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Abstract – 

While on the one hand the BIM methodology is an 

essential reference for the construction of new 

buildings, on the other hand it is receiving particular 

attention and interest also from owners of large 

building stocks who want to take advantage of the 

benefits of Building Information Modelling so as to 

have a coordinated system for the sharing of 

information and data.  

This, especially in a process that concerns the 

management and maintenance of a large building 

stocks, involves the processing of uncertain 

information in BIM, particularly when dealing with 

existing buildings, due to the lack of and/or 

incomplete documentation, entailing a significant 

investment in terms of time and additional costs. 

Therefore, to represent the reliability of existing 

building data, we suggest introducing a tool based on 

Bayesian Network that offers a valid decision support 

under conditions of uncertainty and is used to 

evaluate the compliance with the latest standard.  

This paper presents a process to provide an 

integrated database defined by a minimum 

information level that can be used both to extrapolate 

and query specific information from a digital building 

model and populate the decision model in order to 

evaluate the performance parameters of existing 

buildings which is based on a Multicriteria decision 

making approach (AHP). 
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1 Introduction 

In this work, attention has been given to the role 

played by public administrations in the management of 

large building stocks, focusing specifically on school 

buildings, the majority of which is outdated and lacks of 

compliance with current legislation. 

The purpose of this paper is to propose a decision 

support model that can be used by public administrations, 

such as provinces and municipalities, which need to 

define the priorities of refurbishment actions among the 

school buildings they own.  

This Decision Support System (DSS) concerns 

multiple regulatory areas in which evaluation is 

performed, namely Accessibility, Energy Efficiency and 

Acoustics. In addition, the DSS makes it possible to 

manage the uncertainties deriving from the scarce 

availability of necessary data on existing stock. The DSS 

was conceived so as to be able to obtain the necessary 

information directly from the Building Information 

Modelling (BIM) database. In addition, the decision 

support model includes a multi-criteria evaluation of 

performance indicators, each related to a determined 

regulatory area, with the aim of defining a final ranking 

of  the schools assessed, in which the one with the lowest 

score shows the highest priority of intervention.  

In conclusion, the aim of this paper is to develop a 

BIM-based Decision Support System for the assessment 

of building stocks which is able to perform the evaluation 

even in the case it has to manage uncertain or incomplete 

information. Our tool integrates networks that help 

evaluate the performance parameters of existing 

buildings, whose inputs can be retrieved from BIM 

models, and prioritise refurbishment actions through a 

multi-criteria assessment approach of some selected 

performance indicators.  

2 Literature review 

In many practical cases it is hardly possible to retrieve 

all the information about existing buildings through the 

query of the most relevant characteristics contained in a 

model in a reliable way. Even in the case of existing 

buildings for which extensive construction and 

operational documentation is available, some parameters 

might be uncertain or unknown. 
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Several research studies have been carried out to 

develop decision making systems to deal with the 

extensive and uncertain information characterising the 

existing stock. DSSs have been developed for a wide 

variety of engineering-related issues in the construction 

industry. For example, in [1] since the selection of curtain 

wall systems involves numerous technical, 

environmental and economic factors and impacts on all 

project stages from concept design and manufacture to 

installation and operation, a decision support system is 

proposed as a potential solution.  

In [2] the authors presented the result of a research 

carried out with the purpose of establishing a 

multicriteria method for the assessment of architectural 

heritage to identify buildings with higher refurbishment 

priority. The author in [3] created and tested a 

multicriteria risk-based decision support model for 

investments in energy efficiency projects under 

uncertainty of building energy retrofits. In [4], a study 

was developed to provide systematic means for priority 

setting of maintenance activities in various hospital 

buildings as well as a Key Performance Indicator for 

building performance. Other researches focused on the 

choice of what information is needed to make models 

significant to maintenance and on handling uncertainty 

due to incomplete building documentation [5].  

The above listed results are remarkable but do not 

deal with the compatibility between DSS and BIM 

models of existing buildings. Indeed, the modelling and 

conversion of captured data into semantic BIM objects, 

the updating of information in BIM and the handling of 

uncertain data, objects and relations in BIM, which are 

typical challenges in existing buildings [6], must be 

analysed.  

Hence, this paper deals with the development of a 

BIM based decision support tool based on the use of 

Bayesian Networks (BNs) for the evaluation of building 

stock compliance with technical requirements and its 

ranking according to selected performance indicators. 

BNs are an effective representation of knowledge 

uncertainty, because they provide the possibility of 

constructing an estimated probabilistic model, since not 

all information can be accessed. In addition, they make it 

possible to update the network inputs when new evidence 

is collected and updates results accordingly. BNs are 

composed of elementary parts (separate fragments) and 

recall their outputs in a larger network. They make it 

possible to reverse reasoning and can manage variables 

of different types (e.g. Boolean, numerical, interval or 

label nodes). BNs work with as  many data as are 

available to give accurate results. Moreover, within each 

iteration, they learn more and refine their model to give 

updated results. 

A great advantage of BNs is that they allow us to 

combine prior knowledge with new data even if they 

come from different sources. Once the model is compiled, 

we can get very quick results by using the already 

established conditional probability distribution tables.  

Many organisations, especially in the public sector, 

own a large variety of buildings and other types of 

constructed facilities. These buildings need regular 

maintenance, as well as occasional renovation, 

rehabilitation or, perhaps, complete reconstruction [7]. 

Multicriteria decision making analysis arose to model 

complex problems like these [8]. Multiple criteria 

decision making (MCDM) is a generic term for all those 

methods that exist to help people make decisions 

according to their preferences in cases where there is 

more than one conflicting criterion to be taken into 

account [9]. Following a research throughout scientific 

literature, it was found that the majority of the methods 

used are based on AHP, ELECTRE and PROMOTHEE 

approach [10]. As outlined in [10], AHP can provide 

decision makers with a robust solution. The most 

important part of this method is that it puts decision 

makers’ preference first and helps elect a method for their 

decision making in maintenance management without 

considering uncertainty rate and problem complexity.  

For these reasons, the AHP methodology was applied 

according to what suggested by Saaty [11]. 

3 Modelling of school building stock 

Although a detailed set of information about existing 

buildings would be necessary to carry out a reliable 

assessment of real estates, most of the buildings were 

built in the pre-digital age [12]. 

Some public administrations are developing 

preliminary BIM models of their stock, but they are 

willing to limit the complexity of these models within the 

lowest amount of information needed for management 

and maintenance purposes, in order to make that process 

affordable. For the reasons stated above, we selected two 

case studies of school buildings which are particularly 

complex. In the selected scenarios, there is a clear need 

to adapt the existing buildings to current legislation in 

terms of different aspects such as accessibility, energy 

performance, acoustic etc.  

3.1 The case studies 

In this paper two school buildings located in Melzo 

(Milan, Italy) were studied. The first one is the “Ungaretti” 

primary school, whose surface area measures 4528 m2 

and is arranged on four levels, one of which is the 

basement and the remaining three floors are above 

ground. The gymnasium is accommodated in a separate 

building, which communicates with the main one through 

two horizontal connections in the basement and one 

placed on the ground floor. The basement houses the 

canteen, the kitchen, laboratories, archives, refreshment 
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areas and infirmary. On the ground floor there are 

classrooms and offices, while on the first floor there are 

just classrooms and on the second floor classrooms and 

auditoriums. The restrooms are distributed throughout 

the building and the gym.  

The second case study is the “Mascagni” secondary 

school located in Melzo (Milan, Italy), which is as large 

as 5736 m2 and is composed of three functional blocks. 

One block holds the classrooms and laboratories located 

over two floors above ground, the other two blocks hold 

the cafeteria/auditorium and the gymnasium.  

3.2 BIM models 

Developing BIM models of existing buildings implies, 

first of all, a thorough study of available documentation 

and then an accurate analysis of the real state of the 

buildings.  

The next step involves the construction of three-

dimensional BIM models of the buildings (developed 

through the Autodesk RevitTM platform) containing all 

the technical elements identified and the organisation of 

collected information. The models become the 

materialisation of the technical information related to the 

element or system they refer to. Each element of the 

models is “informed” of all parameters, specifications 

and characteristics of the real elements [13].  

Nowadays, buildings information is often incomplete 

or obsolete, hence, during operation “an inordinate 

amount of time is spent locating and verifying specific 

facility and project information”. This is the case of the 

two BIM models of the two schools selected as case 

studies: the Ungaretti primary school (Fig. 1-a) and the 

Mascagni secondary school (Fig. 1-b). 

Sometimes not all the information needed to perform 

a complete assessment is available in the BIM models. 

 

a. 

 

b. 

 

 

Figure 1. BIM models of the case studies a) 

Ungaretti school b) Mascagni school. 

4 Methodology 

Owners of any large building stock, such as public 

administrations, usually have to manage a huge variety 

of buildings with a limited budget. For this reason, 

targeted refurbishing actions are needed to ensure that 

those buildings comply with the latest standards and 

public administrators have to make important decisions 

regarding what part of their stock should be refurbished 

first.  

Hence, the work developed in this paper is made up 

of several parts (Fig.2): 

• A BIM database of the building stock; 

• A set of Bayesian Networks for the evaluation of 

stock compliance with technical requirements and 

its ranking according to performance indicators; 

• An interface between the BIM database and the 

Bayesian Networks, which automatically picks out 

relevant inputs from BIM models and transfers 

them to BN; 

• A multi-criteria decision system, which ranks 

buildings according to the BN outputs; 

• A further set of BN that estimates the budget needed 

to improve the status of any building. 

DSS tool based on BN will be shown with the aim of 

assessing what buildings must be refurbished first. 

 

Figure 2. Schematic diagram of the structure of 

the decision support system. 
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4.1 Decision support system based on 

Bayesian Networks 

A BN is a directed graph whose nodes are the 

uncertainty variables and whose edges are the casual or 

influential links between the variables. Associated with 

each node there is a set of conditional probability 

functions that model the uncertain relationship between 

the node and its parents [14]. Each variable may take two 

or more possible states of numerical (i.e. discrete), 

interval (i.e. subdivision into ranges), label or Boolean 

types. An arc from any set of n variables, called ai, to 

another variable b denotes that the set ai causes b and ai 

are said to be the parents of b (b is evidently their child). 

The strength of those relationships is quantified by 

conditional probability tables (CPTs), where the 

probability of observing any state of the child variable is 

given with respect to all the combinations of its parents’ 

states. In our example this probability is labelled P(b|a1, 

a2, … , an), where any variable ai is conditionally 

independent of any variable of the domain that is not its 

parent. Thus, we can obtain a conditional probability 

distribution over every domain, where the state of each 

variable can be determined by the knowledge of the state 

of only its parents, and the joint probability of a set of 

variables E can be computed by applying the “chain rule” 

[15]: 

𝑃(𝐸) = 𝑃(𝐸1, 𝐸2, … , 𝐸𝑛) = 𝑃(𝐸𝑛|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝐸𝑛) (1) 

That is: the joint probability of a set En of variables is 

equal to the conditional probability of the variable, given 

only its parents. Other relevant benefits are: the DAG 

provides a clear understanding of the qualitative 

relationships among variables; every node can be 

conditioned by new information (e.g. evidence about the 

features of a building in our case study); the same belief 

that updating is supported from consequences to causes, 

also known as diagnostic reasoning, and can be applied 

when the budget for renovation is limited and inference 

must be conducted from child nodes (e.g. cost of 

renovation) back to parent nodes (e.g. status of a building 

sub-system); finally, CPTs can describe the relationships 

among variables of different types (e.g. Boolean nodes, 

interval node, etc.), even within the same network. 

Presently, every local administration performs 

separate evaluations of existing stock to decide where to 

focus the intervention first and there is no coordinated 

assessment at the national level on a proportional 

distribution of efforts. To that purpose, informed 

planning according to real priorities is needed, which 

means detecting any lack of compliance with respect to 

current legislation, in terms of comfort, energy 

performances, accessibility, seismic vulnerability, etc.  

4.2 Multicriteria ranking 

The methodologies for Multi-Criteria Analysis can be 

divided into two main groups: (i) Multi-Criteria 

Objectives Analysis (MCOA) and (ii) Multi-Criteria 

Attributes Analysis (MCAA). In the case of MCOA, the 

decisional process consists in the selection of the best 

solution within a group of infinite alternatives, implicitly 

defined by the problem boundaries. On the contrary, 

Multi-Criteria Attributes Analysis (MCAA) is a 

multidimensional evaluation method subset, whose final 

purpose is to locate the best strategy among a restricted 

number of alternatives, which are ranked according to 

their preferences [16]. MCAA can act as a support in the 

decision-making process [17], which leads through a 

systematic analysis of the solutions.  

As a first step, the hierarchy is defined as follows: the 

top level is “stock value”, the second is composed of all 

the areas of interest such as accessibility, energy 

efficiency, acoustics and others; instead, the third level is 

made up of the outputs from the BN “Level of 

Compliance” (LoC) node for Accessibility, “EPI” and 

“Heat Transfer Coefficient” nodes for Energy Efficiency 

and “Level of Compliance” (LoC) and “Compliance of 

acoustic requirements”, as reported in Section 5. The 

second step consists in the pairwise comparison between 

the different areas of interest. As a result, the final 

ranking is inferred as a combination between the values 

obtained from the BN and the weights determined by 

means of the pairwise comparison [18].  

4.3 Analysis of the minimum Information 

level 

The next sub-sections show the necessary 

information to evaluate the level of compliance for the 

different regulatory areas, particularly the Accessibility 

Bayesian Network, the Energy Efficiency BN and the 

Acoustics BN. 

4.3.1 Accessibility Bayesian Network 

Italian legislation (D.M. 236/89) defines all the 

requirements and the related technical standards that are 

shown in the Accessibility Bayesian Network. 

The output node ‘Level of Compliance’ is a child 

node of several parent nodes, each concerning a specific 

sub-area [19]-[20]: 

• “Accesses”: e.g. width, handle height, maximum 

opening force; 

• “Doors”: e.g. width, handle height, maximum 

opening force, maneuvering clearance; 

• “Parking spaces”: e.g. parking space width; 

• “Lift”: e.g. car elevator dimensions, car control 

keypad height; 

• “Floors”: e.g. floor frictional coefficient, floor joint 
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width, floor ridges, changes in level; 

• “Stairways and Ramps”: e.g. handrails, tread and 

riser size, stair width, maximum slope; 

• “Toilets”: e.g. water closet position, grab bar 

location and size, lavatory position; 

• “Routes”: e.g. clear width of an accessible route, 

passing space interval; 

• “Windows and balconies”: e.g. railings, 

maneuvering clearance, window opening force, 

handle height; 

• “Facilities outlets”: e.g. facilities outlet height. 

The ratio of verified technical prescriptions (e.g. at 

the building component level) was evaluated in order to 

fill in the conditional probability tables of all the ten 

aforementioned Boolean-type intermediate nodes 

(admitting “true” and “false” states only). 

4.3.2 Energy Efficiency Bayesian Network 

The whole Energy Efficiency Bayesian Network was 

derived from previous research on reduced-order models 

for thermal simulations of buildings [21]-[22]. 

With the purpose of learning the CPTs of the BN from 

data, the reduced-order model was repeatedly run to 

generate a database containing more than 100 records 

which was used as a dataset to estimate the CPTs, while 

casual dependencies were quantified by means of the 

EM-learning tool implemented in the HuginTM software 

program [23]. 

This network estimates two performance indicators: 

• Heat Transfer Coefficient (HTC); 

• Seasonal Energy Performance (SEPi). 

In this case, the nodes represent the variables of the 

reduced-order model, while arcs were determined 

according to the casual relationship between the variables 

of the same reduced-order model. 

4.3.3 Acoustic Bayesian Network 

New and existing buildings must be characterised by 

specific noise insulation performance. The legislation 

(DPCM – 5 December 1997 “Determination of passive 

acoustic requirements of buildings”) defines all the 

requirements and concerns: 

• Insulation from airborne noises between different 

real estate units; 

• Insulation from external noise (façade insulation); 

• Insulation from trampling noise; 

• Insulation from the noise of systems; 

• Reverberation time of classrooms and gyms. 

For each type of noise, the DPCM indicates: 

• The indicators to use; 

• The threshold values to be met depending on the 

intended use of the building. 

Acoustic BN is divided into two sub-networks, the 

first of an analytical nature, as it reflects the Sabine 

equation for the calculation of the reverberation time, the 

second for the control of the remaining parameters. 

4.3.4 BIM semantic enrichment 

BIM models must comply with a minimum 

information level to be able to automatically retrieve 

information from them and transfer it as inputs in the BN. 

The management of this information is an extremely 

important issue from two points of view: 

• The kind of information to be entered and 

how/where to enter it; 

• How to extract information from the model in order 

to be able to carry out successive processing. 

After reading the legislation, the verification network 

was created by taking into account all the aspects that can 

be evaluated through available information from BIM 

models. Tools such as SQL and Dynamo, were used to 

manage data transfer in order to automate the minimum 

level of information transfer between the BIM models 

and the networks system. 

For both schools, the necessary data were extracted 

from the respective BIM models related to each 

requirement of the Accessibility BN, Energy Efficiency 

BN and Acoustics BN. If the data are not present in the 

model, they must first be added, if known, and then 

extrapolated. In the absence of applications that 

automatically extrapolate information from the BIM 

model, information must be extrapolated manually.  

Table 1 reports the necessary information (available 

in the model, not available but derived from the models 

and after post-processing information) for the 

Accessibility network, Energy Efficiency network and 

Acoustics network: 

Table 1. Necessary information for the networks 

Available  Not available After post 

processing 

Access door 

width, internal 

door width, 

door handle 

height, ramp 

width, stairs 

railing height, 

stair flight 

width, hand 

rail height, 

tread depth, 

window 

parapet height, 

Opening doors 

force, path 

width and 

length, door 

space check, 

Internal 

setpoint T, 

number of 

floors, lift car 

depth and 

width, door 

clear span, lift 

platform length 

Average 

transmittance 

of the opaque 

and transparent 

elements, 

useful floor 

area, S/V ratio, 

air-conditioned 

gross volume, 

average global 

irradiation, 

average 

external 
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balcony 

parapet height, 

thickness and 

material of the 

various 

constituent 

layers, 

intended use, 

wall type, wall 

thickness, floor 

type, layers, 

floor thickness, 

internal wall 

type, window 

thickness 

and width, sink 

height, toilet 

lateral wall 

distance, wc 

hand rail 

height, wc 

nominal height, 

slope, opening 

window force, 

window handle 

height, balcony 

operating 

space, friction 

coefficient, 

threshold 

height 

temperature, 

Ce, Cm, Rm, 

Rea, Rie, Cih, 

Irradiation, 

conduction, 

gains, Q_op, 

envelope, 

power, 

efficiency, 

gains_tot, 

infiltration, 

forced_ventil, 

Qh, Epi/EPe, 

reverberation 

time, Lasmax, 

Laeq 

5 Results and discussion 

These networks were implemented on two schools 

case studies (Fig.3). For both schools, the necessary data 

were extracted from the respective BIM models. 

 

a. 

 

b. 

 

c. 

 

 

Figure 3. Accessibility Bayesian Network (a), 

Energy Efficiency BN (b) and Acoustic BN (c). 

The Accessibility BN requires 62 inputs, the Energy 

Efficiency BN requires 32 inputs, while the Acoustics 

BN requires 30 inputs. Out of the 124 required inputs, 8 

and 20 (respectively accessibility and acoustics) were 

directly available from the BIM model and 39 (regarding 

accessibility) were available because the BIM designer 

performed a customised modelling procedure. The 

remaining data were obtained through combined analyses 

of several parameters. As for acoustics, the compliance 

was checked room by room obtaining as output an 

acoustic performance index for each of them, an 

arithmetic average between the KPI obtained for each 

school was calculated. 

In Table 2 the values of the BN output nodes are listed. 

The output “Level of Compliance” (in the second column) 

represents the ‘true’ percentage value of the node 

according to the information entered in the network. The 

other two columns represent the outputs of the Energy 

Efficiency BN. The rightmost column shows the 

percentage of ‘true’ of the “Level of Compliance” node 

of the Acoustics BN. 

Table 2. BN outputs for the two cases studies 

Case 

Study 

Accessibility Energy 

Efficiency 

Acou

stics 

Output LoC HTC EPi LoC 

Units % W/m2

K 

KWh/

m3y 

% 

Ungaretti 54,9 2,39 47,04 49,44 

Mascagni 55,73 2,55 45,87 55,41 

After having obtained the values of the BN outputs 

nodes, a multi-criteria analysis was applied using the 

AHP approach for the classification of the two schools to 

evaluate them in the three regulatory areas. 

As a first step, the hierarchy was structured where the 

first level (goal) is “Intervention Priority”; Accessibility, 

Energy Efficiency and Acoustics are on the second level 

(criteria); the third level (sub-criteria) includes the 

outputs of the nodes “Level of Compliance” for 

accessibility, “Level of Compliance” for acoustics and 

“SEPi” and “HTC” for energy efficiency; the fourth level 

(alternatives) includes the Ungaretti primary school and 

the Mascagni secondary school. 

The second step consisted in the pairwise comparison 

between the different areas of interest and the different 

indicators within the same area (e.g. energy efficiency). 

As a result, the final ranking was inferred as a 

combination between the values obtained from BN and 

the weights (Table 3) determined by means of the 

pairwise comparison, as follows: 

 

𝑅 = 𝑊𝐴 ∗ 𝐴 + 𝑊𝐸𝐸 ∗ 𝐸𝐸 + 𝑊𝐾𝑃𝐼 ∗ 𝐾𝑃𝐼                            (2) 
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Where A is the “Level of Compliance” for the 

accessibility and KPI is the “Level of Compliance” for 

the acoustics reported in Table 2; WA, WEE and WKPI are 

the weights (Table 3) and EE is computed as follows: 

 

𝐸𝐸 = 𝑊1 ∗ 𝐻𝑇𝐶 + 𝑊2 ∗ 𝑆𝐸𝑃𝑖                                         (3) 

Table 3. Weight values 

 WA WEE WKPI W1 W2 

Weight 

values 

0.63 0.26 0.11 0.17 0.83 

 
As a result, Ungaretti was assigned {HTC, SEPi}={1, 

0.975} and Mascagni was assigned {HTC, 

SEPi}={0.937, 1}. The application of Equations (2) and 

(3) to the cases of the two schools gave the following 

ranking results: R is equal to 0.66 in the case of 

“Ungaretti” school and 0.67 in the case of “Mascagni” 

school. Hence, Mascagni is ranked higher, the 

refurbishment should be prioritised for the Ungaretti 

school.  

More remarkably, the use of Bayesian Networks 

allows us to draw attention to input nodes even in the case 

of uncertainty about the selected parameter in the BIM 

model, or in the case it is completely missing. For 

example, considering the Accessibility BN, when some 

information is not available, all the states of a node can 

be set at the same probability value (e.g. 50% false and 

50% true in the case of a Boolean node). A hypothesis 

was made to show how the outputs can change (Fig.4) 

depending on the level of uncertainty of the inputs (e.g. 

door width and handle height) in the BN of the two school 

case studies, as Table 4 shows: 

a. 

 
 

b. 

 

Figure 4. Accessibility Bayesian Network with a 

level of uncertainty (a) and related results (b). 

Table 4. BN outputs of the two case studies with new 

inputs for Accessibility 

Case 

Study 

Accessibility Energy 

Efficiency 

Acou

stics 

Output LoC HTC EPi LoC 

Units % W/m2

K 

KWh/

m3y 

% 

Ungaretti 59,37 2,39 47,04 49,44 

Mascagni 60,21 2,55 45,87 55,41 

Table 4 shows the new values of Level of Compliance 

of Accessibility. The application of Equations (2) and (3) 

to the cases of the two schools gave the following new 

ranking results: R is equal to 0.65 in the case of 

“Ungaretti school and 0.69 in the case of “Mascagni” 

school. Despite the changes made, the overall assessment 

remains always coherent, showing that the Ungaretti 

school is still the school that gets the minor score, so the 

first to require intervention.  

6 Conclusion 

To validate the Decision Support System proposed, 

an actual case project involving two existing schools in 

Melzo (Milan) was used. The system proposed 

incorporates 3D BIM models and Bayesian Networks 

that are capable of semi-automatically evaluating the 

level of compliance of existing buildings. BNs are a 

useful means to handle uncertainty due to the lack of 

some information about existing buildings, because they 

are capable of dealing with several types of variables and 

because inference propagation can be inverted. BNs can 

also consider multiple aspects linked to different 

regulatory areas simultaneously.  

The whole decision support system includes a multi-

criteria assessment of some performance indicators, each 

of them relative to a specific area of interest.  The ranking 

of buildings was performed by means of the AHP 

approach. Considering the limited budget available to 

Public Administration, this makes it possible to carry out 

the evaluations of existing buildings with reduced time 

and costs. 

This paper reported the application in terms of 

“Accessibility”, “Energy Efficiency” and “Acoustics” 

networks, which were shown to give back reliable results, 

once interfaced with the BIM models of the case studies. 

In addition, the development of the BN and the detection 

of the necessary inputs through the interpretation of 

regulations give back the amount of information that 

must be provided by BIM models to perform those 

analyses.  

The methodology detailed in this article can be 

extended to other regulatory areas such as seismic risk, 

safety and fire safety.  



35th International Symposium on Automation and Robotics in Construction (ISARC 2018) 

 

References 

[1] Kassem M., Dawood N. and Mitchell D., A decision 

support system for the selection of curtain wall 

systems at the design development stage, 

Construction Management and Economics, 

30:1039–1053, 2012.  

[2] Vodopivec B., Žarnić R., Tamošaitiene J., 

Lazauskas M. and Šelih J., Renovation priority 

ranking by multi-criteria assessment of architectural 

heritage: the case of castles, International journal 

of strategic property management, 18:88-100, 2014. 

[3] Hosseinian S., Choi K. and Bae J., IRIER: A 

Decision Support Model for Optimal Energy 

Retrofit Investments, Journal of Construction 

Engineering and Management, Vol.143 Iss.9, 2017. 

[4] Shohet I.M., Building evaluation methodology for 

setting maintenance priorities in hospital buildings, 

Construction Management and Economics, 21:681-

692, 2003. 

[5] McArthur J.J., A building information management 

(BIM) framework and supporting case study for 

existing building operations, maintenance and 

sustainability, Procedia Engineering, 118:1104-

1111, 2015. 

[6] Volk R, Stengel J. and Schultmann F., Building 

Information Modeling (BIM) for existing buildings 

– Literature review and future needs, Automation in 

Construction, Vol.38:109-127, 2014. 

[7] Rosenfeld Y. and Shohet I.M., Decision support 

model for semi-automated selection of renovation 

alternatives, Automation in Construction, 8:503-

510, 1999. 

[8] Jato-Espino D., Castillo-Lopez E., Rodriguez-

Hernandez J. and Canteras-Jordana J.C., A review 

of application of multi-criteria decision-making 

methods in construction, Automation in 

Construction, 45:151-162, 2014. 

[9] Løken E., Use of multicriteria decision analysis 

methods for energy planning problems, Renewable 

and Sustainable Energy Reviews 11:1584-1595, 

2007. 

[10] Sabaei D., A review of multi-criteria decision-

making methods for enhanced maintenance 

delivery, Procedia CIRP, 37:30-35, 2015. 

[11] Saaty T.L., How to make a decision: The Analytic 

Hierarchy Process, European Journal of 

Operational Research, 48:9-26, 1990. 

[12] Carbonari G., Stravoravdis S. and Gausden C., 

Building Information Model Implementation for 

Existing Buildings for Facilities Management: a 

Framework and two Case Studies, Building 

Information Modelling (BIM) in Design, 

Construction and Operations, 149:395-406, 2015. 

[13] Di Giuda G.M., Villa V. and Schievano M., BIM 

modeling of the existing school heritage for 

investment planning, Conference ISTeA – 

Environmental sustainability, circular economy 

and building production, 29-48, 2015. 

[14] Neil M., Fenton N. and Nielson L., Building large-

scale Bayesian networks, The Knowledge 

Engineering Review, Vol.15(3):257-284, 2000. 

[15] Pearl J., Probabilistic Reasoning in Intelligent 

Systems: Networks of Plausible Inference, 2nd ed., 

Morgan Kaufmann Publishers, California, 1998 

[16] Salat S., Assessing cities: A new system of spatial 

indicators, SB11 World Sustainable Building 

Conference, 18-21, Helsinki, Finland, 2011. 

[17] Balcomb J.D. and Curtner A., Multi-criteria 

decision-making process for buildings, Energy 

Conversion Engineering Conference and Exhibit 

2000, (IECEC), 35th Intersociety 1:528-535, 2000. 

[18] Corneli A., Meschini S., Villa V., Di Giuda G.M., 

Carbonari A., Integrating BIM and Bayesian 

Networks to support the management of large 

building stock, Re-shaping the construction 

industry, 224-233, 2017. 

[19] DECRETO MINISTERIALE 14 giugno 1989, 

n.236, Prescrizioni tecniche necessarie a garantire 

l’accessibilità, l’adattabilità e la visitabilità degli 

edifici privati e di edilizia residenziale pubblica 

sovvenzionata e agevolata, ai fini del superamento 

e dell’eliminazione delle barriere architettoniche, 

GU Serie Generale n.145 del 23-6-1989. 

[20] Architectural Barriers Act (ABA) Standards, 

Adopted by Department of Defense, General 

Services Administration, U.S. Postal Service, 2015. 

[21] Benedettelli M., Carbonari A., Naticchia B., 

Vaccarini M., Reduced-order Models for 

Supporting Energy Audits of Buildings, 33rd 

International Symposium on Automation & 

Robotics in Construction, pp.563-571, 2016. 

[22] Giretti M., Lemma M., Casals M., Macarulla M., 

Fuentes A., Jones R., Effective building modelling 

for energy performance contracting, Building 

Simulation Applications, Bolzano, 2017. 

[23] Fayyad U.M., Piatetsky-Shapiro G., Smyth P. and 

Uthurusamy R., Advantages in Knowledge 

Discovery and Data Mining, AAAI Press/The MIT 

Press, Menlo Park, California, 1996. 

 


