
34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

A Behavior-based Architecture for Excavation Tasks
T. Groll, S. Hemer, T. Ropertz, K. Berns

Robotics Research Lab, Technical University of Kaiserslautern, Germany
E-mail: groll@cs.uni-kl.de, s_hemer@cs.uni-kl.de, ropertz@cs.uni-kl.de, berns@cs.uni-kl.de

Abstract -
The paper describes a software architecture for au-

tonomous excavation tasks. For this, it uses a behavior-based
approach which allows adaptation to the changing environ-
ment and unexpected events. As part of the presented ar-
chitecture, basic primitives are defined which solve spatially
limited motions. These can be activated as and when re-
quired. It is possible to have multiple of them running in
parallel. Normally, an excavation task can be split up into
several different phases. During these phases, the primitives
will be activated as needed. To be reusable, the primitives are
designed in a very general way. To show the performance of
the presented architecture, an example application is built
up which can be used to dig a trench. This application is im-
plemented on a system running on a real backhoe loader.

Keywords -
primitives; behavior-based control architecture; excavator

1 Introduction
Excavators are commonly used machines on construc-

tion sites and in mining environments. One of the main
reasons for that is their multi-functionality. They can be
deployed for transport or loading of material for example
and as well for all kinds of digging scenarios. Targeting
this, excavators are available from small machines with
weights around 1 t to huge machines with over 200 t. Ad-
ditionally, a huge set of different attachments is available
for the use with excavators. Besides a lot of different kinds
of buckets, it is also possible to use tools like drillers with
such machines (compare [6]).

Because of the kinematic structure of a common exca-
vator arm, it is necessary to control multiple degrees of
freedom at the same time to solve a task properly. This
requires some expertise. The basic kinematic structure is
comparable to the one of common industrial robots but
most of the excavator arms are controlled by hydraulic
actuators. So it is comprehensible that the proceeding
automation does not stop in the area of construction ma-
chines. In the past years, some projects in this field were
executed. For example, there are Thor [15] and Lucie [1].

According to the wide range of possible tasks which
can be solved by an excavator, an architecture for an au-
tonomous control system for such a machine should be
adaptable. Another big issue while working on construc-

tion sites is that here the environment is very unstructured
and can even heavily change while solving the task. In
most cases, the changing of the environment is the goal
of the excavation work. To deal with this situation the
behavior of a control system should also be very adaptive.

Such an architecture for the control software of an au-
tonomous excavator is described in this paper. With the
presented approach the task of digging a trench as an ex-
ample application can be executed autonomously. This
typical excavation problem can be divided into four sub-
tasks: moving to trench start, digging, moving to dumping
position, dumping. So the implemented solution should
address these phases as part of its architecture. Addition-
ally, it should be possible to exchange the implementation
for adaptability. If this is done properly, the same solution
can be used to solve different tasks with only exchang-
ing, for example, a single phase implementation. This
could be the exchanging of the digging strategy between
the excavation of big masses and a solution for creating
a more precise shape of the pit. Another problem which
is addressed by the architecture is the switching between
the subtasks while system operation. This should hap-
pen according to the system state measured by the sen-
sor system. In previous research presented in [2], it was
shown that expert human operators overlap the solving of
the subtasks a little bit. So the architecture presented here
also should allow such overlapping. On the lower level
of the software stack, primitive motion control modules
are applied which can be reused for different tasks or sub-
tasks. Another goal for the architecture design is to be
scalable. This means that in future works the same so-
lution could be used to extend the local trenching to an
implementation for building up a whole construction pit.
To show the performance of the presented architecture, an
example application is built up which digs a trench. This
is implemented on a system running on a John Deere 410J
TMC backhoe loader.

Followed by this introduction, similar projects and
other architecture techniques are presented. Then in sec-
tion 3, the developed architecture is explained in a general
way. In section 4, the implementation of the architecture
for the trenching task is presented. Following this, the ex-
periments and their results are shown. At the end, a con-
clusion is given which also includes a short explanation of
possible future work.

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

2 Related Work
For every system which implements an autonomous ex-

cavation task, it is necessary to implement subsystems for
solving smaller parts of the work cycle. Additionally, a
strategy is needed which controls the execution of the sub-
implementations. For solving this, different approaches
can be found in the literature.

2.1 Autonomous Excavators

A lot of projects in which autonomous excavation was
implemented use finite state machines (fsm) to fulfill the
task. For example in [3] a solution is presented which uses
a fsm in a software system which allows a wheel-loader
to load a pile of soil on a truck. In the implementation
of mass excavation including truck loading for the Au-
tomated Loading Systems of Carnegie Mellon University
parameterized scripts are used. These scripts implement
the control algorithms for the different joints of the used
excavator and are used in parallel. They are synchronized
by event-triggered state changes, which allows interpret-
ing the single scripts also as finite state machines. This
solution is described in [12] and [13]. Schmidt describes
in [15] a control system for the automated excavator Thor
which also uses a fsm. Here, the state machine provides
the input for a behavior-based system which generates
the moving trajectory by activating primitives. Each of
this primitives calculates control signals for every possi-
ble moving direction. In this works also some algorithms
for environmental perception and interpretation are de-
scribed. For example, he explains a gridmap-based solu-
tion to find the best starting point for the next excavation
cycle.

On the low level of the control stack for excavation au-
tomation operates the solution presented by Maeda in [8]
and [9]. Here, an adaptive impedance control implemen-
tation is shown which can control the bucket of an exca-
vator along a given trajectory while moving through soil
with a lot of unknown disturbances. Targeting the prob-
lems occurring because of this disturbances, the system
can adopt the control algorithm while executing the exca-
vation cycles and improve the precision of following the
trajectory with every new iteration of the digging process.
Besides these projects which all implement software sys-
tem to drive real excavators, Du et al. describe in [2] a sys-
tem that should improve simulation by including a virtual
operator into the tested machine. For this, the developed
algorithm should act as similar as possible to the move-
ment a human operator would control. To find out how a
human really solves the excavation task, they did detailed
research with expert machine operators. Based on this, a
detailed description of the excavation cycle while trench-
ing is given. Starting from this knowledge a virtual con-
troller for the excavation simulation was implemented. In

the implementation also a state machine with hard state
changes is used. However, one conclusion of the tests
with the experts was that very experienced human opera-
tors let the states overlap a bit.

Also in the work presented in [16] no real excavator is
used. There, a high-level task planner is presented which
can be used to divide the earthwork of a whole construc-
tion site into small portions. The resulting segmentation
delivers positions which should be used for local digging
by an excavator. An algorithm to reach this location in a
good manner is then given by Kim et al. in [5].

2.2 Motion Primitives

Using primitives is a good strategy to develop modules
that can be reused for different tasks. If the primitives are
additionally adaptable in their behavior, the range of pos-
sible usage is extended a lot. Addressing this, Ewerton
describes in [4] an approach which uses movement prim-
itives with parameters. In this work, he teaches a robot
to play golf by demonstrating the basic trajectory to it.
With the implemented algorithm the robot was then able
to adapt this trajectory to vary the velocity of the golf club
when it hits the ball. This is possible because they ap-
proximate the given trajectory with parameterized Gaus-
sian functions. To adapt the velocity, and with it the hit-
ting strength, the parameters of the Gaussian kernels are
changed.

A similar solution is used for the Dynamic Motion
Primitives (dmp) introduced by Schaal in [14]. Here, pa-
rameterized functions are used to approximate a trajectory
which also include Gaussian basis functions.

Another approach for implementing movement prim-
itives is given by Luksch in [7]. There the primitives
are described as small systems that generate local con-
trol commands. For example, it exist a primitive to con-
trol the velocity of an object according to one criterion.
The resulting modules can run in parallel and are triggered
by stimulation which is given by a hierarchical behavior-
based network. This uses an architecture earlier intro-
duced in [10] which is called integrated behavior-based
control (ib2c).

2.3 Robot Architectures

To design robot control software, it is necessary to use
an arbitrary software architecture with structure modules
and define rules for the execution of those. Weidauer
has done so in [17] for a standard industrial manipulator.
To provide the possibility of reuse, system manipulation
primitives are introduced which implement parts of the
system each. To give the execution a appropriate order it
is organized by a petri net.

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

Routine

Phase 11

Phase 22

Phase 33

Subroutine

Primitive 1

Primitive 2

Primitive 3

Primitive 4

Primitive 5

Figure 1. The structure of the behavior-based con-
trol architecture

3 Architecture

With the presented architecture the previously ex-
plained subdivision of the trenching process into subtasks
is targeted. Additionally, the implementation of the sub-
tasks should be exchangeable and on the lower level prim-
itives are used to provide a good re-usability for control
laws in the different phases and for other tasks.

3.1 Structure

In general, the architecture structures the implementa-
tion hierarchically. So the overall control system solving
the task is called a routine. A routine consists of phases
that represent the subtasks a routine can be split into. In
every phase a set of primitives will be activated. It is pos-
sible that a primitive is actually used by multiple phases.
This structure is graphical shown in figure 1.

To adapt the implementation of a subtask, for example
to switch from mass excavation to precise trench shaping,
it is only necessary to exchange one single phase while the
remaining implementation can stay the same. Besides the
option of using a set of primitives directly, it is possible to
use a subroutine as implementation of a phase.

3.2 Phase

Subtasks, that a routine can be split into, are repre-
sented as phases. This structure element is used for arbi-
tration; a phase should become active if specific criteria of
the system state are fulfilled. These can include measured
data from the environment like the actual trench shape as
well as the machine state, for example the actual angle of
the bucket according to the machine frame. During the de-
velopment process for the implementation of the trench-
ing task, it appeared that a phase should become active
if some conditions are fulfilled and should be held active

while some other criteria are in the appropriate range. Tar-
geting this, the developed architecture defines a set of pre-
conditions that has to be fulfilled at the moment of phase
activation. Additionally, an invariant, represented as a set
of conditions, has to be fulfilled during the phase is run-
ning.

For the trenching process, four phases are defined ac-
cording to the subtasks introduced before: move to start,
digging, transport to dumping and dumping. In the move
to start phase the bucket should be controlled to the start
position of the next digging cycle. This is the position at
which the bucket should begin to retrieve the next portion
of soil out of the trench. To determine this position, rating
functions are used which operate on grid maps of the de-
sired and actual surface. These functions are introduced
in [15]. Additionally to reaching the position, this first
phase should curl the bucket to an angle which allows to
break into the soil in an appropriate manner. During the
digging phase, the bucket should move through the soil
to scoop up as much soil as possible. This leads to a tra-
jectory which moves the bucket from an open angle to a
closed one. Also, the bucket should move into the direc-
tion of the excavator base. When the bucket is filled, the
soil has to be brought to the dumping position. This can
be a target pile or the loading area of a truck, for exam-
ple. The transfer to this position is done in the transport
to dumping phase. Arrived there, the material has to be
dumped out of the bucket. For this, the dumping phase is
responsible. When the bucket is empty again, the digging
cycle should start with the next iteration.

To formulate the conditions, mainly the pose of the
bucket given in Cartesian space Πbucket is used. This
includes the bucket position Pbucket and its orientation
Ωbucket .

Πbucket = (Pbucket ,Ωbucket) (1)

While digging and dumping, the main movement should
be a curling of the bucket to gather soil into it or drop it.
Addressing that, the angle of the bucket according to the
basis frame of the arm θbucket is used here to measure
the progress. Additionally, some target or threshold val-
ues are defined to formulate criteria for fulfillment of the
conditions. These are Πstar t for the desired start pose of
the next digging process, θl i f t for the angle that should
be used while lifting the bucket out of the trench, Pdump

for the desired position of the bucket while dumping and
θdump for the bucket angle in which it is fully open. In
table 1 the used phases with their preconditions and in-
variants are listed. With a clever definition of the precon-
ditions and invariants, it is possible to let the execution of
the phases overlap appropriately.

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

phase precondition invariant
move to
digging θbucket ≤ θdump

Πbucket 0
Πstar t

digging Πbucket ≈
Πstar t

θbucket ≤ θl i f t
move to
dumping θbucket ≈ θl i f t Pbucket 0

Pdump

dumping Pbucket ≈
Pdump

θbucket > θdump

Table 1. The phases of the digging cycle with their
preconditions and invariants

3.3 Motion Primitive

On the lowest level of the presented architecture, prim-
itives are used. They implement local control laws which
generate velocity vectors for the tcp. Finally, these local
velocity vectors are combined to an overall control vector.
This will be given to the low-level system which calcu-
lates the control commands for the machine. A primitive
can generate a fixed velocity as well as a dependent one
which is calculated based on a sensor data input vector.

Primitives will be activated during the phases. It is
possible that one phase uses multiple primitives and one
primitive can be used by multiple phases. This improves
the re-usability of the structure elements of the system.
The standard case of every phase is that a set of primitives
is active in parallel.

To solve the trenching task the following primitives are
used:

Rotate: This primitive is used to rotate the swing
to a given target angle. To do this, it generates a
rotational movement around the z-axis. The desired
velocity is proportional to the angular distance to the
target angle. Here, the maximum angular velocity in
the experiments on the machine were 0.25 rad

s .

Curl bucket: Similar to the first primitive, it gen-
erates an angular velocity which curls the bucket to
a given target angle. This is a rotation around the
y-axis of the backhoe plane coordinate system (max-
imum velocity: 0.5 rad

s).

Move to position: The target of this primitive is
to move the bucket to a given position in the two-
dimensional backhoe plane. To reach this, a 2D ve-
locity vector is generated which is directed to the tar-
get point and has a length proportional to the remain-
ing distance. In the experiments, this movement is
done with a maximum velocity of 1 m

s .

Close bucket: This one curls the bucket with a con-
figured fixed angular velocity in the closing direction
(velocity: 1 rad

s).

move to
digging1

digging2

move to
dumping3

dumping4

trenching

move to
position

rotate

curl bucket

close
bucket

open
bucket

hold angle

hold
relative

move
in tooth
direction

hold crowd
at position

Figure 2. The architecture of the trenching process

Open bucket: Similar to the previous primitive, this
curls the bucket in the opening direction (velocity:
1 rad

s).

Hold angle: With this, the backhoe plane should be
held at a fixed angle. This is done by generating an
angular movement around the z-axis of the arm base
coordinate system if the actual angle differs from the
configured one. Here, the value of the generated ve-
locity is proportional to the angular error.

Hold crowd at position: By activating this primi-
tive, the crowd joint will be held at a given position
on the backhoe plane. This is done in a similar way
as in the primitive explained before but here a lin-
ear velocity will be generated according to the error
instead of an angular one.

Move in tooth direction: From this, a velocity vec-
tor for the tcp with a fixed length is generated which
targets into the direction of the tooths of the bucket.
To be able to generate a vector which targets into
the right direction, the mounting angle of the tooths
has to be configured. Additionally, the actual bucket
angle according to the machine coordinate system is
used to generate the movement (velocity: 1 m

s).

Hold relative: This primitive generates an angular
velocity which holds the bucket in a configured angle
relative to a given reference plane.

In figure 2, the whole architecture for the trenching pro-
cess is shown.

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

4 Implementation
For the implementation of the architecture, a frame-

work is used which defines special modules that can be
used together as a behavior-based control network. This
is introduced in [10] as ib2c. A short introduction to this
is also given in the next section.

4.1 IB2C

In ib2c, a basic module type is defined that can be used
to compose a net which makes a control system for robots.
Such a node has a set of well-defined inputs and outputs,
figure 3 shows a schematic representation. An ib2c mod-
ule is defined with the three-tuple B = (fa , fr ,F) where
r = fr (ι) is the target rating function, a = fa (r, ι) the
activity function and ~u = F (~e) the transfer function. Ad-
ditionally, each module has a set of input and output sig-
nals which include the meta data: Activity a ∈ [0; 1], tar-
get rating r ∈ [0; 1], stimulation s ∈ [0; 1] and inhibition
i ∈ [0; 1] as well as the input vector ~e ∈ Rm and the output
vector ~u ∈ Rn . With the transfer function F, the output
vector will be calculated from the input vector according
to the internal control law. Using the meta data, the influ-
ence of the module in the whole system is calculated and
coded in a. This is done by calculating the activation ι of
the module from the meta data inputs. In difference to the
original introduction of ib2c, in the presented approach
the following equation is used to calculate the activation.

ι = min (s,1 − i) (2)

With this value, the target rating r can be calculated by
the user-defined function fr . It should express how much
the calculated output vector ~u should influence the system
if the module is fully active. From this values, the activity
a of the module can be calculated.

a = min (ι,r) (3)

With this equation, it can be ensured that the activity has
in average case the value of the target rating r and at max-
imum the value of the stimulation s. To combine the con-
trol vectors generated by different ib2c nodes, a fusion
module is used. For the combination, it uses the meta data
of the corresponding modules. From this, the fusion mod-
ule calculates a new output vector in which every input
vector is included according to its corresponding activity
and target rating. To perform this, different fusion meth-
ods can be used; for example a maximum function or a
weighted sum. If the maximum function is used, the out-
put of the module with the highest activity is directly used
as the output of the fusion module. By using the weighted
sum solution the input vectors of the fusion are multiplied
with their corresponding activities and summed up.

~e

~u

s

i

a
rB = (fr ,F)

Figure 3. The basis ib2c module

precondition

invariant

phase
max

Figure 4. Phase arbitration with ib2c

4.2 Phase Arbitration

For the implementation of the conditions used for the
arbitration of the phases, ib2c modules are used. Also,
the phase itself is implemented as such a behavior-based
node. It is not possible to use the condition modules as
simple stimulation for the phase, because it should be-
come active if the precondition is fulfilled, but stay active
until the invariant is not fulfilled anymore. So it should not
become active if the invariant is fulfilled but the precon-
dition is not and it should stay active if the criteria for the
precondition were in the right range but are not anymore.
Addressing this problem, the pattern shown in figure 4 is
used for the arbitration. To hold the maximum activation
given by the precondition, a self-stimulation of the phase
module is used. Without inhibition, this leads to an acti-
vation for the phase ιphasei=0 which is the maximum of
the previous activities given from the precondition. The
set of the previous activities of the precondition is defined
as Apre = {apre0 ,apre1 , ...,apret } where t is the actual
time step.

ιphasei=0 = max(Apre) (4)

When the work is done, the phase has again to be deac-
tivated. For this the invariant is used which is connected
to the inhibition input of the phase module. With this im-
plementation, the activity of the invariant lowers again the
activation of the phase. So the invariant condition has to
be implemented in a way that it becomes active if the in-
variant is violated. This pattern allows also to implement
the condition with fuzzy activity functions which lead to
a partial activation of the phase.

4.3 Conditions

In the trenching implementation, two kinds of condi-
tions are used. One is to proof if an input angle is in a

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

move to digging

digging

move to dumping

dumping

near start position

bucket angle in
digging range

bucket angle not
in digging range

near dump-
ing pose

bucket angle not
in dumping range

fusion

Figure 5. The phase arbitration of the trenching pro-
cess

configured range and the other one is to test if a given po-
sition is in the near or behind a plane defined in Cartesian
space. For the first condition type, three parameters are
defined. With the start angle θs and the end angle θe an
angular area is defined in which the condition should be
fully active. The third parameter θa defines an angular
distance to the start angle in which the condition starts to
become active. This leads to the following activity func-
tion for the condition. Here θin is the measured input an-
gle which should be tested.

rconda =




1, if θs < θin < θe
θs−θin

θa
, if (θs − θa) < θin ≤ θs

0, otherwise
(5)

With the second condition, a given input position Pin

is tested if it is in the near or behind a plane. It starts to
become active if the distance dp of Pin to the plane is
smaller than the activity distance da and fully active if the
input position moves behind the plane. From this the ac-
tivity function of this condition rcondp can be formulated
as given in the following equation.

rcondp =




1, if dp < 0
dp

da
, if 0 ≤ dp < da

0, otherwise

(6)

To test if the bucket has reached the start position or the
dumping position respectively, the second condition type
is used. The target plane is defined with the target posi-
tion as supporting point and a normal which directs into

0 10 20 30 40 50 60 70 80
0

0.5

1

time in seconds

ac
tiv

ity

move to digging digging
transport to dumping dumping

Figure 6. The activity of the different phases while
trenching

the starting position of the movement. Using the angle
checking condition, three modules are implemented. One
for checking if the bucket angle is in the right angle range
for digging, another one if it is not in this range anymore
and a third one which checks if the angle has passed the
right angle for dumping. In figure 5 the network for the
phase arbitration of the trenching process is shown.

4.4 Adaption Layers

With the described method, the trajectories are gener-
ated in a very free way. To ensure given constraints, the
generated velocity vector has to be adapted according to
the environment and the desired target trench. This is
done by two additional behavior-based subnets which im-
plement an adaption of the velocity vector.

To prevent the bucket from hitting an obstacle, which
also includes the remaining soil of the ground, an ib2c net-
work is developed which adjust the velocity vector of the
tcp if the distance to the next object is too small. For this
a grid map is used which represents the measured envi-
ronment by containing a height information in every cell,
representing the surrounding. If the cell in the configured
safety distance in the desired moving direction contains a
value that is higher as the current z-position of the bucket,
the net blocks the moving in this direction.

Similar to the obstacle avoidance there is a net imple-
mented which prevents the bucket to hit the borders of
the desired target trench. It works in the same way as the
obstacle avoidance but the gridmap which is used for the
adaption does not contain measured obstacles, it contains
a representation of the desired trench shape.

5 Experiments
To proof the performance of the developed approach,

an experiment was executed. For this, the presented ap-
proach for autonomous trenching was implemented on a
John Deere 410J TMC backhoe loader. This is a machine
with an overall weight of around 8 t. Additionally to the

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

0 2 4 6 8 10 12 14 16 18 20 22 24

−100

−50

0

50

100

move to start digging
transport to dumping

dumping move to start

time in seconds

co
m

m
an

d
va

lu
e

Boom Crowd Bucket Swing

Figure 7. The generated joystick commands while
trenching

real machine, a simulation environment was used for test-
ing. To do this, a realistic simulation model of the John
Deere backhoe loader was built up. With the usage of
the simulation platform V-Rep (see [11]), it was possible
to represent the dynamics of the vehicle. For the exper-
iment and the results presented in the following part the
real machine was used. In the implemented solution a
target trench could be configured with length, depth and
starting position. Here, a length of 1 m and a depth of 1 m
are used. The starting position was given to (5 m,0 m)
which represents a point in the local coordinate system of
the used machine. The origin of this coordinate system is
located in the swing joint which is basically the origin of
the backhoe arm. It could be shown that the implemented
control system was able to dig the configured trench. In
figure 8 the trajectory of the bucket recorded while this
process is plotted. Here, it can be seen that the result-
ing trajectory is not as smooth as it would be if a well
adjusted industrial robot would execute it with a closed
loop control. But these uncertainties are originated from
the constant adaption of the behavior-based system. For
example at the boundaries of the desired trench dimen-
sions a behavior becomes active which adapts the con-
trol vector to keep the bucket inside this boundaries. An-
other adaption behavior prevents the bucket from collid-
ing with the ground and other obstacles. Furthermore, for
the trenching process the small uncertainties are not rel-
evant because they are not detectable in the end result.
Additionally, the activity of the phases implemented with
the presented approach was recorded. This data is visual-
ized in figure 6. There, it can be seen that one excavation
cycle lasts around 20 s to 30 s, which is approximately in
the same range as Du et al. have measured with human ex-
perts in [2]. Additionally, with the architecture used here,
it is even possible to overlap the different phases. This can
also be seen in the data showed in figure 6.

The machine used for the experiments can be controlled
with joystick commands which are directly translated into
flow rates for the hydraulic cylinders. These commands
are in a range between −100 and 100. Using the solution
presented here, the calculated control velocity vector is

3 3.5 4 4.5 5 0
2

−1

−0.5

0

0.5

1

1.5

x in m y in m

z
in

m

Figure 8. The trajectory of the bucket while digging

converted to appropriate joystick commands with the help
of the inverse kinematic. It is possible to calculate them
directly because the machine which is used here has only
four joints which leads to a uniquely defined system. So
four command values are generated, one for each joint.
Figure 7 shows the commands generated by the control
system during the trenching process. In this figure addi-
tionally, the active phases are marked.

6 Conclusion and Outlook
With the presented approach, an architecture is defined

which can organize a control system in phases. For the
arbitration of the phases, conditions are used. Because
of this structure the system is similar to a finite state ma-
chine. But with the help of the used behavior-based im-
plementation the conditions have fuzzy like activity func-
tions. So it is possible that multiple phases are active at
the same time. This leads to a smoother state change as
in a standard fsm. Additional this adds a property to the
control system which let it more behave like expert human
machine operators.

Although with the used behavior-based method, it is
possible to build up reactive systems which can adapt in a
proper way to high variety in the environment. To target
new requirements, it is very easy to add additional prim-
itives which can implement local control systems to ad-
dress additional problems. Overall the usage of this prim-
itives provides the possibility of re-using the same control
law to solve similar subproblems in different tasks.

In the future the system will be extended to solve a
more global task like building up a larger excavation pit.
This will also include a transfer of the whole machine to
have a larger range. A possibility to do this is also given
with the presented architecture with the definition of sub-
routines which can be used as phase implementation. So
the presented local trenching process can be such a sub-
routine in a larger control system. To be able to give the
trench a better shape it should be possible to switch to a

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

more precise digging technique which is more optimized
for shaping than for mass excavation. Then there are at
least two possibilities for digging available which makes
it necessary to choose the appropriate one for the given
requirements. Targeting this, a planning system should be
designed in future work. This should be as autonomous
as possible. So, the first step towards this can be to add
some properties to the primitives and phase implemen-
tations which can help the planning system to choose the
right solution for solving the task. For example, one possi-
bility for such a property can be the desired digging shape
which is expected as a result of the appropriate module.

References
[1] David A. Bradley and Derek W. Seward. The de-

velopment, control and operation of an autonomous
robotic excavator. Journal of Intelligent and Robotic
Systems, 21(1):73–97, January 1998.

[2] Yu Du, Michael C Dorneich, and Brian Steward.
Virtual operator modeling method for excavator
trenching. Automation in Construction, 70:14–25,
2016.

[3] Ahmed Elezaby, Mohamed Abdelaziz, and Sabri
Cetinkunt. Operator model for construction
equipment. In Proceedings of the International
Conference on Mechtronic and Embedded Systems
and Applications (MESA), pages 582–585. IEEE,
2008.

[4] Marco Ewerton, Guilherme Maeda, Gerhard Neu-
mann, Viktor Kisner, Gerrit Kollegger, Josef
Wiemeyer, and Jan Peters. Movement primi-
tives with multiple phase parameters. In Robotics
and Automation (ICRA), 2016 IEEE International
Conference on, pages 201–206. IEEE, 2016.

[5] Sung-Keun Kim, Jongwon Seo, and Jeffrey S
Russell. Intelligent navigation strategies for an
automated earthwork system. Automation in
Construction, 21:132–147, 2012.

[6] Horst König. Maschinen im Baubetrieb. Springer,
4. edition, 2014.

[7] Tobias Luksch, Michael Gienger, Manuel Mühlig,
and Takahide Yoshiike. A dynamical systems ap-
proach to adaptive sequencing of movement primi-
tives. In Proceedings of the 7th German Conference
on Robotics (ROBOTIK), Munich, Germany, May
21-22 2012.

[8] Guilherme J Maeda and David C Rye. Learn-
ing disturbances in autonomous excavation. In

Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 2599–
2605. IEEE, 2012.

[9] Guilherme J. Maeda, David C. Rye, and Surya P. N.
Singh. Iterative autonomous excavation. In Kazuya
Yoshida and Satoshi Tadokoro, editors, Field and
Service Robotics: Results of the 8th International
Conference, pages 369–382, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

[10] Martin Proetzsch, Tobias Luksch, and Karsten
Berns. The behaviour-based control architecture
iB2C for complex robotic systems. In Proceedings
of the 30th Annual German Conference on Artificial
Intelligence (KI), pages 494–497, Osnabrück, Ger-
many, September 10-13 2007.

[11] E. Rohmer, S. P. N. Singh, and M. Freese. V-
rep: a versatile and scalable robot simulation frame-
work. In Proc. of The International Conference on
Intelligent Robots and Systems (IROS), 2013.

[12] Patrick Rowe and Anthony T. Stentz. Parameterized
scripts for motion planning. In Proceedings of the
IEEE/RSJ International Conference on Intelligent
Robotic Systems, volume 2, pages 1119–1124,
Grenoble , France, September 7-11 1997.

[13] P.S. Rowe. Adaptive motion planning for
autonomous mass excavation. PhD thesis, Carnegie
Mellon University, 1999.

[14] Stefan Schaal. Dynamic movement primitives-a
framework for motor control in humans and hu-
manoid robotics. In Adaptive motion of animals and
machines, pages 261–280. Springer, 2006.

[15] Daniel Schmidt. Shaping the Future - A Control
Architecture for Autonomous Landscaping with an
Excavator. RRLab Dissertations. Verlag Dr. Hut,
München, 2016. http://www.dr.hut-verlag.
de/978-3-8439-2816-8.html ISBN-13: 978-3-
8439-2816-8.

[16] Jongwon Seo, Seungsoo Lee, Jeonghwan Kim,
and Sung-Keun Kim. Task planner design for
an automated excavation system. Automation in
Construction, 20(7):954–966, 2011.

[17] Ingo Weidauer, Daniel Kubus, and Friedrich M
Wahl. A hierarchical extension of manipulation
primitives and its integration into a robot con-
trol architecture. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on,
pages 5401–5407. IEEE, 2014.

