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Abstract –  

On-site data collection during construction 

activities help in evaluating productivity rates and 

preparing more accurate schedules. One of the 

challenges here is in collecting data automatically 

such that activity start times and durations can be 

computed reliably. This paper proposes a 

methodology to infer construction activities that are 

being performed on site using the structural 

responses collected from construction equipments. 

This methodology is applied to the case of a 

launching girder, an equipment used in the 

construction of viaducts in metro rail projects. There 

are four stages involved in the construction of a 

viaduct; Auto launching, Segment lifting, Post 

tensioning and Span lowering. Strain values from the 

launching girder are used to predict the stages of 

construction using machine learning techniques. 

Support Vector Machines are used to classify the 

strain data into one of the four classes corresponding 

the stage of construction. Data from a typical 

construction cycle is used for training. Using the 

model generated by the training data, subsequent 

activities can be inferred.  
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1 Introduction and Background 

Construction activities are inherently complex with 

the large extend of uncertainties involved in site 

conditions. Well prepared construction schedule is 

essential for successful implementation of any 

construction project. Problems caused by an 

optimistically biased baseline schedule of a construction 

project can be rectified by real time accurate 

construction monitoring.  Most of the time, precise 

monitoring of construction activities are highly 

challenging. Control of project performance based on 

manually collected data is a strenuous task. Depending 

upon the level and accuracy of data required, the cost 

and effort associated with manual data collection and 

interpretation of the same for useful information are 

high [1].  Automated data collection techniques such as 

barcode [2], Radio Frequency Identification [3], Ultra 

wide band [4], Global Positioning System [5], imaging 

[6], LIDAR [7] etc. provide reliable data about on site 

construction progress. Automated data collection 

methods generate more accurate and integrated control 

information less expensively.  However, the 

effectiveness of each mode of automated data collection 

is highly dependent on the type of construction activities 

involved.  Lack of mobility is one of the major 

drawbacks of currently existing automated data 

collection techniques.  Major project control decisions 

are usually delayed due to lack of real time progress 

monitoring or lag in reporting and interpretation of 

existing progress data. These problems are addressed by 

integrating the progress monitoring system with main 

equipment involved in the construction activity.  

Sacks et al. proposed a system which use 

automatically collected data from a central construction 

equipment for real time progress monitoring which help 

in better project performance control [8]. The 

monitoring system consists of a decision rule processor 

which uses a knowledge base, as well as data from the 

Building Project Model and a monitoring 'black box' 

installed on the equipment. The construction equipment 

selected by Sacks et al. is a tower crane which is used 

for lifting majority of materials used in construction. 

Navon and Shpatnitsky monitored an earth moving 

equipment for automated progress monitoring of road 

construction [9]. They developed a monitoring and 

control model which uses location of the equipment and 

time of measurement collected, using GPS technology 

as input data.  

Depending upon the type of construction, the central 

equipment to be selected for automated progress 

monitoring varies. Soman et al. measured structural 

responses from a launching girder (LG), an equipment 

used for construction of viaducts to monitor progress of 

construction [10,11]. Auto launching, Segment lifting, 

Post tensioning and Span lowering are the four stages 
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involved in the segmental construction of a metro rail 

viaduct. Structural response data from the equipment is 

acquired through a strain based wireless sensing system. 

Model based system identification methodologies were 

then used to find out the state of the construction 

process to monitor the progress [11]. Three different 

algorithms were evaluated in this work. The first 

algorithm used a conventional system identification 

methodology based on a population of models that 

represents various possible states of the structure. This 

approach could not accurately identify the stages of 

construction. A modified system identification 

methodology which uses domain specific knowledge in 

the form of possible sequences of construction activities 

provided the best results. While this approach has been 

proved to be successful, there is high computational and 

cognitive complexity involved. Thousands of models 

need to be created and simulated using finite element 

analysis software. Model free approaches using machine 

learning techniques do not have this drawback. These 

methods do not require models of physical behaviour 

and are entirely data driven.  

Machine learning techniques use data to enhance the 

performance of software [12]. Some of the major 

applications of machine learning include device control, 

recognising biometric parameters, robotics etc.  With 

recent advances, machine learning has entered into 

almost all industry including construction. Tixier et al 

used machine learning models Stochastic Gradient Tree 

Boosting (SGTB) and Random Forest (RF) to predict 

injuries in construction industry [13].  This study has 

given dependable probabilistic forecasts of likely 

outcomes of occurrence of an accident. Akhavian and 

Amir used machine leaning methodologies to identify 

and classify activities of construction workers from the 

data collected using sensors embedded in smart phones 

[14]. Machine learning techniques are extensively used 

in structural health monitoring [15] as well as durability 

and service life assessment of structures [16]. 

A support vector machine (SVM) is a machine 

learning technique that has been found to be successful 

in solving pattern recognition problems [17].  SVM can 

be used for supervised learning tasks like regression and 

classification [12].  It has found wide applications in 

various fields of construction industry. Complex 

problems such as contractor prequalification can be 

successfully solved with decision support framework 

based on SVM [18]. Wauters and Vanhoucke showed 

that SVM regression model delivers better project 

control forecasting results than the presently available 

Earned Value and Earned Schedule methods [19].  

Evolutionary Support Vector Machine Inference Model 

(ESIM) is developed by combining SVM and fast messy 

genetic algorithm (fmGA). ESIM is capable of 

determining Estimate at Completion (EAC) of a project 

[20], identifies the critical parameters that influence the 

success of a project [21] and acts as a intelligent 

decision support system for effective construction 

project management [22]. SVM techniques are 

extensively used in areas which demand attention to 

details and patterns, handling of huge amount of data, 

precise analysis and prediction of future demands.  

Some of those applications include selection of 

materials [23], prediction of demand of equipments [24] 

and working posture analysis of labours [25]. However, 

inferring construction activities for progress monitoring 

using predictive analysis by support vector machines 

classification has not been explored yet. 

This paper aims to infer the construction activities of 

the metro rail viaduct from the structural responses 

collected from the launching girder using SVM 

classification. 

2 Support Vector Classification 

In a simple binary classification problem, the data 

points are categorised into two classes labelled as 

positive or negative. The user supplies the training data 

consisting of values of attributes and label of each of the 

data point. The learning task is to determine the function 

that separates the data points into classes. Figure 1 

shows a binary classification in which data points 

consisting of two variables are separated by a straight 

line. Here, the decision boundary (also known as the 

classifier or the discriminant) is linear. Decision 

boundary will be a hyperplane when a linear function 

divides the classes in multiple dimensions as shown in 

Figure 2. Equation of a hyperplane is given below [12]. 

𝑓(𝑥) = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + ⋯ + 𝑏 = 0 (1) 

where w1, w2, w3... represent weight factors, x1, x2, 

x3... stand for input variables and  b represents the bias. 

All the points belonging to one class lie above the 

hyperplane and those belonging to the other class lie 

below the hyperplane. The learning algorithm finds the 

best hyperplane by adjusting the weight factors 

appropriately.  The value of the function f(x) for the 

first class will be greater than zero and for the second 

class will be less than or equal to zero.  

SVM outputs an optimal hyperplane known as the 

maximal margin classifier, for a given labelled training 

data.  A good separation is achieved by this hyperplane 

that has the largest distance to the nearest training data 

points of any class [12]. Figure 2 shows a maximal 

margin hyperplane. From the decision boundary, nearest 

negative data points and positive data points are equally 

distributed.  
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Figure 1. Binary Classification of data points with 

straight line as decision boundary 

When we label the training data as {xi,yi}, i = 1, ... , 

l, yi ϵ {-1,1}, xi ϵ Rd, the equation of the hyperplane can 

be written as given in (2). The solution is obtained by 

Kuhn - Tucker conditions as given in (3).  𝛼𝑖 , 𝑖 =
1, … , 𝑙,  stand for positive Lagrange multipliers 

introduced. 

𝑓(𝑥) = 𝑠𝑔𝑛((𝑤. 𝑥) + 𝑏) (2) 

w = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑙
𝑖=1  (3) 

 
Figure 2. Classification of data points with linear 

separating hyperplane 

We will not get a feasible solution, when we apply 

the above mathematical model to non-separable data. 

Therefore, positive slack variables are introduced in the 

constraints with an additional cost. Larger the value of 

the newly introduced parameter C in the constraint, 

higher the penalty to errors [17].  

 
Figure 3. Nonlinear classification of data points with 

radial basis function 

The decision function (2) can also be written as (4). 

In nonlinear classification, first we embed the data into 

a high dimensional feature space by a map ɸ and then 

separate the classes using a maximum margin 

hyperplane as shown in Figure 3. By suitably 

introducing a kernel function, K as in (5), the decision 

function will take the form (6). All concepts of linear 

classification cases are applicable to nonlinear 

classification cases. By using kernel function as in (7) 

the support vector algorithm develops radial basis 

function (RBF) classifier [26]. Here, σ is the width of 

the Gaussian kernel.  

𝑓(𝑥) = 𝑠𝑔𝑛 (∑ 𝑦𝑖𝛼𝑖 . (𝑥. 𝑥𝑖) + 𝑏

𝑙

𝑖=1

) 
 

(4) 

𝐾(𝑥, 𝑥𝑖) = (ɸ(𝑥). ɸ(𝑥𝑖)) (5) 

𝑓(𝑥) = 𝑠𝑔𝑛 (∑ 𝑦𝑖𝛼𝑖 . 𝐾(𝑥, 𝑥𝑖) + 𝑏

𝑙

𝑖=1

) 
 

(6) 

𝐾(𝑥, 𝑥𝑖) = 𝑒
(

−‖𝑥−𝑥𝑖‖
2

2𝜎2 )

 

 

(7) 

3 Methodology 

Strain readings collected from 14 different locations 

on the launching girder (LG) in the previous study [11] 

are used in this research. The objective of this research 

is to determine whether patterns in strain data could be 

used to infer construction activities using support vector 

classification. 

11,130 strain gauge readings were used, each from 

14 locations of the launching girder during the erection 

of the viaduct which consisted of 26 cycles. One set of 

strain data was collected every minute during this 

measurement sequence. The construction activity 

corresponding to each data point was obtained from the 

log book. Strain data for one cycle consists of strain 

values for the operations, auto launching, segment 

lifting, post tensioning and span lowering. Data for one 

cycle is used for training the algorithm and the strain 

data for other 25 cycles were used for prediction. The 

aim is to test whether the activities are correctly 

predicted when compared to the entries in the log book. 

Prediction is done by linear as well as nonlinear SVM 

classification. RBF is used for nonlinear classification. 

The error penalty, C is varied from a range of 10 to 50 

and width of the Gaussian kernel, σ is varied from 0.1 to 

0.5. It is examined whether these parameters affect the 

accuracy of prediction as explained below:  

In each cycle, data for one operation (such as auto-

launching) is taken as the set of positive examples and 

data for all the remaining operations are taken as 

negative examples. The SVM is trained using this data 

for one cycle and remaining data is used for prediction. 

If the recorded data in the log book matches the 

identified class, it is considered as correct prediction. 

The percentage of correct predictions is computed. The 

results of analysis is discussed in next section.  
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4 Results and Discussion 

Prediction results for each operation involved in a 

cycle using linear SVM classification and nonlinear 

SVM classification with RBF are given. Percentage of 

correct values in prediction (P) is plotted against 

operations that are treated as the positive class during 

training (Figures 4-8).  

Table 1. Effect of C and σ on Percentage of correct 

predictions (P) of LG operations 

Operations Linear SVM 

classification 

Nonlinear SVM 

classification with RBF 

Auto 

launching 

P increases as C 

increases. 

P decreases as σ 

increases; remains 

same for σ = 0.3 and 

0.2, then decreases. 

Change in C value is 

not having much 

impact on result. 

Segment 

lifting 

P increases as C 

increases till  

C= 20, then 

decreases. 

P increases as σ 

increases. Change in C 

value is not having 

much impact on result. 

Post 

tensioning 

P increases as C 

increases till  

C= 20, then 

decreases for  

C= 30, again 

increases with C. 

 C= 20 gives 

better results 

than other higher 

values. 

P increases as σ 

increases. Initially P 

increases with C, then 

decreases. Value of C 

corresponding to peak 

P values, changes with 

σ value. 

 

Span 

lowering 

P increases as C 

increases till  

C= 30, then 

decreases. 

P increases as σ 

increases. P increases 

as C increases till 20, 

then decreases. 

 

Auto launching is having highest percentage of 

correct predictions. Predictions using RBF gives better 

results in all the cases, meaning that the decision 

boundary is non-linear.  Prediction of auto launching 

using RBF gives zero misclassifications in all 

combinations of C and σ except for C = 20 and σ = 0.2. 

For that combination of parameters 2 misclassifications 

were obtained with 98.77% of correct values in 

prediction. Post tensioning is the operation which shows 

lowest percentage of accuracy in prediction. Figure 9 

shows instantaneous variation of strain at sensor 

location near middle span of the launching girder during 

each operation in a cycle. From Figure 9, we can 

observe that pattern of instantaneous variation of strain 

during post tensioning is similar to that of span lowering. 

This makes the prediction process difficult. Initial strain 

variation pattern of auto launching and segment lifting 

are similar. This might be the case for all the adjacent 

operations. But segment lifting operation gives much 

better results compared to post tensioning. This might 

be due to large number of training data points involved 

as well as significant difference in pattern of strain 

variations.  

The percentage of correct predictions (P) varies 

differently with different combinations of C and σ. 

Effect of each parameter on each of operations in linear 

SVM classification and nonlinear SVM classification 

with RBF are summarised in Table 1.  

Soman et al used three system identification 

methodologies for predicting the construction activities 

from structural responses [10]. Out of that, a modified 

system identification methodology using domain 

specific heuristics is found to be most effective. Table 2 

compares the prediction results of linear and nonlinear 

SVM classification with the modified system 

identification methodology based on heuristics (MSI). 

SVM classifications give better predictions compared to 

MSI in terms of percentage of correct values when you 

compare the best predictions. As discussed earlier, the 

best prediction results are from nonlinear SVM 

classification with RBF and for auto launching 

operation. In medium level prediction results, only 

nonlinear SVM classification performs better than MSI. 

But the identified operation is post tensioning instead of 

segment lifting as in other methods. As you compare the 

worst prediction results, MSI gives the most accurate 

results. Here we can observe the influence of the type of 

operation identified and values of C and σ. In order for 

the SVM classifications to give best results we need to 

carefully choose the tuning parameters.                         

5 Conclusions 

The feasibility of using structural responses from an 

equipment to infer construction activities is studied in 

this paper. SVM classification using linear and 

nonlinear kernels are used to classify the strain data 

collected from site. Error penalty, C and width of the 

Gaussian kernel, σ are used as tuning parameters for the 

study.  

It is observed that certain operations such as auto 

launching and segment lifting can be identified 

accurately with both classification methods. Computer 

based pattern recognition is found to be essential in 

clearly identifying these operations which involve 

minute changes in strain data, which cannot be 

accurately detected by humans. Certain other operations 

such as post tensioning cannot be identified with either 

of the methods. 
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Figure 4. Percentage of correct values in linear and nonlinear SVM classifications. X-axis contains the operations 

those are treated as the positive class during training. Y-Axis consists of the percentage of correct predictions for 

this operation.  

 

 
Figure 5. Percentage of correct values in linear and nonlinear SVM classifications. 

 

 
Figure 6. Percentage of correct values in linear and nonlinear SVM classifications. 
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Figure 7. Percentage of correct values in linear and nonlinear SVM classifications.  

 

 
Figure 8. Percentage of correct values in linear and nonlinear SVM classifications.  

 

 
Figure 9. Instantaneous variation of strain at sensor location near middle span of the launching girder 

0

20

40

60

80

100

120

Autolaunching Segment

Lifting

Posttensioning Span Lowering

P
er

ce
n

ta
g

e 
o

f 
C

o
rr

ec
t 

v
a

lu
es

Operations of Launching Girder

Prediction Results for C = 40, σ = 0.2

Linear SVM RBF

0

20

40

60

80

100

120

Autolaunching Segment

Lifting

Posttensioning Span Lowering

P
er

ce
n

ta
g

e 
o

f 
C

o
rr

ec
t 

v
a

lu
es

Operations of Launching Girder

Prediction Results for C = 50, σ = 0.1

Linear SVM RBF

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0

1
0
9

1
1
8

1
2
7

1
3
6

1
4
5

1
5
4

1
6
3

1
7
2

1
8
1

1
9
0

1
9
9

2
0
8

2
1
7

2
2
6

2
3
5

2
4
4

2
5
3

2
6
2

2
7
1

Span Lowering

Posttensioning

Segment Lifting

Autolaunching

N
o

rm
a

li
se

d
S

tr
a

in
 v

a
lu

es

Time (minutes)



35thInternational Symposium on Automation and Robotics in Construction (ISARC 2018) 

Table 2. Comparison of prediction results of linear and nonlinear SVM classification with modified system 

identification method based on heuristics [10] 

Method of 

Prediction 

Prediction Results 

Worst Prediction Medium Prediction Best Prediction 

Predicted  

operation and 

details of 

prediction 

method 

Percentage 

of  

correct 

values 

Predicted  

operation and 

details of 

prediction 

method 

Percentage 

of  

correct 

values 

Predicted  

operation and 

details of 

prediction 

method 

Percentage 

of  

correct 

values 

Modified 

system 

identification  

method based 

on heuristics 

Span lowering, 

with modeling  

error 

79 Segment lifting, 

without 

modeling  

error 

81 Auto launching, 

without 

modeling  

error 

95 

Linear SVM 

classification 

Post tensioning, 

C = 10 

37.39 Segment lifting, 

C = 40 

74.89 Auto launching, 

C = 50 

99.23 

Nonlinear SVM 

classification 

with RBF 

Span lowering, 

C = 10, σ = 0.5 

44.24 Post tensioning, 

C = 50, σ = 0.2 

87.09 Auto launching, 

C = 20, σ = 0.5 

99.23 

 

Strain data alone is not enough in such cases. We 

might have to include additional sensors like 

accelerometers to obtain more details about the 

operations. Strain data from one location is not 

sufficient to identify operations.  Some locations give 

better strain variations compared to others. Therefore 

location of sensors should be carefully chosen.  

In linear classification, error penalty C is having 

significant influence. However, accuracy of prediction 

increases with increase in C only up to certain extend in 

each operations. There is an optimal value of C for each 

operations which comes in the range of 20-30.  

 Nonlinear SVM classification with RBF is mostly 

governed by width of the Gaussian kernel, σ. Except in   

auto launching operation, increase in σ value gives 

better results. Changes in C value for constant value of 

σ have not much effects on certain operations such as 

auto launching and segment lifting. Interestingly, both 

of these operations follow similar strain variation 

pattern in the initial stage. Post tensioning and span 

lowering have optimal values of C for a constant σ 

value. With careful selection of the values of the 

parameters, SVM classifications can produce better 

results compared to modified system identification 

method based on heuristics. 

Inferring construction activities from structural 

responses using support vector machines is possible 

with optimal values of C and σ determined for each 

operation. With the help of heuristics and additional 

types of sensors at best locations, prediction results can 

be improved.   
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