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Abstract – 

Equipment operators play an integral role in the 

safe and efficiency operation of heavy equipment. 

They observe the environment, understand the 

situation, and make decisions and actions 

accordingly. Compared with other types of 

equipment, operating a crane is more sophisticated 

and mentally demanding, and thus crane operators 

are more vulnerable to human errors. Therefore, 

special considerations to mitigate operator errors 

should be taken when designing an operator-

assistance system for construction cranes. With the 

goal of improving the operators’ situation awareness 

(SA) of safety risks, this research presents a 

technical framework and practical system 

architecture for an operator-assistance system by 

leveraging real-time motion sensing and 3D 

modeling of dynamic workspaces. An approach for 

evaluating operators’ SA was proposed to validate 

the effectiveness of the assistance system in actual 

lifting operations. Results in a series of field tests 

indicated that the prototype system improved the 

operators’ SA which resulted in an improved lift 

performance.  
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1 Introduction 

Cranes play an integral role in construction projects, 

responsible for most vertical and horizontal 

transportation of construction materials, equipment, and 

personnel. Crane lifting operations are unique among 

other heavy equipment as they demand huge 

workspaces and have a significant impact on the safety 

and efficiency of the entire construction projects. As 

such, the consequences of crane accidents are 

catastrophic as they very often result in significant cost 

overrun, schedule delay, and serious injuries and 

fatalities. Based on statistics from the U.S. Bureau of 

Labor Statistics (BLS) from 1997 to 2015, the number 

of fatalities in crane-related accidents totaled 1259 for 

all industry sectors [1]. The U.S. construction industry 

was responsible for 586 fatalities (47%), in which 55% 

involved mobile cranes (e.g., truck-mounted, crawler 

cranes). Another source reported that 78% of crane-

related accidents in the construction industry from 1992 

to 2006 were associated with mobile cranes [2]. Unlike 

other types of construction accidents, the victims in 

crane-related accidents are not necessarily limited to 

construction workers but also pedestrians walking-by as 

observed in many crane-related accidents.   

Behind the poor crane safety records, crane experts 

consider operator errors a prevailing source of risks in 

crane lifting operations [3]. It was found that 43% of the 

crane accidents from 2004 to 2010 were due to the 

operator failure in their responsibilities [4]. Mechanical 

failures aside, 75% of crane overturn accidents are due 

to operator error [5]. A recent investigation on risk 

factors in crane-related near-misses and accidents 

reveals that inattention is the most prevalent type of risk 

that accounts for 19% of the incidents, and errors by 

operators and signalpersons total 24% of the 212 

investigated incidents [6]. These numbers are not 

surprising as operating a crane is inherently a 

sophisticated job that requires the operators have 

extensive training and experience. Repetitive lift tasks 

and extended work hours make them vulnerable to 

distraction and fatigue. In addition to the errors of crane 

operators, lifting safety can also be jeopardized by poor 

coordination and communication with personnel such as 

riggers, signal persons, and ironworkers.  

With the development of information technology, 

researchers realized that technology can provide another 

layer of protection in construction to improve safety 

performance. Crane operations can benefit from 

technologies similar to the advanced driver assistance 

systems (ADASs) deployed on automobiles that provide 

real-time support to drivers based on surrounding 

situations [7]. With the goal of providing real-time 

assistance to crane operators, researchers in construction 

have explored the use of sensing, visualization, and 

simulation technologies. However, a holistic synthesis 

of existing technologies and a framework outlining 
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further development is missing. In addition, previous 

efforts in evaluating a crane assistance system mainly 

focused on measuring accuracy, reliability, and ease of 

use of the introduced technologies [8]. Very few 

emphasized on the system’s effectiveness on helping the 

operators understand the situation and the safety risks 

[9]. This is partly because that the situation awareness 

(SA) of crane operators during lifting operations is 

difficult to define and measure in such complex and 

dynamic environment. This also leads to the fact that 

most of the techniques in previous research were only 

validated in a simulated environment instead of utilizing 

real lift tasks [10].  

2 Literature Review 

2.1 Critical Components in Operator 

Assistance for Mobile Cranes 

The very first step in providing operator assistance is 

to accurately capture crane motions in real-time. The 

motions of a crane are essential to carry out a variety of 

spatial and temporal analyses for load capacity, crane 

stability, and collisions. Real-time location systems 

(RTLS) such as Radio-frequency Identification (RFID) 

have been utilized for tracking mobile assets (e.g., 

materials, equipment, workers) on construction sites 

[11]. For capturing crane motion, Ultra-wide Band 

(UWB), a more precise position tracking technology, 

were investigated and tested in controlled lab tests [12] 

and outdoor full-scale tests with real cranes [13]. Using 

computer vision techniques, the motions of a crane and 

other articulated equipment can be captured by tracking 

markers deployed on equipment parts [14] or mapping 

image to the 3D model of the crane [15]. Similarly, the 

3D geometry of a piece of equipment in the form of 

point cloud can be mapped to its 3D model to achieve 

equipment motion capture in 3D [16]. Cranes can be 

considered as giant robots with multiple degrees of 

freedom in a rigid body or kinematic relationships. 

Therefore, the entire motion of a crane can be capture 

by measuring critical motions (e.g., swing, lifting, and 

extension of the boom, extend/retract hoist cable). 

These critical motions can be easily measured by 

inexpensive rotary encoders, laser distance finders [17] 

and inertia measurement units (IMUs) [18].  

Given the spatial and temporal scale of crane lifting 

operations, crane workspace is subject to constant 

changes in its surrounding environment (e.g., presence 

of vehicles and workers, newly erected structures). 

Therefore, modeling the as-is condition and dynamics of 

crane workspace is of great importance to successful 

operator assistance. Building Information Models (BIM) 

can provide a general spatial context for the crane 

workspace [17] but fails to model the dynamics and 

changes in the surroundings. As-is conditions such as 

geometry and color of nearby objects can be capture by 

laser-scanned point cloud and updated by a hybrid 

visualization approach that takes advantages of the 

efficient data collection and computation from computer 

vision and comprehensive 3D geometric information 

contained in point cloud [19].  

The interface presented to the operator by assistance 

system plays a pivotal role in operator assistance. A user 

interface provides visual feedback to augment the 

operator’s understanding of lift tasks [17]. To this end, 

numerical feedback provided by traditional operator-

assistance systems such as Load Limit Indicators (LMI) 

is limited. At the other end of the spectrum, vivid 

pictures from crane camera systems may lead to 

distraction and increased mental workload when the 

operator struggles with the depth perception and limited 

field of view [20]. The user interface (UI) needs to 

provide just-in-time alerts in multiple forms (e.g., visual, 

auditory, haptic) with the right amount of information 

that supports operator to make decisions to mitigate 

hazards [18].  

Although an array of safety devices are available in 

the market, the effectiveness and utilization of these 

devices in the industry are unclear [9]. It is important to 

evaluate the effectiveness of these safety devices in 

actual lift tasks in order to identify potential challenges 

and suggest further improvement. Previous efforts 

predominantly focused on addressing technical 

limitations, while the impact of such systems on 

reducing the operator error and improving their SA 

remains unknown.  

2.2 Operator Error and Situation Awareness 

From the perspective of cognitive psychology, a 

human error is considered a result of one or multiple 

failures in the human cognition process. This process 

can be described by the sequential stage model created 

by Furnham [21]. This model simulates the 

development of accidents as a sequential chain that 

consists of three cognition stages: hazard perception, 

hazard recognition, and decision/ability to avoid a 

hazard. It is helpful to understand the causation of 

cognitive failures in the development of crane accidents 

by applying this model to the cognition process of crane 

operators. When a crane operator is exposed to one or 

multiple hazards, they need to first perceive the 

presence of the hazards, mainly through the status, 

attributes, and dynamics of relevant elements in the 

environment. Based on the information acquired and 

their understanding of hazards, the operator should 

recognize the type, severity, and consequences of the 

hazards. Finally, the operator needs to make appropriate 

decisions and actions to mitigate or avoid the hazard 

from further development. Operator success in all 
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cognition stages will result in safe behaviors. Failure in 

any of the stages will result in unsafe behaviors that 

may lead to accidents.  

Successful hazard perception involves an acute state 

of alertness and high level of sensory skill from the 

operators, and it requires them to maintain a good 

Situation Awareness (SA) during the operation. Once 

the operators perceive the hazard in the first stage and 

proceed to the next stage of hazard recognition, they 

need to correctly recognize the type and severity of the 

hazards using their experience and knowledge as well as 

a comprehensive SA. Therefore, failures to perceive and 

recognize hazards are generally categorized as an SA 

problem [22], which has a high likelihood of leading to 

performance failure [23]. SA is defined by Endsley as 

“a person's perception of the elements of the 

environment within a volume of time and space, the 

comprehension of their meaning and the projection of 

their status in the near future” [24]. During crane 

operations, crane operators’ SA depends on an 

understanding of both the crane (e.g., crane motion, 

capacity, malfunctions) and the physical characteristics 

of the environment (e.g., wind speed, blind spots, 

clearances to obstructions).  

2.3 Measurement of Situation Awareness 

A number of measurement methods for situation 

awareness have been developed and each measure has 

its advantages and applied circumstances. These 

measures can be classified into three categories: 1) 

process indices-based, 2) performance-based, and 3) 

query-based techniques.  

Process indices-based techniques examine the way 

subjects process information obtained from the 

environment such as by analyzing gaze movement using 

eye tracking technology [25]. Another type of process 

indices is physiological measures such as 

electroencephalographic (EEG) activity, eye blinks, and 

cardiac activity, which represent the subject’s overall 

functional state [26]. Although the changes in the 

subject’s physiological states may be associated with 

cognitive activities, there is not necessarily a direct link 

between physiological states and the level of SA. In 

performance-based techniques, the level of SA is 

inferred from the performance outcomes based on the 

assumption that better performance indicates better SA. 

Commonly used performance metrics include 

productivity level, time to perform the task, and the 

accuracy of the response or, conversely, the number of 

errors committed. The main advantage of performance 

measures is that they yield objective, quantitative results 

without disrupting task performance. Although in many 

cases there is a positive relation between SA and 

performance, this connection is not always direct and 

explicit [27].  

In query-based techniques, subjects are asked 

directly about their perception of certain aspects of the 

situation. The queries are usually designed by domain 

experts based on the characteristics of the tasks. One of 

the most widely used query-based techniques is the 

Situation Awareness Global Assessment Technique 

(SAGAT) [28]. The operation is frozen at randomly 

selected times and subjects are queried about their 

perception of the situation at that instant. SAGAT is 

popular as it produces a quantitative assessment of SA 

and it can benchmark the result with similar data in a 

similar context [29]. However, SAGAT is criticized as it 

interrupts the natural flow of the task. To address these 

limitations, Durso et al. developed the Situation Present 

Assessment Method (SPAM) based on the premise that 

SA involves simply knowing where to find a particular 

piece of information in the environment [30]. In 

addition to being less intrusive than other techniques 

[31], the benefits of using SPAM lie in it uses response 

time to indicate the level of SA so that the results reflect 

the real-time dynamic SA of the operator.  

3 Methodology 

To direct further development of operator-assistance 

systems for mobile cranes, this research proposes a 

framework to identify major technical layers and 

requirements. A system architecture is presented based 

on the framework to address key technical challenges in 

this endeavor. In addition, this research proposes an 

assessment approach to quantify the effectiveness of 

such operator-assistance systems by defining and 

measuring operators’ SA and lift performance.  

3.1 System Architecture for Real-time 

Operator Assistance 

With the goal of improving crane lift safety, a 

system architecture is developed to enable real-time 

operator assistance. The system architecture consists of 

three components: crane motion capturing, site 

condition modeling and updating, and user interface and 

interaction (Figure 1). To capture crane motion in real-

time, a combination of wired rotary encoder sensors and 

a wireless inertia measurement unit (IMU) sensor are 

adopted to measure the critical motions of crane 

modules (e.g., boom lift angle, boom extension length, 

boom slew angle, load sway) [32]. The data from the 

encoders are first synchronized in a processing unit so 

that the game engine program on the tablet receives the 

packet that includes the measurements from all encoders. 

In addition, the processing unit will detect and reject 

corrupted or incomplete packets. In site condition 

modeling and updating, the format of a point cloud, 

collected by a laser scanner or other photogrammetry 

technologies, is used to represent the as-is lifting site 
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condition as it can be efficiently acquired. To 

reconstruct an as-is lifting site, the site point cloud 

needs to be converted to bounding box objects to 

represent site obstructions. Bounding boxes will be 

automatically constructed to represent the obstruction 

through multiple steps of point cloud processing. With 

the point cloud and bounding boxes serving as base 3D 

information, updating the lifting site condition, more 

precisely the location change of obstructions (e.g., 

vehicles, materials), can be achieved by correlating the 

2D images captured by a camera with the known 3D 

information. Based on the crane motion data and the site 

condition data, the on-board computer will virtually 

reconstruct and realistically visualize the lift scene using 

a game engine, and analyze the hazards based on the 

real-time data. Once a hazard is detected, warnings will 

be delivered to the operator through both visual and 

auditory means. Throughout the operation, the operator 

is able to interact with the UI through voice commands 

The related details in team’s previous work can be 

found in [19][33].  

3.2 SA-based Effectiveness Assessment  

Given the lack of effectiveness assessment in 

previous operator-assistance systems, this research 

proposes an assessment approach to quantify the 

effectiveness of assistance systems by defining and 

measuring operators’ SA during lift tasks. The level SA 

is expected to have a direct impact on the lift 

performance. To investigate the correspondence of SA 

and performance, this research adopts the performance 

assessment method introduced in [33] which quantifies 

lift performance with respect to safety and efficiency by 

five key performance indexes (KIPs). In addition, the 

complexity of the lift task (e.g., mental, physical, and 

temporal demands) will affect the level of SA and the 

lift performance. The relationship between SA, lift 

performance, and task workload is illustrated in Figure 

2. The following section will describe specific methods 

used to measure SA, lift performance, and task 

workload in crane lifting operations. 

 

Figure 2: Relationship between SA, lift 

performance, and task workload in lift operations 

 

3.2.1 Query-based Assessment of Situation 

Awareness  

SA has been widely considered as an important 

factor in dynamic decision-making, and several indirect 

or subjective methods (e.g., physiological measurement, 

performance measures, self-rating) have been proposed 

and used in the SA research of aircraft pilots and air 

traffic controllers. This research employed a query-

based SA measurement method adapted from SPAM 

[34]. In this method, the operator will be presented with 

queries about the situation while the situation remains 

present and while they continue to perform the primary 

task. During the query process, the questioner will 

indicate the operator that he intends to ask a query. 

Once the operator is ready to take the query, he or she 

will suspend the operation and indicate the questioner 

that he is ready. Then, the questioner will ask the 

question. The duration between the time the questioner 

finishes the question and the time operator start 

answering the question is considered the response time. 

Once the questioner records the operators’ answer to the 

query, he will indicate the operator to resume the 

operation. In addition to response time as the sole 

measure of SA in traditional SPAM, the operator’s level 

of SA is measured by both the response time and 

response correctness. Response correctness is quantified 

by the percentage of variance of the operators’ answer 
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to the correct answer recorded by the system. 

Two major challenges that are addressed in this 

research when using this method are 1) designing proper 

queries that can effectively reflect the level of SA in 

crane lifting operations, and 2) choosing the proper 

timing to make the queries so that it does not interfere 

the primary lift tasks while remains effective for real-

time SA assessment. A list of queries is shown in Table 

1, in which two queries focus on past events, three 

queries focus on present events, and one query focuses 

on future events. These queries were designed based on 

panel discussions with safety experts, crane supervisors, 

and crane operators to ensure these queries reflect the 

most essential understandings of the lift tasks and their 

associated risks. During each lifting operation, one of 

the queries is chosen to ask according to the concurrent 

situation. For example, when the load is being lifted 

above a tree, the questioner asks the current clearance 

between load or boom and tree.  

Table 1: Query list for the query-based SA measurement 

Type Query 

Past What is the maximum sway distance so far?  

Past 
How many warnings have you received from 

the system so far?  

Present What is the current boom reach? 

Present 
What is the current clearance between 

load/boom and obstructions? 

Present 
How far is the load placed from its target 

placement location? 

Predictive 
How long do you anticipate this lift task will 

take?  

3.2.2 Assessment of Task Workload  

During the crane lifting operation, operators’ 

performance and SA can be affected by the workload 

imposed by the assigned lift task including mental, 

physical, and temporal demands. Given the same lift 

task, different operators may perceive different 

workload because of subjective, individual differences 

in training, experience, and cognitive capability. The 

perceived workload of the individual operator can be 

measured using NASA Task Load Index (NASA-TLX) 

[35]. The NASA-TLX is a widely used, subjective, 

multidimensional assessment tool that allows users to 

perform subjective workload assessments on operators 

working with various human-machine systems. NASA-

TLX derives an overall workload score based on a 

weighted average of the ratings on six dimensions, 

including Mental Demands, Physical Demands, 

Temporal Demands, Own Performance, Effort, and 

Frustration.  

In the assessment of perceived workload, 

participants were instructed to place an “X” on each of 

the six scales at the point that matches their experience. 

Each scale has two endpoint descriptors such as “bad” 

and “good”, or “low” and “high”. These numerical 

ratings for each scale reflect the magnitude of the 

factors in a given task. Then, the participants were 

presented with a series of pairs of rating scale tiles (for 

example, Effort vs. Mental Demands) and asked to 

choose which of the items was more important to their 

experience of the workload in the lift task they just 

performed. This was used to evaluate the contribution of 

each factor (its weight) to the workload of a specific 

task. Given the numerical rating and the weight of each 

factor, an adjusted rating can be computed for 

quantifying the overall perceived workload of the rated 

task.  

4 Field Tests and Results 

4.1 Overview 

The goal of the field tests was to investigate how 

operator assistance would affect the operator’s SA and 

performance under tasks with high and low workload. 

Five crane operators with experiences range from 8 to 

16 years were recruited. Prior to the tests, the operators 

undertook a 30-minute training session to be familiar 

with the functionalities of the assistance system. To 

differentiate the complexity level of the lifting operation, 

two lift tasks were designed with different spatial and 

temporal constraints. Although surrounded by trees and 

other spare crane parts, lift task #1 features a simpler 

lifting operation as no obstructions present between the 

pick and drop locations. Lift task #2 requires the 

operator to lift the load over a row of trees of 15 m in 

height (Figure 3). Sitting in the cabin at ground level, 

the operators can hardly see the load when it is above 

the trees. Therefore, estimating the clearance from the 

trees to the load or boom is very challenging yet crucial 

for safety. For each task, a control and a test scenarios 

were created where in control scenario the operators 

only use traditional LMI system and in test scenarios, 

the operators use both LMI and the proposed assistance 

system. In these field tests, in total 60 lifts were 

conducted with 12 lifts for each operator.  
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Figure 3: Lift task #1 and #2 in isometric view 

4.2 Workload Assessment for Each Lift Task 

A NASA-TLX rating package was explained and 

presented to each operator after the lifting operations. 

They were asked to fill out the rating and weight sheets 

based on their experience in the lifts. As the operators 

vary in individual characteristics such as motivation, 

risk-taking tendency, and mental and physical 

capabilities, different operators may perceive the 

different level of workload given the same conditions 

and constraints. Therefore, the workload index for each 

lift task was computed based on an averaged index from 

the five operators. Overall, lift task #1 received an 

adjusted rating of 5.42 whereas lift task #2 received 

6.65. This result indicates that lift task #2 imposed a 

larger amount of workload to the operators than lift task 

#1. This can be further assured by the fact that all five 

operators rated Task #2 higher than Task #1, with the 

largest difference of 2 and smallest of 0.73.  

In addition to the workload indexes for the lift tasks, 

it is also interesting to see how the operator rates and 

weights each workload dimension in general. Among 

the six dimensions, the largest rating difference between 

the two tasks lays in mental demand (5.8) whereas the 

smallest difference in physical demand (0.6). In the 

meantime, the operators weighted mental demands as 

the second biggest contributor (second to performance) 

to the workload and physical demands as the smallest. 

These results show that mental demand was a 

dominating source of the workload in the two test tasks, 

and very likely in crane lifting operations in general as 

these tasks represented the common characteristics in 

day-to-day lifting operations.   

4.3 Operator SA Assessment 

A query-based SA measure was used to quantify the 

operators’ SA during the operation. The level of SA was 

quantified by the response time and response 

correctness for each query. Figures 5 and 6 present the 

average response time and average response correctness 

of the 60 queries in different tasks and scenarios. The 

quantile box plot indicates the variance in the results of 

response time and correctness. It was observed that the 

average response time in both the tasks was remarkably 

reduced when the assistance system was used, 17.5% in 

Task #1 and 28.6% in Task #2. The quartile box plot 

indicates that the variances of response time in the 

control scenario in both the tasks are much smaller than 

that in the test scenario. This result suggests that the 

operators have developed a consistent pattern of 

understanding the situation based on their experience 

without the assistance. Despite that overall response 

time was reduced, the introduction of operator 

assistance may change the way the operators search and 

understand the situation. Therefore, training plays an 

important role in the successful integration of the 

assistance system. Overall, the results show that the 

introduction of the assistance system facilitated the 

operator’s ability to comprehend the situation, 

especially the information closely related to lift safety 

and efficiency.  
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Figure 5: Average response time in two lift tasks 

under control and test scenarios 

 

The response correctness is shown in percentage and 

it was computed by comparing the operators’ responses 

to the correct answer recorded in the system. The results 

show that average response correctness was improved in 

the test scenario, by 2.3% in Task #1 and 9.5% in Task 

#2. The box plot suggests that the response correctness 

in test scenarios was in generally more consistent, 
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especially in Task #2. Although not as obvious as the 

decrease in response time, the improvement of response 

correctness suggests that the assistance system was able 

to provide helpful information to augment the operator’s 

awareness of the lift task so that the accuracy of their 

decision-making can be increased.    
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Figure 6: Average response correctness in two 

lift tasks under control and test scenarios 

5 Discussion  

From a statistical perspective, the sample size of 

operators participated in the field tests may not large 

enough to show the statistical significance of the 

improvement. Particularly, the variances in the 

measurements tend to be large due to the limited 

number of subjects and the significant difference in 

experience and maneuver pattern among them. That 

being said, the results in these field tests reflect the 

general trend in the improvement of lift performance 

and SA by introducing the assistance system. The 

conclusions are meaningful to understand the strengths 

and limitations of the current design and to guide the 

future work. Another limitation in the SA measurement 

in the field tests that the query process was not blind to 

the questioner. This bias in the results can be minimized 

by asking multiple queries and randomly selecting part 

of them for SA measurement. 

6 Conclusion 

To guide further development of operator-assistance 

systems for mobile cranes, this research presents a 

framework to identify major technical tasks and 

requirements. Based on the framework, a system 

architecture is proposed to address key technical 

challenges to facilitate implementation. In addition, this 

research proposes an assessment approach to assess the 

effectiveness of such operator-assistance systems by 

defining and quantifying operators’ SA and lift 

performance. These proposed methods were tested and 

validated in a series of field tests. Results indicate that 

the assistance system has a positive impact on 

improving operators’ SA during lift tasks, which led to 

improved lift performance, especially in safety. Overall, 

it was found that the assistance system facilitated the 

operator’s ability to comprehend the situation, 

especially the information closely related to site 

geometric constraints, which led to a safer and more 

efficient lifting operation. It should be noted that the 

experiments were conducted in real lift jobs with actual 

temporal and spatial constraints, and the participating 

operators were exposed to real lifting safety pressure 

and risks. Compared to virtual simulation or survey that 

were commonly used in many other research, the data 

collected and presented in this research is more realistic 

and therefore the results are closer to the actual 

effectiveness of the assistance.   
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