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Abstract –  

Field engineers take and collect several pictures 
from construction sites every day, and these pictures 
serve as records of a project. However, many of these 
images are loaded to and remain on computers in an 
unorganized manner because tagging, renaming, and 
organizing them is a time-consuming process.  This 
paper proposes a method for automatically 
classifying construction photographs by job-type 
using a deep-learning algorithm.  The first goal of this 
study is to classify construction images according to 
27 job-types based on OmniClass Level 2. Google 
Inception v3—a deep learning algorithm used in this 
study as an image classifier—was trained using 1,208 
construction pictures labeled by job-type. To improve 
the performance of the classifier, the optimized 
number of trainings was determined by examining 
the changes of accuracy and cross-entropy during 
trainings. The first result shows the incidence of 
several trainings over 50,000 was not meaningful. The 
retrained Google Inception as a construction image 
classifier was validated using a total of 235 images. 
The validation result shows that the classifier 
demonstrates an accuracy of 92.6% in classifying 
inputs properly and an average precision of 58.2% in 
correct classification. This means that retrained 
classifier can classify approximately nine out of every 
ten images correctly and that the deep-learning 
algorithm has high potential for use in the automatic 
classification of images from construction sites. 
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1 Introduction 
Pictures taken by field engineers on a construction 

site contain various information about the site. From a 
daily report of construction progress to the construction 
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method implemented for each project, pictures have an 
important role in project documentation, and enormous 
amounts of pictures are taken to establish a visual record. 
However, because thousands of pictures are taken for 
construction projects, the pictures are usually stored in a 
computer in an unorganized manner after a project has 
been completed. To properly utilize the information 
available from these pictures, the pictures must first be 
classified before they are stored. 

This paper proposes the use of a deep-learning 
algorithm to automatically classify pictures from 
construction sites according to the job-type that each 
picture contains using a deep-learning algorithm. After 
AlexNet [1] won the first prize at ILSVRC 2012 
(ImageNet Large Scale Visual Recognition Challenge) 
using a convolutional neural network (CNN), CNN 
became the most popular deep-learning method in image 
classification. Since then, the field of image classification 
has been developing rapidly. Through the constant 
development of image classification algorithms, recent 
studies have reached 96% accuracy in image 
classification [7].   

This study uses Google Inception v3—the latest CNN 
developed by Google [2]—as an image classifier to 
automatically classify construction pictures by job-type. 
To test the performance of the trained classifier, 1,208 
pictures were used for training, and 27 images were used 
for validation.  

This paper is divided into five sections.  The second 
section presents a review of previous studies related to 
this research. The third section describes the overall 
design of the research and, section 4 reports the 
experiments and the analytical results. The final section 
reports the paper’s conclusions. 

2 Background 

2.1 Image Classification on Construction 
Several studies have been conducted regarding how 
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to extract information from images of construction sites. 
A recent study related to image processing focused on 
object detection from pictures of a construction site. Chi 
and Caldas [9] suggested a way to find objects from 
images using an artificial neural network (ANN), and 
Zhu et al. [4] proposed a method of finding concrete area 
in a picture using parameter optimization. In addition, 
Wu et al. [15] used image filtering in order to find 
specific objects from construction images.  

Currently, however, meaningful data is generated 
from images using the previously developed technique. 
Kim et al. [3] derived information regarding construction 
progress from construction images by combining project 
schedule data and filtered images. Also, Kim et al. [16] 
suggested a method of measuring the construction 
progress that uses the 4D information of a given building. 
More recently, adopting deep-learning, Fang et al. [10] 
proposed a way to detect non-hardhat users in a 
construction site. Like the above two studies, not only 
detecting object from images, but also extracting data 
that can be useful is the main problem of recent studies. 
Thus, in this study, we extract the job-type information 
from construction pictures and use it to classify those 
pictures as a standard using a deep-learning algorithm.  

2.2 Deep learning 
In 2012, an image classifier constructed with a deep-

learning algorithm was introduced at ILSVRC 2012. The 
name of the algorithm was AlexNet [1], and it was 
composed of a CNN with eight layers.  With a 16.4% 
error rate, it surpassed its competitors, whose error rates 
were over 26% on average, and won the first prize. Since 
then, CNN has become prominent in the field of image 
classification, and algorithms composed of CNNs show 
high accuracy nowadays [5][6][7].  

The major difference between deep learning and 
conventional machine learning based on image 
processing is not only the high accuracy of image 
classification but also the ability to conduct feature 
extraction. The former requires a pre-process of image 
filtering or feature extraction, whereas a deep learning 
algorithm can   conduct feature extraction automatically 
by using a huge amount of training data [8]. Although 
deep learning is being criticized for being a black box 
approach, its implementation process requires a clear 
goal first, a deep learning network design, and data 
collection and analysis based on the goal. Moreover, a 
considerable amount of programming and optimization 
efforts is required. 

2.3 Google Inception v3 
In general, when the structure of a neural network 

deepens and widens, the performance of the network 
improves. However, the likelihood that overfitting and 

vanishing will occur also increases. To prevent 
overfitting and vanishing, GoogleNet [5] is designed with 
multiple (22) concatenating layers. Based on its structure, 
GoogleNet won the first prize at ILSVRC 2014 with a 
6.7% error rate. To classify images, we used Google 
Inception v3 [2], which is developed from GoogleNet. 
Compared with the previous version, Inception v3 has an 
improved network structure.   

When supervised learning is implemented, both 
images and label data are needed. The label data indicates 
what information each image contains. Therefore, in 
order to use this network in our research, we must retrain 
the network with labelled pictures that have been 
prepared for retraining in advance. Using the pictures 
from the training dataset with label data, the classifier 
learns each picture and label data in a pair. For example, 
if an image is given to the classifier after retraining a 
similar picture with a “Foundation” label, it may 
determine that the input image is about “Foundation”. 

3 Research Method 
Figure 1 describes the overall research flow. First, 

pictures from construction sites are gathered for training 
and validation of the image classifier: Google Inception 
v3. One of strengths of Google Inception v3 is that it has 
already pre-trained with a very large set of various types 
of images from ImageNet [12]. Google Inception v3, 
however, should be “retrained” with an additional set of 
images if it is used for a new purpose [13]. Thus, the 
second step is to retrain Google Inception v3 with 
construction images labeled by job type so that it can be 
used as an image classifier for construction pictures [13]. 
During the retraining process, the classifier learns which 
image features are associated with which job type.  

 
Figure 1. Overall flow of research 

At first, we optimized the number of training times 
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classifier. Then, after the retraining procedure with the 
optimized training times was conducted, new images 
from the validation dataset were inputted into the 
classifier. Comparing the results, we checked the 
accuracy and precision of the classifier. 

In this study, OmniClass was used as a standard for 
labeling pictures by job-type. OmniClass is system for 
classifying the type of construction industry [14]. 
According to OmniClass, there are 16 tables that can be 
used to classify the type of industry, and we chose Table 
21 – Elements. Originally, there are 29 categories in that 
table, but we eliminated two categories because they 
have ambiguous definitions: Integrated Automation and 
Facility Remediation. 

3.1 Training dataset preparation 
Because the input image should be classified 

according to the job-type of construction, we set the 27 
standards referring to OmniClass Level 2 categories. 
After the standard of construction elements was 
classified according to OmniClass, prepared pictures of 
the training dataset were labeled by each adequate 
category. A total of 1,208 pictures in 27 categories were 
used as construction job-types and the training dataset, 
and 44 pictures on average were distributed for each 
category. 

4 Experiment & Result 
To validate the module, we conducted two different 

experiments. First, we retrained the classifier 400,000 
times with 1,208 pictures in order to find the optimized 
training time. It is ideal to train a very large number of 
pictures many times, but, in reality, it is challenging to 
acquire a large number of pictures and a long training 
time. Thus, observing the training graph, we tried to 
determine the optimized point of the training times using 
a given number of pictures. Second, after retraining the 
classifier again with the optimized point, we put new 
images that were not used for retraining into the classifier. 
Through the two experiments, we yielded a retrained 
classifier that was optimized and how well it classifies 
images accurately and precisely. 

4.1 Optimization in training times 
We used the stochastic gradient descent (SGD) 

algorithm for the optimization process. SGD requires 
training of the classifier with the same set of data multiple 
times to progressively fit the classifier to the training 
dataset. After the trained classifier is fitted well to the 
training dataset as the training time increases, it can 
classify new input data based on the optimized 
parameters inside the classifier [18]. Thus, training 
should be repeated for fitting with the same dataset. In 

general, the performance of a classifier improves as the 
training time increases. However, too much training can 
cause an overfitting problem, which worsens 
performance. Training also takes much time. To 
maximize the efficiency of the training process, we 
retrained the classifier 400,000 times and looked for the 
optimized point. During the retraining, the accuracy 
value when random data are inputted and the cross-
entropy data are extracted, and they were used to assess 
performance. 

4.1.1 Accuracy 

Giving the classifier random data during the 
retraining process, we extracted accuracy data (Figure 
2). The average accuracy refers to how well the 
classifier distributes the random input data into correct 
categories. In this process, the input data is not an image 
used for retraining but the randomly created image that 
has label information. 

 
Figure 2. Accuracy (y-axis) changes according to 
the number of trainings (x-axis). Average 
accuracy (thick line) first rises dramatically but 
then hardly changes after the training time 
exceeds 50,000. 

The accuracy value initially increased, but after about 
50,000 times of training, the increasing stopped and the 
value started to fluctuate. With a value of 0.770, the 
average accuracy is the highest with a training time of 
36,700. Figure 2 shows that conducting more than 50,000 
trainings is not meaningful in terms of efficiency. 

4.1.2 Cross-entropy 

 
Figure 3. Cross-entropy value (y-axis) initially 
decreases (x-axis) but gradually increases as the 
training time exceeds 50,000. 
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In information theory, cross-entropy is an index that 
shows the difference between two probability 
distributions. It is well used for optimization problems 
and machine learning as a loss function. For one layer, 
when we suppose 𝑝" represents the probability of the true 
label and 𝑞"  represents the distribution of the predicted 
value, we can define the cross-entropy loss 𝐻(𝑝, 𝑞) as 
follows [17]:   

𝐻(𝑝, 𝑞) =	−+𝑝"
"

log𝑞" 

However, as we have 𝑁 layers in the classifier algorithm, 
we need the averaged loss value 𝐽 so that we can infer the 
loss of the whole layers. Then, 𝐽  can be calculated as 
follows: 

𝐽 =
1
𝑁
+𝐻(𝑝2, 𝑞2)
3

245

 

In this study, 𝑝"  indicates the value distribution of the 
classifier in the retraining process, and 𝑞" indicates that 
of the training dataset. Then, the value 𝐽 represents how 
different the distribution of the classified output is from 
that of the original training dataset when random noise 
data are inputted during the retraining process. Therefore, 
the low value of cross-entropy indicates a well-trained 
model, and it is utilized as a loss function in the 
optimization problem in a direction that minimizes its 
value [11]. Therefore, a low cross-entropy value 
indicates that the training was done well. 

The result graph (Figure 3) shows that the minimum 
cross-entropy value, 0.9561, occurs with 36,700 training 
times and starts to increase gradually after about 50,000 
training times. 

4.1.3 Determining optimized point 

When it comes to accuracy results, the performance 
of the classifier does not change after the training times 
exceeds 50,000 although there is some fluctuation. 
However, when the result of cross-entropy is considered 
with accuracy together, it is recommended to select an 
optimized training time that is between 35,000 and 
50,000. In this study, we retrained the classifier 37,000 
times and conducted further research.  

4.2 Validation  
After retraining the classifier with optimized training 

times, validation of whether the retrained classifier works 
well. In this study, the validation process was 
implemented by inputting new images that were not used 
for training. Eight images on average for each category 
were prepared, so a total of 235 images were inputted to 
the classifier and some example images are shown in 
Figure 4. 

The result is shown in Figure 5. Categories on the x-
axis are the labels of input images, and categories on the 

y-axis are those for labels created automatically. The 
numbers in the cell indicate the averaged probabilities of 
the input images having the label of the y-axis when the 
images labelled with the categories on the x-axis are 
inputted. The probability numbers are used to indicate 
precision, and their sum on each column should ideally 
be 1.00. However, some of them do not reach 1.00 
because probabilities below 0.05 are eliminated during 
the process of being averaged. The yellow cell also 
indicates the highest number in each column, and the 
classifier defines the image as the label on the y-axis of 
the cell at that time.   

 
Figure 4. Example images used for validation 

For example, if the input images are classified 
arbitrarily, the numbers of every cell should converge to 
3.7%, and the output labels should be determined 
randomly. However, when the unlabeled images that 
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should be classified under “Foundation” are inputted into 
the classifier, they are classified under the correct 
category with 31% precision. They could be classified 
under the “Conveying” category with 27% precision, but 
it is not considered because job-type inferring only 
follows the category with the maximum precision. 

The classifier shows 92.6% accuracy, and the average 
precision on correct data is 58.2%. Among the 27 
categories, 25 categories were classified properly and 
two categories were classified incorrectly. While the 
result of “Communication” is close to those of the 
adequate categories, that of “Slab on grade” has less 
precision than 12%. Also, the precision of some job-types 
is distributed to other job-types that have similar visual 
characteristics.  This indicates the confusion that can 
occur due to human error can be similarly occurred by 
deep-learning, and it can be fixed to some degree by 
complementing more featured images or combining 
those categories. 

5 Conclusion 
Although there are lots of pictures taken from 

construction sites, not enough studies to manage them are 
conducted yet. We propose a method of classifying 
pictures taken from construction sites using deep-
learning algorithm in order to automate the process.  

The performance test shows that a deep-learning 
algorithm (Google Inception v3) can automatically 
classify construction pictures into OmniClass Level 2 
with more than 90% of accuracy when it was trained with 
1,208 images. The major contribution of this study is on 
suggesting a method of automation in documentation. 
The result shows that the classifier with deep-learning 
can do some of documentation task instead of human 
only after retrained with pictures taken in advance.  

In fact, recognizing the process of optimization when 
a deep learning algorithm is used is difficult. However, it 
is only based on complex mathematical calculation, not 
on the black box totally [19][20]. For the appropriate 
result from deep learning to be obtained, the algorithm 
should be designed first, and a large volume of data for 
training should be arranged well. This study used over 
1,400 images for training and validation, but more 
reliable results can be derived if a larger number of 
images were used during the training and validation. 
Moreover, this study shows that an automated 
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Figure 5. Distribution of averaged precision (numbers) and resulted labels of job-type (y-axis) when the original 
label of input images (x-axis) is given. The numbers in yellow cells indicate the maximum precision of each column 
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construction-picture classification method solely based 
on CNN has room for improvement. This paper reports 
the first step toward developing a reliable classifier for 
construction work by using deep learning. We are 
developing it further to improve its reliability. We are 
planning to develop a new algorithm based on a semantic 
approach and deep learning (CNN) to improve 
performance in terms of precision and accuracy with the 
use of a larger number of construction pictures. 
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