ܵܣܩ ൌ ඥሺݔ െ ݔଵሺିܥതሻݕ െ  തሻ் (7)ݕ

where, x is an (N x M) vector of the number of 
observation samples (N) and computed gait features (M), 
y is a (K x M) vector of number of reference samples (K) 
and computed gait features (M), yത is a (1 x M) vector of 
mean value of reference data (y), and Cିଵ is the inverse 
covariance matrix of reference data (y). 
 This paper investigates the usefulness of I-GAS in 
estimating the existence and the location of a hazard in 
laboratory experiments. 

3.3 Laboratory Experiments    

The laboratory experiments involving four humans 
were designed and conducted to collect subjects’ gait 
data while they were simulating movements of 
ironworkers on a skeletal steel beam. To accomplish this 
task, we constructed a 24.4 m (80 feet) long steel beam 
10 cm off the ground. Subjects were asked to walkover 
its surface (15 cm width) at the typical speeds for eight 
times. To have the same length of walk distance between 
experiment trials, walking start-point and end-point are 
assigned by the experiment organizer at the 1.5m (5 feet) 
and 22.9 m (75 feet). The experiment included either an 
obstacle (experiment #2 and #3) or a slippery surface 
(experiment #4 and #5) surface at varying locations on 
the steel beam to represent hazards that could cause slips 
and trips (or possibly falls). To have gait data which is 
not influenced by hazard as a reference for abnormality 
measure, all subjects also asked to walk on the beam 
without any installed hazard, called as “normal gait” in 
this study (See Table 1). 

Table 1. Detail of laboratory experiments    

Number 
Hazard 
Types 

Hazard 
Location 

IMU Time 

1 - - Ankle 5 min 

2 Obstacle 9.1 m 
(30 feet) Ankle 5 min 

3 Obstacle 15.2 m 
(50 feet) Ankle 5 min 

4 Slippery 9.1 m 
(30 feet) Ankle 5 min 

5 Slippery 15.2 m 
(50 feet) Ankle 5 min 

For the obstacle, this study installed wood block 
which has 76 cm (30-inch) length and 10 cm (4-inch) 
height on the I-beam. The slippery surface was installed 
to cover 152 cm (60-inch) length of the I-beam and by 
using liquid (oil) on the plastic. During experiment, all of 
the subjects were asked to wear a safety harness, a safety 
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hat, and safety boots (See Figure 4). 

 
Figure 4. (a) Concept of hazard identification 
using WIMUs, (b) laboratory experiment 
environment, (c) obstacle on I-beam, and (d) 
slippery surface on I-beam 

Experiment subjects walked continuously on the steel 
I-beam (return at the end point). During experiments, a 
WIMU (Opal, APDM Inc.) was attached to the right 
ankle of subjects to collect kinematic data. Three axes of 
acceleration (m/s2), angular velocity (rad/s), and 
magnetic field (uT) were obtained at a sampling 
frequency of 128 Hz. The quaternion rotation 
information of the object was acquired from the WIMU, 
which used the methodology of Bertrand et al. [24]. In 
addition to the WIMU, video cameras recorded data 
about all experiment procedures; these video data were 
synchronized to have the same timestamp with the 
WIMU data. These video data were used as a ground 
truth to identify the gait cycles which are influenced by 
installed hazards. In general, if there is any overlap 
between the stride distance of a gait cycle and the 
boundary of an installed hazard, that gait cycles are 
considered to include the interaction with the hazard. One 
to three consecutive gait cycles were thus classified as 
interacting with each installed hazard. 

4 Results and Discussion 

4.1 Gait Feature Computations 

Gait features were computed using data collected 
from WIMUs for workers in both normal and hazardous 
conditions. Figure 5 illustrates the distributions of gait 
features for two subjects walking without a hazard 
present (No Hazard), walking over an obstacle 
(Obstacle), and walking on a slippery surface (Slippery 
Surface). Hazards caused a certain level of disruptions to 
gait features (e.g., Figure 5-e and 5-f), a fact that 
demonstrates the possibility of identifying hazards using 

worker’s gait disruptions. The analysis of the aggregated 
data from all of the subjects also confirmed that the 
hazards caused significant differences (p<0.05) in several 
gait feature values. 

However, the results also confirmed that such 
disruptions caused by the hazards varied by subjects and 
by gait features. For example, the slippery surface caused 
a change in Subject 1’s stride distance (Figure 5-d) but 
did not create any noticeable change in Subject 2’s stride 
distance (Figure 5-c). The analysis of the aggregated data 
from all of the subjects confirmed such uncertainty in the 
effects of hazards on individual gait features; it found that 
the stride distance at the aggregated data level was 
susceptible only to the slippery surface, not to the 
obstacle. These findings demonstrate the need for I-GAS 
to evaluate anomalies of multiple gait features in a 
comprehensive way. 

 

 

Figure 5. Results of the probability distribution 
for the computed gait features of Subject #1 and 
#2: (a, b) stride time; (c, d) stride distance; (e, f) 
average velocity; and (g, h) maximum foot 
clearance 

(a)

(c)

(b)

(d)

(e) (f)

(g) (h)

Subject #1 Subject #2
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4.2 WIMU-based Gait Abnormality Score 
Computations 

Figure 6 shows the distributions of the subjects’ 
combined I-GAS values for the No Hazard, Obstacle, 
and Slippery Surface trials (see Figure 6). The results 
show a clear difference in the I-GAS distributions for 
hazard and no-hazard conditions, and they demonstrate 
the usefulness of using IGAS in identifying hazard 
conditions.  

 

 

Figure 6. Probability distribution of the subjects’ 
combined I-GAS. 

Figure 7 illustrates an experimental application of the 
I-GAS to identify hazards. The I-GAS value of each gait 
cycle was mapped on the experimental site according to 
its estimated location—the location of a gait cycle was 
determined based on the stride lengths of previous gait 
cycles. Figure 7-a presents the mapped I-GAS values for 
individual subjects. The hazard location (at around 15.2 
m) has a high I-GAS value, which demonstrates the 
success of the score at identifying hazards. However, 
similarly high values are also found in other, no-hazard 
locations. These noisy values illustrate that subjects 
continue to change their gait patterns even in no-hazard 
conditions. 

Aggregation of the I-GAS values from multiple 
subjects (see Figure 7-b) helped filter out such noise. In 
particular, more samples (e.g., I-GAS values from 
multiple trials of multiple subjects) help to distinguish 
hazardous conditions more clearly. To this end, 
analyzing the collective gait patterns of multiple workers 
would be necessary to effectively identify hazards in a 
dynamic construction environment. Future research 
needs to investigate an efficient way to reveal these 
hazards with lower data requirements. 
 

 

Figure 7. Preliminary results of hazard 
identification (experiment #5) using I-GAS: (a) I-
GAS values from one trial with individual 
subjects, (b) averaged I-GAS values from one/all 
trials with all subjects  

5 Conclusion 

This study investigates the usefulness of gait analysis 
in identifying safety hazards. Using gait features that 
were estimated using WIMU data, this study developed 
the I-GAS to quantify the abnormality of each stride 
compared to normal strides at an individual level. 
Laboratory experiment settings that simulated steel 
connection tasks demonstrated the usefulness of the I-
GAS in identifying two types of fall hazards (i.e., 
obstacles and slippery surfaces). Considering the 
possibility of ambulatory gait monitoring with WIMUs, 
the presented approach could help identify various types 
of fall hazards that cause disruptions in workers’ gait and 
balance. 

Our future research will look into the difference in 
gait features and the I-GAS values between individual 
workers and will study aggregation methods to evaluate 
the collective gait abnormality from multiple workers. 
Also, different types of possible hazards or hidden 
hazards will be studied to test the developed I-GAS-
based technique for automated hazard identification.  
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