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Abstract – 

Construction robots must perceive and model 

their surroundings to compensate for uncertainties in 

their workpieces. This research investigates a 

technique to enable the autonomous sensing and 

modeling of construction objects and features so 

construction robots can adapt their work plans and 

perform work. To that end, the Generalized 

Resolution Correlative Scan Matching (GRCSM) 

construction component model fitting technique is 

presented, which registers BIM models to point cloud 

sensor data. The registration results enable the robot 

to update its workpiece models to reflect their actual 

condition. An experiment was conducted in which 

virtual sensor data was generated for a virtual 

construction joint, and joint profile models were 

registered to form a model of the joint. It was found 

that the GRCSM construction component model 

fitting technique can be used in combination with a 

low precision sensor to estimate the pose and 

geometry of a virtual construction joint with a mean 

norm positioning error of 1.7 mm. The GRCSM 

construction component model fitting technique 

appears promising for the geometric estimation of 

construction objects, especially for situations 

involving full automation, detailed construction work, 

incomplete sensor data, and complex object geometry. 
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1 Introduction 

The construction industry is often considered one of 

slow change, hazardous conditions, old technology, and 

stagnant productivity levels. Robotics offers the potential 

to change that by reducing construction project cost, 

shortening project lead time, improving construction 

quality, and improving worker safety [1]. However, the 

construction industry’s adoption of robotics has proven 

slower than other industries, such as manufacturing. This 

is largely attributable to technological challenges arising 

from the unique characteristics of the industry [2]. 

One such challenge is the construction robot’s need 

to perceive its workpieces and adapt its plan in order to 

reliably perform quality work. In contrast with 

construction robots, many manufacturing robots are able 

to perform work with little or no sensing of their 

workpieces. This is made possible through tight control 

over the manufacturing robot, its environment, and its 

workpiece. Such control enables the robot to neglect 

stochastic variation and leverage a simple a kinematic 

chain to estimate its pose (i.e., position and orientation) 

relative to the point of interest on its workpiece. 

However, such control is generally much looser for 

the construction robot. For example, far greater 

uncertainty exists in the pose of the construction robot 

relative to the jobsite due to the robot’s need for mobility 

and the high uncertainty inherent in mobile robot pose 

estimation methods. Similarly, greater uncertainty exists 

in the pose of the construction robot’s workpieces 

relative to the jobsite due to loose construction tolerances 

and high process variation. Additionally, uncertainty 

exists in the actual geometry of the construction 

workpiece due to such factors as material variation, 

material deflection, and process variation. Given the high 

uncertainties present, the construction robot cannot 

reliably determine its pose relative to the workpiece 

through a kinematic chain like the manufacturing robot, 

but rather, must perceive the workpiece in place. 

The objective of this research is to develop a means 

by which a construction robot can perceive and model the 

workpieces in its immediate environment so it can 

ultimately adapt its plan and autonomously perform 

detailed construction work. 

2 Related Work 

Past research has been conducted in the sensing and 

modeling of construction objects and environments. Such 

researchers employed various sensing and modeling 
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techniques for the purposes of project progress 

monitoring, as-built documentation, material quantity 

estimation, material tracking, obstacle avoidance, and 

object manipulation. 

To circumvent the challenges and computational 

burden associated with fitting models and extracting 

meaning from dense point clouds, Cho et al. [3] proposed 

leveraging human cognition to assist in the modeling of 

a construction environment. In this approach, a human 

selects a geometric primitive (e.g., cuboid or cylinder) or 

a complex model (e.g., excavator or bridge) from a 

database and manually aims a laser rangefinder at 

strategic points on the physical object to obtain individual 

point measurements. The selected model is then fit to the 

sparse point cloud. McLaughlin et al. [4] used the same 

approach, but developed three additional construction 

workspace model types: partitions, convex hulls, and 

tight-fitting bounding boxes. Kim et al. [5] applied the 

aforementioned partition and convex hull methods for 

such purposes as obstacle avoidance, accident prevention, 

and material tracking. However, all such variations of 

this sensing approach rely on human operation, which is 

not suitable for autonomous applications. 

Kim et al. [6] later demonstrated that convex hull 

modeling could be used in combination with a more 

automated form of sensing, flash laser distance and 

ranging (flash LADAR), in which a 2D array of 

measurements can instantly be obtained by pointing a 

flash LADAR sensor in the general direction of interest. 

The approach was only demonstrated with large objects 

and coarse models for such purposes as obstacle 

avoidance, and did not include semantic recognition of 

the objects it detected. Thus, the approach is not suitable 

for the autonomous recognition and manipulation of 

detailed construction components. 

Stentz et al. [7] developed an autonomous excavator 

for excavating soil and loading it into a parked truck. The 

excavator used laser rangefinders for sensing the soil 

terrain and a nearby truck. A 2D grid of height values was 

fit to the terrain data and a parametric truck model was fit 

to the truck data. The terrain model was used to determine 

where to remove soil and the truck model was used to 

determine where to dump soil. The approach reportedly 

worked well, but was only demonstrated with large 

objects and coarse models. The approach may not be 

suitable for the manipulation of detailed components. 

Work has also been done in the sensing and modeling 

of small, targeted construction components. Kim et al. [8] 

scanned individual stones with a combination of 

projected laser beam and charged-coupled device (CCD). 

However, the highly irregular stones were simply 

modeled as cuboids of corresponding principle 

dimension (i.e., tight-fitting bounding boxes). Kahane 

and Rosenfeld [9] used a similar projected laser and CCD 

to measure the gap width between adjacent wall tiles to 

aid in the placement of tiles by an autonomous tiling 

robot. Although the gaps were targeted and measured 

accurately, they were only modeled by a single parameter: 

gap width. Such simple models may not be sufficient for 

detailed construction manipulation tasks. 

Authors like Sicard and Levine [10] and Kim et al. 

[11] employed a method called polygonal approximation 

and syntactic analysis to extract 2D models from weld 

joint data obtained from a projected laser beam and CCD. 

In this approach, data points were evaluated one by one 

and combined into linear segments via polygonal 

approximation. The segments were then merged 

according to prescribed syntactic rules used for 

describing weld joints. However, the syntaxes developed 

in such studies were only capable of handling a handful 

of simple joint types because the complexity of 

segmentation and syntactic rules tends to increase with 

increasing component complexity. Furthermore, such 

methods are susceptible to failure under conditions of 

partial object occlusion and incomplete sensor data. 

All of these studies suffer from limitations which 

inhibit their employment in the robotic perception and 

manipulation of detailed construction components. Such 

limitations include the need for human intervention, the 

lack of semantic object recognition, the lack of modeling 

detail necessary to perform detailed work, the inability to 

handle a variety of complex components, and the 

susceptibility to modeling failure under partial object 

occlusion and incomplete sensor data. The research 

described herein seeks to address such limitations by 

enabling a construction robot to autonomously perceive 

its workpieces through the fitting of geometrically 

complex models to sensor data with sufficient fidelity to 

ultimately adapt its plan and perform detailed 

construction work. 

3 Research Contribution 

This paper offers three central contributions. First, 

this paper introduces a modified search algorithm for 

such purposes as fitting a geometric model to a point 

cloud, fitting a point cloud to another point cloud, or 

fitting a point cloud to a map. Specifically, the modified 

algorithm is called Generalized Resolution Correlative 

Scan Matching (GRCSM) and is a generalization of 

Multi-Resolution Correlative Scan Matching (MRCSM) 

[12]. Second, this paper introduces a construction 

component model fitting technique, also referred to as 

GRCSM, in which the GRCSM algorithm is applied in 

order to fit a model of a construction component to a 

robot’s sensor data. Lastly, this paper provides an initial 

investigation into the capabilities and limitations of the 

GRCSM construction component model fitting technique 

as a model fitting tool for construction robot perception 

via experimentation. 
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4 Technical Approach 

This work focuses on the detailed modeling of 

targeted workpieces for robotic manipulation. 

Specifically, this work employs a model fitting technique 

whereby complete models of construction components 

are fit to point clouds so that contextual meaning can be 

directly applied to the data. Although the technique can 

be applied to either 2D or 3D models and sensor data, 2D 

models and sensor data are used here. 

Despite the existence of numerous construction tasks 

to which such modeling techniques could be applied, 

construction joint filling is used as an example 

application in this work due to its commonality across a 

range of construction activities. Activities such as 

welding, caulking, drywall finishing, tile grouting, spray 

insulating, and pipe soldering may be classified as joint 

filling. In this paper, joint filling refers solely to the 

placement of filler or sealant material into the joint, 

although the full treatment of an actual construction joint 

might require additional tasks such as scraping, cleaning, 

masking, priming, backing, tooling, and cleaning. 

4.1 General Setup 

Many interdependent technological advancements 

must come together to support the successful operation 

of a construction robot on a real-world construction 

project. Rather than attempting to address all aspects of 

the problem at once, this research focuses on a portion of 

the problem, leveraging the assumption that the other 

supporting components are also in place. The general 

setup is described as follows. 

First, it is assumed that the construction robot has 

access to a Building Information Model (BIM) 

containing the designed geometry of the construction 

project, which is reasonable considering the rapidly 

expanding use of BIMs in architecture, engineering, and 

construction [13]. Second, it is assumed that the robot has 

been placed, tele-operated, or autonomously navigated in 

such a manner that it has reached the near vicinity of the 

object of interest. Furthermore, it is assumed that the 

robot’s pose estimation error is small enough that it can 

aim its sensor in the direction it expects to find the object, 

and despite pose errors, still detect the actual object 

within the sensor’s operational window. This is a 

reasonable assumption considering that today’s indoor 

mobile robots are able to localize themselves on the order 

of several centimeters and a single degree [14]. Lastly, it 

is assumed that the sensor is capable of adequately 

sensing the object of interest. In reality, highly reflective 

or transparent materials tend to degrade the data quality 

of many sensors, and specialized sensing modalities may 

be necessary for such cases. In the experiments described 

here, materials were intentionally chosen based on sensor 

compatibility. 

4.2 Modeling 

In order for a robot to identify or manipulate a 

construction feature, a feature model is first needed. 

Construction joints are used as an example here to 

demonstrate feature modeling. For most construction 

joints, the majority of the feature’s descriptive 

information lies transverse to the joint. Thus, one 

modeling strategy would be to model the feature in thin 

2D slices and assemble the slices to create a 3D model. 

Such an approach is employed in this work. Given that 

the square butt joint is arguably the simplest and most 

common joint type, it is used as the illustrative example. 

The techniques presented in this paper tend to be best 

suited for situations in which modeling accuracy 

requirements permit the fitting of fixed models to the data. 

Given that a joint’s primary feature of interest is the gap 

formed by two construction components, a model in 

which each of the two component models is free to 

translate and rotate offers considerable descriptive 

capability for the gap. Since each of the two individual 

components has three degrees of modeling freedom, and 

the gap is defined by a combination of those two 

components, the gap model has six degrees of freedom. 

The square butt joint model is shown in Figure 1, where 

it has been decomposed into an individual component 

model, a combined component model, a separated 

component model, and a gap model. 

 

 

Figure 1. Square butt joint model decomposed 

into individual component, combined component, 

separated component, and gap models 

4.3 Sensing 

A wide range of sensors could be used for the sensing 

of such construction components. In addition to various 

modalities (e.g., optical, ultrasonic, laser, etc.), sensors 

can output data in a range of dimensions (e.g., 2D, 3D, 

etc.). Since laser data can easily or directly be converted 

to spatial data, and because the majority of a joint’s 

descriptive information lies in its transverse plane, the 

authors chose to use a 2D laser rangefinder in this work. 
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4.4 Model Fitting 

In this paper, the authors take the approach of fitting 

complete models to sensor data so that any contextual 

meaning associated with the model can be directly related 

to the data. One of the benefits of this approach is that it 

does not require sophisticated rules for segmenting data, 

regardless of the complexity of the model. Another 

benefit of this approach is its robustness to incomplete 

sensor data. 

The technique presented here for fitting models of 

construction components to sensor data is referred to as 

the Generalized Resolution Correlative Scan Matching 

(GRCSM) construction component model fitting 

technique. It employs a search method called the 

Generalized Resolution Correlative Scan Matching 

(GRCSM) search method, which is a generalization of 

Olson’s Multi-Resolution Correlative Scan Matching 

(MRCSM) search method [12]. Like MRCSM, GRCSM 

is a brute force search method that uses multiple 

resolution levels to quickly narrow a search. However, 

the two methods differ in that MRCSM performs a search 

over two resolution levels, while GRCSM searches over 

any arbitrary number of resolution levels. GRCSM 

automatically determines and implements the appropriate 

number of resolution levels based on the specified search 

window size and desired fit tolerance. 

One particular benefit of the GRCSM search method 

is its immunity to local minima entrapment, which is a 

well-known issue for search methods like Iterative 

Closest Point (ICP) [15]. The GRCSM construction 

component model fitting technique can be generalized to 

3D data and 3D models, but is presented here in the 

context of 2D data and 2D models. 

The GRCSM construction component model fitting 

method is comprised of three primary stages: 

determining the appropriate number of resolution levels, 

building a component model lookup table for each 

resolution level, and fitting the sensor data to the 

component model by searching for a best fit. The first 

step in determining the appropriate number of resolution 

levels is to determine the search-range-to-tolerance ratio 

𝑟 for each degree of freedom (e.g., 𝑥, 𝑦, and 𝜃), as shown 

in Eq. (1), where 𝑤 is the search window size and 𝑡 is the 

loosest allowable fit tolerance. 

𝑟 = 𝑤/𝑡 (1) 

The number of resolution levels 𝐿 is then determined 

as shown in Eq. (2), where 𝑠 is the search test quantity 

per level for each degree of freedom and ceil is a function 

that rounds a number up to the nearest integer. 

𝐿 = 𝑐𝑒𝑖𝑙 (
ln(𝑟)

ln(𝑠)
) 

(2) 

The second step in the GRCSM method involves 

building a component model raster lookup table for each 

resolution level, starting with the highest resolution table. 

The table and its entries can be thought of as a uniform 

grid of cells. The dimensionality of the table corresponds 

to the dimensionality of the search (e.g., 2D, 3D). The 

size of the high resolution table is determined along each 

dimension as shown in Eq. (3), where 𝑐 is the number of 

high resolution grid cells. Margins can be added to the 

high resolution table in integer multiples of 𝑠𝐿−1, but 𝑐 

should still refer to the expression shown in Eq. (3). 

𝑐 = 𝑠𝐿  (3) 

The scale 𝑞  (e.g., 1 𝑚𝑚/𝑔𝑟𝑖𝑑) of a cell along any 

dimension is given by Eq. (4). 

𝑞 = 𝑤/𝑐 (4) 

The component model is then projected onto the high 

resolution lookup table. If the model already exists as a 

bitmap representation, or can easily be converted to such 

form, then it can be directly inserted into the table, 

provided appropriate scaling. Alternatively, the model’s 

vertices can be projected onto the lookup table and 

intermediate points can be interpolated between the 

model’s vertices. After a bitmap representation of the 

model has been established, a probabilistic distribution is 

applied to the model to reflect the stochastic nature of the 

sensor, as suggested by Olson [12]. For simplicity, the 

authors employ a radial Gaussian distribution with 

standard deviation equivalent to that of the sensor. The 

bitmap representation and stochastic counterpart for an 

arbitrarily shaped object profile are shown in Figure 2. 

 

 

Figure 2. Bitmap (top) and stochastic (bottom) 

representations of an example arbitrary profile 

 

After the high resolution lookup table is complete, 

lower resolution lookup tables are produced by 

iteratively employing Olson’s [12] technique for 

generating a low resolution lookup table. To generate a 

lower resolution table, the first cell of the lower 

resolution table is set to the maximum value found in the 

first 𝑠 × 𝑠 block of cells in its high resolution counterpart. 

Similarly, the second cell of the lower resolution table is 
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set to the maximum value found in the second 𝑠 × 𝑠 

block of the high resolution table, and so on. As such, 

each new table becomes 1/𝑠  the size of its higher 

resolution counterpart. This process continues until 𝐿 

tables, including the high resolution table, are obtained. 

The lowest resolution table then becomes of size 𝑠 × 𝑠. 

An example set of lookup tables for an arbitrarily shaped 

object is shown in Figure 3, where dashed lines have been 

superimposed on the lowest two resolution levels to help 

illustrate the process. 

 

 

Figure 3. Model lookup tables at various 

resolution levels for an arbitrarily shaped object 

 

It is expected that such lookup tables may only need 

to be built once for a construction feature if it possesses 

a uniformly designed cross section, as is the case for most 

construction joints. 

The third step in the GRCSM method involves fitting 

of the sensor data to the component model by searching 

for a best fit between the data and the lookup tables. 

Using the expected sensor-to-joint pose as a reference, 

the data points are projected onto the lookup table and the 

corresponding values are summed to provide a fit score. 

To start, the data points are transformed and projected 

onto the lowest resolution table using various pose 

combinations. For each degree of freedom, the 

immediate search window 𝑖 is given by Eq. (5), where 𝑣 

is the current resolution level. 

𝑖 =
𝑞𝑐

𝑠𝐿−𝑣
 

(5) 

The immediate search window is divided into 𝑠 

uniform intervals, such that test points lie at the center of 

each interval. Similarly, 𝑠 test points are also created for 

the other degrees of freedom. The data is then projected 

onto the table for each of the 𝑓𝑠 pose combinations. The 

table values are summed, and the total fit score is 

recorded for each combination. The scores are then added 

to a list, and the pose of highest score is removed from 

the list and explored at a new resolution level. This 

process is repeated until the highest scoring pose found 

on the list coincides with the highest resolution level 

(Level 1). Such pose is then selected to represent the best 

fit between the data and the model. An example search 

process is shown in Figure 4. 

 

 

Figure 4. Example GRCSM search process 

showing the best fit results at each resolution level 

leading to the final fit result 

 

It should be noted that during the process, it is 

possible to move bi-directionally along the resolution 

spectrum and jump more than a single level, given that 

search transitions are dictated by the highest score found 

in the score list. Furthermore, it should be noted that the 

scores in the score list have both an associated pose and 

resolution level. That is, the same pose can be explored 

at more than one resolution level. 

For the case of a single construction component, the 

GRCSM model fitting process is straightforward. 

However, for the case of a construction joint, which is 

comprised of two components, the process occurs 

differently. First, a combined model is built from the two 

component models such that their relative pose matches 

the BIM. The GRCSM method is applied to the combined 

model. The pose corresponding to the fit of smallest error 

is selected as the combined pose estimate. The process is 

then repeated for each component individually, using the 

combined pose estimate to initialize the search. 

Furthermore, the search window for the individual 

components is limited to a fraction of the designed gap 

width in order to avoid erroneously fitting a model of one 

component to the sensor data of other components. The 

resulting pose estimates are then adopted as the 

component pose estimates, and the joint gap is modeled 

directly from the transformed component models. 

Res Level 1 Res Level 2 Res Level 3 

Res Level 4 Res Level 5 Res Level 6 

Res Level 5 

Res Level 3 Res Level 2 Res Level 1 

Res Level 6 Res Level 4 
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5 Experiment 

An experiment was conducted in a virtual 

environment to evaluate the ability of the GRCSM model 

fitting approach to estimate the geometry of a square butt 

joint that deviates from its expected, i.e., designed, 

geometry. A randomized square butt joint was generated 

by specifying information about the gap and the two 

components that comprise the joint. The transverse 

parameters of the expected joint are listed below, where 

𝑎 , 𝑏 , and 𝑐  are counterclockwise rotations about 𝑥 , 𝑦 , 

and 𝑧, respectively. 

 Gap width (top corner to top corner): 25 𝑚𝑚 

 Workpiece thickness: 25 𝑚𝑚 

 Workpiece width: 200 𝑚𝑚 

 Expected pose in world frame: 

x̅ = 0 𝑚𝑚, z̅ = 50 𝑚𝑚, a̅ = 0°, b̅ = 0°, c̅ = 0° 

The joint was extended along a third dimension by 

uniformly spacing two-dimensional cross sections, or 

slices, along the world 𝑦 -axis. The joint was made 

continuous by interpolating between particular slices 

designated as transition slices. The joint was generated 

by randomizing various geometric joint parameters. The 

joint was comprised of 83 cross-sectional slices and took 

the form shown in Figure 5. Dashed lines denote the 

joint’s 83 cross-sectional slices, and solid lines denote 

the joint’s 12 transition slices. 

A virtual sensor was used to generate virtual sensor 

data of the joint. The virtual sensor was modeled after a 

2D scanning laser rangefinder that outputs range and 

bearing measurements. Loosely modeled after the 

Hokuyo URG-04LX-UG01, the sensor was assigned 

bearing increments of 0.352°  ( 10 𝑏𝑖𝑡𝑠 ) and a range 

standard deviation of 3 𝑚𝑚. Uncertainty in the sensor’s 

bearing measurement was neglected. The sensor’s scan 

window was set to ±30°. The virtual sensor scanned the 

joint while translating along the world 𝑦-axis, 250 𝑚𝑚 

directly above the expected center of the joint. The virtual 

sensor data was generated by projecting a beam onto the 

incident joint face, finding the point of intersection, and 

adding a normally distributed random range error 

corresponding to the sensor’s standard deviation. The 

resulting virtual sensor data is shown in Figure 5. 

The GRCSM construction component modeling 

fitting technique was then applied to estimate the poses 

of the two workpieces at each slice along the length of 

the joint. For the GRCSM search, the fit tolerances for 𝑥, 

𝑦 , and 𝜃  were set to ±0.5 𝑚𝑚 , ±0.5 𝑚𝑚 , and ±0.3°, 

respectively. The test quantity per level was set to three, 

and the search windows for 𝑥 , 𝑦 , and 𝜃  were set to 

±121.5 𝑚𝑚, ±121.5 𝑚𝑚, and ±45°, respectively. All 

computational processing was performed in MATLAB 

using an Intel® Core™ i7-4900MQ 2.80 GHz central 

processing unit. 

 

Figure 5. Virtual square butt joint and sensor data 

 

The dataset was processed a second time to provide a 

comparison between the MRCSM and GRCSM search 

algorithms. MRCSM was simulated in the experiment by 

restricting the number of GRCSM resolution levels to 

two, with an equal number of tests for each resolution 

level. 

Because the gap is defined by the two workpieces, the 

gap’s pose and geometry was extracted directly from the 

workpiece model results. The 2D gap geometry (e.g., 

cross-sectional area) was converted to 3D (e.g., 

differential volume) by projecting the information half 

the distance between slices in both directions. 

6 Results 

The gap modeling results for the GRCSM model 

fitting technique are shown in Figure 6, where the results 

are represented as a collection of gap pose estimates and 

differential gap volumes estimates, and the gap origin is 

defined as the midpoint between upper corners of the 

workpiece models. 
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Figure 6. Model fitting results using the GRCSM 

construction component model fitting technique 

 

The model fitting pose estimation error statistics for 

the virtual joint are shown in Table 1, and a plot of the 

estimated poses and differential volumes are shown in 

Figure 7. 

Table 1. Absolute gap pose error statistics 

 Min Max Mean Std 

Dev 

 |𝑒𝑟𝑟𝑥| (𝑚𝑚) 0.0 37 1.6 4.0 

 |𝑒𝑟𝑟𝑧| (𝑚𝑚) 0.0 2.2 0.6 0.5 

‖𝑒𝑟𝑟𝑝𝑜𝑠‖ (𝑚𝑚) 0.0 37 1.7 4.0 

 |𝑒𝑟𝑟𝜃| (𝑑𝑒𝑔) 0.1 10 2.3 2.0 

 |𝑒𝑟𝑟𝑉| (𝑐𝑚3) 0.0 1.3 0.3 0.2 

 

The mean processing time was found to be 0.082 𝑠/
𝑠𝑐𝑎𝑛 for the GRCSM component model fitting technique. 

Additionally, the mean processing time was found to be 

630 𝑠/𝑠𝑐𝑎𝑛 when using MRCSM to perform the search, 

suggesting that the GRCSM search algorithm executed 

the search an average of 3100  times faster than the 

MRCSM implementation. 

 

Figure 7. Gap pose estimates using GRCSM 

7 Discussion 

GRCSM was explored as an alternative model fitting 

approach to ICP that is free of local minima entrapment. 

Although ICP is sufficiently robust and accurate for 

many coarse model fitting applications, the authors 

anticipate that an entrapment-free approach will be 

critical for detailed construction tasks, such as welding. 

As indicated by the experimental results, the GRCSM 

model fitting technique appears capable of estimating the 

geometry of a virtual construction joint. At a rate of 

0.082 𝑠/𝑠𝑐𝑎𝑛 , the processing time for the entire joint 

was found to be 6.8 𝑠. This appears reasonable for a real-

time scan-and-plan procedure in a real-world 

construction operation. With further algorithmic and 

hardware improvements, it is not unreasonable to expect 

that processing times can continue to be reduced. 

This research provides a construction component 

model fitting technique which enables a construction 

robot to perceive and model the workpieces in its 

immediate environment so it can ultimately adapt its plan 

and autonomously perform construction work. Despite 

the large uncertainties in robot pose, workpiece pose, and 

workpiece geometry, this framework enables the robot to 

perceive the workpiece directly and perform quality work. 

As opposed to past construction component modeling 

techniques, this technique eliminates the need for human 

involvement, provides a level of semantic recognition, 

offers sufficient modeling detail for detailed construction 

work, handles a variety of complex component 

geometries, and offers improved robustness to partial 

object occlusion and incomplete sensor data. The 

GRCSM component modeling technique appears to be a 

promising tool for the geometric estimation of 

construction components, especially for situations 

involving full automation, detailed construction work, 

incomplete sensor data, and complex object geometry. 
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8 Conclusion and Outlook 

The objective of this research was to explore the 

extent to which a construction robot can perceive and 

model construction work components, which is a critical 

step in making adaptive manipulation decisions to 

accomplish work. This paper began by briefly describing 

the sources of uncertainty confronting the construction 

robot and driving the need for component modeling. The 

Generalized Resolution Correlative Scan Matching 

(GRCSM) construction component model fitting 

technique was then introduced to address such a need. An 

experiment involving the geometric estimation of a 

virtual construction joint was presented to evaluate the 

ability of the GRCSM construction component model 

fitting technique to model construction joints. 

It was confirmed that the GRCSM construction 

component model fitting technique is capable of 

estimating the pose and geometry of a virtual 

construction joint. It was also found that the GRCSM 

search algorithm is significantly faster than MRCSM in 

executing the model fitting searches described in this 

paper. However, it was found that GRCSM is susceptible 

to modeling failure under certain conditions.  

Future work is needed to compare the performance of 

the GRCSM construction component model fitting 

technique with other model fitting techniques, such as 

polygonal approximation and syntactic analysis, for 

construction feature modeling. It may also prove 

beneficial to explore the use of segmentation in the 

GRCSM construction component model fitting technique 

for such purposes as improving robustness to nearby 

objects. Additional work is also needed to evaluate how 

the construction component model fitting technique 

handles cases with multiple similar objects or unexpected 

objects in the scene. Lastly, additional work is needed to 

convert a component model into a robot plan and 

physically execute the plan on a real construction feature. 
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