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Abstract – 

A temporal-spatial scheduling model is used to 

consider the location and movement of equipment, 

material and temporary structures on a construction 

site over time, ensuring efficient yet safe processes. 

The model ties together activity scheduling and 

dynamic site layout planning, fully integrating two 

domains that have so far been treated separately. 

Their integration is facilitated by modeling 

temporary site objects like cranes as singularity 

functions. These objects are explicitly linked in the 

model with work spaces through Boolean operators. 

 

Keywords – 

Scheduling, Singularity Function, Site Layout, 

Cranes 

1 Introduction 

Construction activities are tightly interlinked with a 

construction site in terms of the timing of said activities, 

the resources they require, and the physical space that 

they occupy on the site. As type and nature of activities 

change throughout the project, construction sites are 

correspondingly dynamic, and their geometric layout 

will change in accordance with the changing activities. 

Yet while advances have been made in developing 

planning methods that take into account the location of 

activities on site, activity planning and site planning 

have so far not yet been fully integrated. This prevents 

them from being planned simultaneously and efficiently. 

This research presents a foundation for fully integrated 

planning of both construction activities and sites. 

1.1 Phased and Dynamic Approaches to Site 

Layout Planning 

Andayesh and Sadeghpour [1] distinguished three 

approaches of static, phased, and dynamic site layout 

planning. Traditionally, the static approach has assumed 

that the layout of a construction site remains the same 

throughout the project duration. This prevents using the 

same space on the site for different objects, even if they 

are not required at the same moment in time (e.g. [2]). 

An improvement upon was the phased approach, in 

which the project was divided into discrete phases, and 

a site layout was planned for each phase [3]. It allowed 

that one location could be used for different objects in 

different phases. But as Andayesh and Sadeghpour [1] 

criticized, objects can enter or leave the site at moments 

other than the beginning or end of a phase. By reserving 

their space for an overly long duration the phased 

approach reduced the efficiency of the final site layout. 

Consequently, they introduced a dynamic approach, 

which considered the actual duration for which objects 

must occupy space, and implemented this approach in a 

model based on energy principles [4]. Nevertheless, this 

model presupposed the existence of a schedule for the 

activities, upon which the site layout plan can be based. 

1.2 Space and Time Approaches 

Representation of physical space within schedules 

has been an ongoing effort. Location-based scheduling 

methods were developed that considered both the timing 

and location of work [5]. They used diagrams to track 

how work progresses from one location to another. But 

such locations have been limited to a physical division 

of the site based on either a single type of repetitive unit 

(such as floors in buildings), or a single path across the 

site (for linear infrastructure projects). This has failed to 

reflect the actual use of space on real construction sites, 

which is typically much more complex than that. 

Other studies focused on linking specific building 

components with scheduled activities and defining the 

required work spaces in computer-aided design (CAD) 

and building information modeling (BIM) systems [6]. 

The main goal of these four-dimensional (4D) systems 

has been to identify spatial conflicts between activities 

that have been scheduled to be simultaneously executed. 

1.3 Need and Justification 

Efficient planning of construction project execution 

requires a model that can integrate activity scheduling, 

work-space planning and site layout planning fully. In 

comparison, existing methods for dynamic site layout 

planning can be used only after all activities have been 

scheduled. Yet layout of the construction site is often 
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less flexible than the timing of activities. Simultaneous 

planning can therefore give significantly more efficient 

solutions than those that existing methods provided. 

2 Methodology 

2.1 Goal and Objectives 

The goal of this research is to define a temporal-

spatial scheduling model that integrates the planning of 

construction site layout and activities by representing 

and explicitly linking these constructs mathematically. 

Three research objectives are established as follows: 

a. Modeling temporary site objects, including their 

changing location and work space envelopes, as 

singularity functions; 

b. Linking temporary site objects with work spaces 

with logical relationships that reflect efficiency 

and safety requirements; 

c. Verifying that site objects are eventually optimally 

located in accordance with their defined relations 

with planned activities. 

2.2 Research Approach 

This research defines an integrated mathematical 

model which can be used to implement planning and 

optimization methods for scheduling and site layout 

planning. Singularity functions will be used to define 

the required constructs and relations, as they provide a 

flexible mathematical framework that allows modeling 

the different aspects of construction projects. 

This research will focus exemplarily on the task of 

planning the location of cranes on construction sites [7]. 

Cranes often constitute a bottleneck resource that leads 

to delays as crews wait for material or components to be 

lifted. At other times, cranes may be underutilized and 

remain idle, because activities have not been optimally 

scheduled. Cranes could also create safety hazards as 

other activities need to be conducted underneath areas 

into which objects must be lifted and placed. Given 

these problems, it is important to simultaneously plan 

the timing and location of activities and cranes on sites. 

3 Singularity Functions 

3.1 Definition 

In its general form, the pointed-bracket operator per 

Equation 1, which is the basic term within all singularity 

functions, performs a case distinction. A function of x is 

either zero before the activation cutoff a on the x-axis or 

is evaluated as a polynomial with strength s and growth 

n from a onward. Exponents n can model shapes, e.g. a 

constant (n = 0), linear growth (n = 1), parabolic growth 

(n = 2), etc. Such singularity functions enable unlimited 

additive composition for behaviors of any complexity 

from simple terms. Multiple terms can be simplified if 

their n and a are identical to shorten longer equations. 

To deactivate a function, its term is simply subtracted at 

the later cutoff (including any already attained value). 

An index R will mark its default right-continuity (active 

at x  a), index L the analogous left-continuity (x > a). 
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3.2 Extension to 3D 

Since their introduction to project management [8], 

systematic applications have been broadened beyond 

work and time in linear schedules to also encompass 

resource counts that remain linked with the underlying 

schedule to gain a flexible resource leveling model [9]; 

cost and pay over time to generate cash flow equations 

[10], time value of money that grows from interest [11], 

and calendar date conversions including holidays [12]. 

Recently the possibility to unify spatial and temporal 

aspects of project plans has begun to be explored. Their 

three-dimensional (3D) formulation multiplies pairs of 

on-and-off terms along both coordinate axes [13], which 

model two projections of the same 3D volume. On both 

axes they are activated and deactivated at the start and 

finish of the range. This allows block and ramp shapes 

within a 3D coordinate system of two horizontal spatial 

axes x1 and x2 and a vertical time axis z. But this model 

was limited to just shapes that are parallel to an axis, 

which limits its usefulness to only sites that are shaped 

like a city block. Other shapes were not explored. Float, 

the flexibility of activities regarding their timing, was 

defined as postponing or a productivity change (i.e. shift 

or rotation) within an overlap zone with a successor. Its 

availability was represented in form of a ‘heat map’ [14]. 

Besides work areas, these authors have defined paths 

on a site within a 3D space-time coordinate system. This 

approach has overcome the previous limitation that only 

axis-parallel shapes could be defined. A vector-inspired 

formulation has been created [15], which first defines a 

line segment and then gives it a width. It could act as a 

safety buffer for traveling equipment, and more broadly 

allows defining irregularly shaped work areas. Also, the 

need to introduce Boolean operators has been addressed, 

so that work areas can be related by AND (intersection), 

OR (inclusion), and XOR (exclusion) [16]. These are 

applied by multiplying, adding, or subtracting so-called 

signal functions of two geometric shapes. An improved 

version of a vector-based model for any rectangular 

geometric area that is rotated in the x1-x2-plane against 

the two spatial axes is given by Equation 2. From its 

start to its finish coordinates (S to F), the value of the 
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variable h1 grows from 0 to 1 along the vector direction 

(x1, x2, z). Defining a perpendicular half width w / 2 

to the left and right with variable h2 grows from 0 to 1 

creates the desired area h1  h2. These widths per 

geometry are secondary vectors, which are scaled to a 

unit length of 1.0 by dividing by the vector length l = 

(x1
2 + x2

2 + z2). Each is then multiplied with the 

desired width w / 2. Their two directions are (x2, -x1, 

z) and (-x2, -x1, z). Their vertical z-value can be 

omitted for purely spatial elements without time aspect. 
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The model for a geometric solid is derived from said 

area model by adding a third variable h3 that grows from 

0 to 1 along the vector direction (0, 0, z) per Equation 

3. Since the vertical axis z represents time, the z in the 

vector is the duration of work. Following a vector from 

(x1, x2, z) = (28, 61, 0) to (52, 93, 0), h1 moves into the 

direction that is the difference (24, 32, 0) of these two 

vectors. It travels (242+ 322) = 40 length units as a line 

segment. To create an area, h2 moves perpendicularly 

into two opposite directions. Its vectorized singularity 

function for w = 30 is (28, 61, 0) + (24, 32, 0) · (h1 - 

01
R - h1 - 11R - h1 - 10L)  15/5 · (-4, +3, 0) · (h2 - 

01
R - h2 - 11

R - h2 - 10L). Moving it along the time 

axis z with h3 into direction (0, 0, 8) creates the full 

temporal-spatial activity per Figure 1. Its singularity 

function extends the insufficient traditional vector into a 

solid with the custom location and orientation as desired. 
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Figure 1. Rectangular solid of work 

3.3 Crane Movements 

As a vital productive resource on site, arguably the 

most important one [7] due to supplying many trades 

with materials and assemblies, cranes – here specifically 

tower cranes – have a dominant role. The operating area 

of such crane is cylindrical, where the mast is located at 

{x1C, x2C}. Its jib of radius R rotates around it. Along it 

the trolley can move to any position r, where 0  r  R 

(or realistically, starting about 3 m from the mast itself). 

Its hook location is determined by the mast and trolley, 

i.e. at {x1C, x2C} plus an offset {x1C, x2C}, where xiC 

can be positive or negative and - R  xiC  R. Any 

singularity function is active from its cutoff onward. But 

r > R should deactivate it to prevent endless growth. 

This is accomplished by an inverse operator - r - R1. It 

shows how singularity functions incorporate constraints 

that otherwise must be written as inequalities (plus end 

term to subtract the radius outside the crane coverage). 

Together this gives x1C
2 + x2C

2 = (x1 - x1C)2 + (x2 - 

x2C)2 = (r - 01 - r - R1 - R · r - R0)2 per Equation 4. 
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Standard geometry gives the relations between the 

offset distances and rotation angle  as x1C = r · cos  

and x2C = r · sin  to convert from planar into polar 

coordinates. Such rotation will traverse a fraction of the 

circumference that simply becomes 2 ·  · ( / 360). 

A spatial singularity function can model the area of 

crane coverage based on its mast location and radius as 

x2(x1, r) =  [(r - 01 - r - 501 - 50 · r - 500)2 - x1 - 

x1C2] + x2C and vice versa for x1(x2C, r) and r(x1C, x2C); 

any two of the three variables must be known. Note that 

the circular crane rotation allows two valid solutions, 

one beyond the mast on the x2 axis and one before it. 

For example, for a mast at {65 m, 70 m} with an r = 

50 m jib for r = 60 m the crane radius equation correctly 

gives (60 - 01 - 60 - 501 - 50 · 60 - 500)2 = (60 - 10 - 

50)2 = 0, because that location is outside the radius. Test 

input of x1 = 65 m + 50 · [2]/2 m = 65 m + 35.36 m = 

100.36 m for the crane coverage equation with a 50 m 

jib gives x2(100.36 m, 50 m) =  [(50 - 01 - 50 - 501 

- 50 · 50 - 500)2 - 100.36 - 652] =  [(50 - 0 - 

50 · 1)2 - 35.362] =  35.35 m (having subtracted x2C = 

70 m already), i.e. the crane rotates 45 (anti-clockwise 

or clockwise) for its two offsets to become identical. 

Moving the crane coverage area along the time direction 

with 8 units creates the solid of crane mathematically 

per Equation 5. Figure 2 visualizes its cylindrical solid. 
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Figure 2. Cylindrical solid of crane 

3.4 Other Equipment 

Other types of equipment may be characterized by 

different shapes of its work within the construction site. 

These may be fixed locations (e.g. concrete plant silos, 

dewatering wells, material hoists), linear movements 

(e.g. utility pipe trenching, paving, tracked tower cranes 

and gantries) or work faces (e.g. masonry platforms), 

multiple linearized segments that compose work paths 

(e.g. delivery trucks, material handlers), and areas (e.g. 

storage and assembly yards, building section footprints). 

Shapes can be represented with existing singularity 

functions as follows: Fixed locations have a small non-

zero footprint, which makes them conceptually identical 

to areas. Simple areas have a range of {x1S, x1F and 

x2S, x2F} if their rectangular shapes can be defined as 

a pair of coordinate ranges on the two spatial axes. 

Beyond this, Equation 2 can newly model the 

generalized areas that are non-aligned with major 

coordinate axes. Linear segments can use the model of 

Equation 2, but with zero (or nearly zero) width w to 

emphasize that their primary direction is captured by the 

growth of h. More complex equipment travel paths can 

be composed from linear segments as a set of vectors. 

These definitions of different types of temporary site 

objects and their locations fulfill Research Objective 1. 

4 Boolean Relations 

A barely explored yet important issue within spatial 

scheduling has been how work areas of temporary site 

objects and the activities that occur there can be related 

explicitly by logical constraints. Traditional (non-spatial) 

network scheduling has been dominated by discrete 

end-point-links that express minimum constraints [17]. 

They function well for If-Then conditions in which one 

event triggers another, e.g. the predecessor finish that 

enables a successor start. But despite the popularity of 

strictly sequential relations, also due to their simplistic 

nature, real construction projects experience a profusion 

of concurrent activities that often at best compete for 

space or at worst interfere or conflict with one another. 

Several Boolean algebra operators exist, which here 

will be used to establish if and how multiple temporary 

site objects can compete for the same location [16]: 

 Two activities must occur sequentially (IF-THEN); 

 Two activities must occur in parallel (AND); 

 Two activities can (but need not) be parallel (OR); 

 Two activities must never occur in parallel (XOR). 

Applying them to temporal-spatial scheduling means 

considering the activity pair {A, B} in both time and 

space. Their truth values can be recorded per Table 1. 

Table 1. Boolean Truth Values 

Operator Activity A Activity B Result 

IF-THEN 1 

1 

0 

1 

0 

1 

1 

1 

0 

AND 1 

1 

0 

1 

0 

1 

1 

0 

0 

OR 1 

1 

0 

1 

0 

1 

1 

1 

1 

XOR 1 

1 

0 

1 

0 

1 

0 

1 

1 

Defining Boolean relations between work and crane 

solids will use a signal function per Equation 6 whose 

value is 1 if a coordinate point is inside the solid and 0 

if it is outside. This concept can generate the Boolean 

operations AND, OR, and XOR in Equations 7, 8, and 9. 

The IF-THEN relation is not considered further, because 

it already exists in form of normal ‘finish-to-start’ links. 
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Such 3D signal functions can be handled like normal 

mathematical terms. This allows a seamless integration 

of the singularity functions for the work areas and crane 

ranges with these new Boolean relations between them. 

Linking temporary site objects in their locations via 

such logical relationships fulfils Research Objective 2. 

5 Validation 

A validation example will test and demonstrate how 

temporary site objects and Boolean relations are used to 

more realistically model the constraints of construction 
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projects. Assume the example of Figures 3 and 4 with 

areas and constraints as follows. The aforementioned 

tower crane that Section 3.3 has introduced is placed at 

the coordinates {65, 70} (all locations in meters) with a 

radius of 50 m. Zone I – familiar from Section 3.2 – is 

rotated relative to the x1 and x2 axes in Figure 1. Zone I 

cannot move in space. It occurs in the range from weeks 

0 to 8 (all times in weeks) on the temporal axis z. Zone 

II is at {70, 100 and 55, 95} and can be moved to {130, 

160} on axis x1 (here called Solution I) or postponed 

along the time axis z to weeks 10 to 16 (Solution II). 

 

 

Figure 3. Validation example plan view of space 

 

Figure 4. Validation example possible solutions 

Applying Equation 5 gives Zone I as a solid of work 

as Solid(h)I = (28; 61; 0)Start + (24; 32; 0) · (h1 - 01
R - 

h1 - 11
R - h1 - 10

L)  15/5 · (-4, +3, 0) · (h2 - 01
R - 

h2 - 11
R - h2 - 10

L) + (0; 0; 8) · (h3 - 01
R - h3 - 11

R - 

h3 - 10
L). Note that a solid could be spanned from any 

coordinate (with vector directions adjusted accordingly), 

but here a start close to the origin is chosen, so that most 

vector direction values will only have positive signs. 

Work in Zone I requires assistance of the crane, so 

that it has a Boolean AND relation with the crane solid. 

Yet Zone II never needs the crane, so an XOR is applied 

between them. It is now possible to check whether the 

work area is fully within the crane coverage by using 

their signal functions. In the original plan of Figure 5, 

Zone II is given by Solid(h)II = (85; 55; 0)Start + (0; 40; 

0) · (h1 - 01
R - h1 - 11

R - h1 - 10
L)  30/2 · (-1, 0, 

0) · (h2 - 01R - h2 - 11R - h2 - 10
L) + (0; 0; 8) · (h3 - 

01
R - h3 - 11

R - h3 - 10
L). Boolean calculation of the 

signal space within Zone II gives ORSignal = SignalCrane + 

SignalZoneII - SignalCrane × SignalZoneII = SignalZoneII, 

while ANDSignal = SignalCrane × SignalZoneII = SignalZoneII, 

as a result XORSignal = ORSignal – ANDSignal = SignalZoneII 

- SignalZoneII = 0. Only if the XOR signal is 1, the work 

in the Zone II may be conducted. Thus Zone II violates 

the XOR relation with the crane and is plotted in red. 

 

 

Figure 5. Validation example original plan 

Figures 6 and 7 show relocating or postponing Zone 

II to resolve its conflict. Solution 1 relocates Zone II by 

60 m into the x1 direction to fulfill the XOR relation as 

can be mathematically confirmed. Solution 2 does not 

change its location, but postpones the start time of Zone 

by 4 weeks, which will also fulfill the XOR relation. A 

project planner can thus make an informed decision on 

how to position temporary site objects and work zones 

relative to one another to fulfill all constraints toward 

finding an optimum arrangement of such a schedule. 

 

 

Figure 6. Validation example Solution I (relocate) 
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Figure 7. Validation example Solution II (postpone) 

6 Conclusions 

This research opens an avenue for integrating the 

domains of activity scheduling, workspace planning and 

site layout planning in a single mathematical model. Its 

model is sufficiently flexible to allow representing the 

spatial and temporal dimensions of both construction 

activities and site objects. It can thus enhance the safe 

and efficient planning of construction project execution. 

6.1 Contributions 

This paper makes three contributions to knowledge: 

 It explores how spatial singularity functions model 

work areas and work paths and also temporary site 

objects, within a 3D space-time coordinate system; 

 Work areas and temporary site objects are linked by 

logical relationships such as AND, OR and XOR, 

in addition to existing sequential relationships, to 

fulfill applicable efficiency and safety requirements; 

 An example has validated that the planned activities 

and temporary site objects like a tower crane, which 

constitutes a vital resource on site, can be optimally 

planned in accordance with their defined relations. 

6.2 Recommendations 

 Since the structural moment of any given crane 

load depends on its distance between the trolley 

and mast, the mathematical formulation should be 

refined to decreasing load capacity based on radius; 

 While this research has assumed that cranes have a 

circular radius, the need for stabilizing outriggers 

gives mobile cranes a potentially non-circular 

radius of equal lifting capacity. The mathematical 

formulation should be refined with an equation of 

such radius-and-rotation-dependent lifting capacity; 

 Purely temporal interval relations have first been 

described by Allen [18], who considered that 

activity durations can be equal or unequal and 

listed all possible constellations of two activities in 

time, including those with overlap, or concurrency. 

This idea should be generalized to temporal-spatial 

scheduling to categorize all possible constellations 

of temporal site objects and their locations in time; 

 Areas that change their shape or size over time (e.g. 

a crane that is not allowed to swing over an 

adjacent property, this operating as a circle sector 

or building with smaller footprints on upper floors) 

should be modeled as time-dependent functions; 

 Rotations could also be modeled via a rotation 

matrix, which will be explored in future research; 

 Complex work paths, e.g. for earthmoving, need to 

be explored further. They could be combined with 

capacity calculations, e.g. the curves of mass haul 

diagrams that calculate cut and fill quantities from 

integration of volume curves in cross-sections and 

longitudinal sections of topographical profiles; 

 Developing a computer tool for project planners 

could automatically perform analyses like the 

example of Section 5 to directly identify conflicts, 

offer options for solutions, and visualize potential 

impacts of spatial or temporal changes in plans; 

 Full integration with optimization methods should 

be explored, especially which type of evolutionary 

algorithm and what parameters perform best for 

representative sets of real-world construction sites. 

Nomenclature 

Table 2. List of Symbols 

Symbol Unit Definition 

x m Spatial variable 

z w Time variable 

s w/m Strength factor 

a m Activation cutoff 

n - Behavior exponent 

R - Right continuous 

L - Left continuous 

l m Vector length 

w m Half width of area 

r m Radius of interest 

h - Vector direction 

R m Crane jib radius 

C - Crane index 

S m Start coordinate 

F m Finish coordinate 

 m Offset distance 

  Rotation angle 

IF-THEN - Sequential relation 

AND - Parallel relation 

OR - Inclusive relation 

XOR - Exclusive relation 
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