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Abstract -
One of the major challenges of a real-time autonomous

robotic system for construction monitoring is to simultane-
ously localize, map, and navigate over the lifetime of the
robot, with little or no human intervention. Past research
on Simultaneous Localization and Mapping (SLAM) and
context-awareness are two active research areas in the com-
puter vision and robotics communities. The studies that
integrate both in real-time into a single modular framework
for construction monitoring still need further investigation.
A monocular vision system and real-time scene understand-
ing are computationally heavy and the major state-of-the-art
algorithms are tested on high-end desktops and/or servers
with a highCPU- and/orGPU- computing capabilities, which
affect their mobility and deployment for real-world applica-
tions. To address these challenges and achieve automation,
this paper proposes an integrated robotic computer vision
system, which generates a real-world spatial map of the ob-
stacles and traversable space present in the environment in
near real-time. This is done by integrating contextual Aware-
ness and visual SLAM into a ground robotics agent. This
paper presents the hardware utilization and performance of
the aforementioned system for three different outdoor envi-
ronments, which represent the applicability of this pipeline to
diverse outdoor scenes in near real-time. The entire system
is also self-contained and does not require user input, which
demonstrates the potential of this computer vision system for
autonomous navigation.
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1 Introduction
A mobile robot operating in the physical world must be

aware of its environment. A large part of this awareness is
about estimating spaces (i.e., of mapping) and the robot’s
location (i.e., localization) [1]. In the absence of external
localization aids, the robot must be able to build a map
and, at the same time, localize itself in the same partially
built imperfect map [2]. The robot must be "contextually

aware" of its surroundings, meaning that the robot must be
capable of sensing different objects and making situation-
specific decisions based on them. This is achieved through
object recognition via semantic segmentation, which en-
ables the generation of a spatial map of the obstacles and
the traversable space of the environment. This work can
also boost autonomous robotic applications to achieve a
higher degree of automation in construction monitoring
and personalized safety, which have high rate of interest
among researchers in this area [3–8].

Figure 1. Overview of system components-
hardware, control, SLAM, context awareness and
mapping

The recent advance in powerful and portable process-
ing units have enabled analysis of complex data streams
in real-time. These small processing units with high-
computing capabilities are well-suited for environmen-
tal monitoring using a combination of cameras, micro-
phones, and sensors for temperature, air-quality, and pres-
sure [9–11]. Still, there are a few well-set platforms that
combine the state-of-the-art hardwarewith accessible soft-
ware and opensources. This paper proposes an integrated
mobile robotics agent that is capable of processing local-
ization, mapping, scene understanding, and control and
planning. The proposed integrated system uses multiple
NVIDIA Jetson TX1 boards [12], each handling a specific
task. The low-power consumption and integrated GPU
make the Jetson TX1 an ideal candidate for running the
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aforementioned processes in real-time. As illustrated in
Figure 1, the sub-tasks are control, simultaneous localiza-
tion and tracking (SLAM), image segmentation (denoted
as Context Awareness), mapping. For validation, three
case studies that captures three different outdoor scenes
are performed to evaluate the system’s robustness, perfor-
mance, its integration, and, therefore, its feasibility of the
future development of an autonomous ground robot.
This paper is organized as follows: Section 2 presents a

literature review on SLAMand scene understandingwhich
are the primary sub-tasks in this approach. Sections 3
describes the system overview and hardware modules of
the proposed system. Section 4 describes the approaches
taken to perform the above-mentioned pipeline. Section 5
presents the system evaluation and results. Section 6 ends
this paper with the conclusions and future works.

2 Background
2.1 Monocular SLAM

In a dynamic environment, human eyes can quickly and
accurately provide visual information that our brain uses
to map and understand the environment. A robot must also
know with a high degree of certainty, where it is located in
the environment. Only if this occurs, can it localize itself
with respect to the map, which is essential for tasks such as
navigation andmotion planning. Likewise, using cameras,
robots get visual information and they can generate maps
of their environment. For building a good map, accurate
localization is needed and for accurate localization, a good
map is necessary. This chicken and egg problem is what
SLAM aims to solve [13].

Initial approaches focused on 2D maps using a laser
scanner or LIDAR [14]. The advantage of such approaches
was the speed of mapping and the lower computational
cost. However, LIDAR-based approaches suffer when
there is a lot of heat and reflective surfaces that affect
the laser [15]. Also, 2D approaches are unable to capture
the scale of the obstacles. With an increase in processing
power and development of better algorithms, the use of
cameras for SLAM became more feasible.

When it comes to monocular vision-based SLAM,
ORB-SLAM [16], Direct Sparse Odometry (DSO) [17]
and LSD-SLAM [18] are the widely used algorithms.
ORB-SLAM is a feature-based method, while LSD-
SLAM is a direct method based on color intensities in
the image. Relying on feature extraction, feature match-
ing, and visual odometry, maps are built, but the drawback
is that themap is accurate only up to a scale. There are sev-
eral methods available in the literature which can achieve
this task in real-time [16,18–21]. The approach discussed
in [16] is the most appropriate for the current task due to
its speed and ability to run in real-time on the TX1. The

point cloud and odometry of ORB-SLAM is not directly
usable as their units are not in real-world scale. Hence,
one of the tasks is to transform the unscaled odometry to
real-world units. In this work, the SLAMModule provides
the odometry and tracking state to the Context-Awareness
and Control Modules.

2.2 Scene Understanding

The literature in object recognition is very rich, and
yet growing. The goal of making the robot contextually
aware can be achieved through recognition of the objects
and taking decisions based on such insights. Either object
classification or scene segmentation can be used for scene
understanding purposes. Scene segmentation, while be-
ingmore computationally intensive, providesmore precise
results, especially near the boundaries of objects.
Even though, convolutional neural networks (CNNs)

had been utilized for a long time [22], they seemed to be
hard to use for bounding-box object classification up until
2014. This was when an image region proposal scheme
was combined with CNN’s as classifiers and was able to
outperform other object detection frameworks [23]. Later
versions of R-CNN object detection were introduced to
resolve some of the R-CNN’s limitation, such as training
pipeline complexity and slow test-time [24, 25]. Fast R-
CNN [25] sped up the inference time by a factor of 25.
In this method, computation of convolutional layers was
shared between region proposals of an image. Faster R-
CNN [24] inserted a region proposal network (RPN) after
the last convolutional layer. By this change, the method
required no external region proposal which improved com-
putational speed up to 250x.
High computational load is one of the main limita-

tions for (CNN)-based frameworks for semantic segmen-
tation. [26] proposed a semantic segmentation framework
using fully convolutional networks and utilizing exist-
ing classification networks, such as GoogLeNet [27] and
AlexNet [28]. This method transfers learning approaches
via fine-tuning of pre-trained models. [29] is also based on
a very large encoder-decodermodel performing pixel-wise
labeling which suffers from a tralarge number of compu-
tations.
MobileNets [30] and Enet [31] are computationally

lighter convolutional networks. ENet is designed to run
on embedded boards with a focus on distinguishing roads
from the rest of the scene. These capabilities make it
suitable for autonomous robot navigation in outdoor (and
particularly construction) sites.

3 System Overview
The monocular vision-based approach in the current

study is described in this section. Figure 2, shows the
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Figure 2. Monocular vision-based general pipeline

integration of aforementioned modules. The SLAMMod-
ule sends the scaled odometry to the Context-Awareness
Module. The Context-Awareness Module processes the
images using a scene segmentation scheme and generates
a 1-D array. This array indicates the obstacle boundary
which are inputs to the Mapping Module. The Control
Module receives the control commands from a joystick
and passes them to the Raspberry Pi. Robot Operating
System (ROS) [32] is used in this research to simplify the
data exchange process between multiple modules.
Figure 3, illustrates the hardware used in the proposed

systemwhich are; AClearpathHuskyA200 [33], NVIDIA
Jetson TX1 [12], Raspberry Pi, Wi-fi enabled router, and
a Microsoft Xbox controller. The controller is connected
to the Control Module and is responsible for manually
controlling the robot for initial mapping of the scene. This
happens by sending this information to the Raspberry Pi
through a TCP socket and the Raspberry Pi sends back
the wheel encoder information. The Raspberry Pi can
also operate a kill switch to stop the motors in case of an
emergency. In Figure 3, There are four NVIDIA Jetson
TX1 boards. Each module runs on one board to minimize
logistics and integration time. A network via router on the
robot connects all the Jetson boards.

4 System Description
Themain goal of this research is the integration between

SLAM Monocular Module, Context-Awareness Module,
Mapping Module, and Control Module. This integration
leads to the generation of an occupancy grid map of the
environment which forms a spatial map of obstacles and
traversable space of the scene. In this section, other capa-
bilities of these modules are explained in detail.

4.1 Real-time visual SLAM with scaled odometry

The provided odometry to the Context-AwarenessMod-
ule cannot be used directly. To solve this issue, the pro-
posed approach in [34] is implemented to get the scaled in-

formation between visual odometry and wheel odometry.
Both odometry are calculated for the entire path and then
a closed-form solution is generated. Finally, The scaling
matrix between wheel odometry and visual odometry is
found and updates every second. The final odometry out-
put that other modules can use is published as a ROS topic
at a frequency of 1 Hz, as shown in Figure 1. Figure 4,
shows scaled ORB-SLAM in red compared to unmodified
SLAM in blue which shows that the scaled ORB-SLAM
improves the trajectory. The unmodified SLAM is not able
to detect the simple turn or evenmoving in the straight line.

4.2 SLAM and Context-Awareness Modules contri-
bution to provide segmented images

The next step is to provide images and synchronize
scaled odometry to the Context-Awareness Module for the
segmentation of ground plane and obstacles. Contextual
Awareness Module provides the intelligence and aids in
decision-making while in motion. It strives to improve a
general awareness of the environment by enhancing the
visual information from the monocular camera.
Creating the segmented images and preparing them to

be used by Mapping Module consists of three steps; pixel-
wise semantic segmentation, filtering the segmentation
vector, and perspective transformation. The segmentation
model Enet [31], is used to produce a pixel-wise semantic
segmentation map per image. The segmentation vector
is a 1-D vector along the horizontal axis that represents
the distance to the closest object at each point. Finally, a
perspective transformation is implemented to convert from
image to the world coordinate system. This information
is used by Mapping Module to create the occupancy grid
map of the environment.

4.2.1 Pixel wise semantic segmentation

The pixel-wise labeling task assigns a label to every
pixel of the image. This typically requires models that are
computationally heavy, with a lot of parameters. Due to
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Figure 3. Physical diagram of components in the platform. The channels used for interactions between the
different physical modules are labeled in blue.

Figure 4. Scaled ORB SLAM odometry (red) vs.
unscaled ORB SLAM odometry (blue)

the limited computing capability of the Jetson, a smaller
model (ENet) is chosen with a slightly lower accuracy, but
fast enough for near real-time performance. ENet method
for semantic segmentation [31] is designed to work on
embedded boards and in the current research this method
is implemented on the Jetson TX1 with image input size
of 512 × 256, at speed of 10 fps (much faster than other
models such as Segnet and FCN [26,29]).
The labeled pixel-wise data are input to ENet during

the training phase. In this research, a scripting file is im-
plemented to easily label images with freehand drawing.
1000 images, captured from multiple videos, are sampled
and labeled manually. Grey-scale images with pixel in-
formation being the class label and size similar to input
image size are used for training the network. Five labels
are used for labeling as shown in Figure 5: object, road,

person, sky, and unlabeled.

Figure 5. Different labeled classes

The training process includes 2 steps. First, training the
encoder part. The input images for encoder training has
a size of 512 × 256 and the size of output labeled map is
64× 32. The model is trained for 300 epochs with a batch
size of 10. Second, training the decoder part on top of
the encoder to convert the intermediate map into the same
dimensions as the full image.

4.2.2 Filtering the segmentation vector

The robot can move safe in the places that are known as
road in the image. First of all, a 1-D vector is computed
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which provides the first instance of the obstacle when go-
ing through the bottom (the blue line in Figure 6). The
filter is tuned to only include objects that are within 2.5
meters of the camera. Also when the vector is vertical it
probably means that it is not actually the base of the object
so it should not be included in the occupancy grid. To this
end, points with the high gradient (more than one) in the
x-direction are filtered out. The red segments in Figure 6,
indicate filtered segments which are plotted as obstacles.

Figure 6. Red dots indicated filtered points to be
considered obstacles

4.2.3 Perspective transform

The 2D image coordinates are transferred into physical
distance values from the base of the robot using perspective
transform. In the proposed system, the location and orien-
tation of the camera are fixed related to the robot. Hence,
a fixed perspective transform from specific focal length
and camera position can be used for the whole process of
mapping the pixel locations to its real-world locations (see
Figure 7).
In reality, the perspective transform matrix is little dif-

ferent with the transformation matrix in Figure 7. The
reason is, the origin starts from the top of the image, not
the camera itself. Also, it is necessary for the pixel map-
ping to be symmetric on the left and the right sides of the
robot, but the camera is not exactly in the center of the
rectangle.

Figure 7. Left: Original image, Right: Perspective
transform

4.3 Occupancy grid map creation

The Mapping Module uses the segmentation results to
provide an occupancy grid map. The aforementioned ob-
stacle position vector from Context-Awareness Module is
processed to find the lower boundary of close obstacles.
Next, the perspective transformation matrix helps to find
the real world obstacle locations. Finally, the position of
obstacles is plotted on a local rectangular map with 1.1m
wide and 2.5m long and the global map incrementally
updates by using the local map (see Figure 8).

Figure 8. Global map

4.4 Publishing tracking state of ORB-SLAM for
SLAM and Control Modules integration

It is necessary for the SLAM Module to know whether
or not ORB-SLAM has initialized tracking. The Context-
Awareness Module is not able to segment the images if the
SLAM Module loses track. Also, the Mapping Module
needs the images from SLAMModule to update the global
map and the SLAM Module can only send the images in
the tracking state. SLAM Module publishes following
states: waiting for images, not initialized, tracking, and
tracking lost. Providing this information for Control Mod-
ule enables the robot to retrace its path in case tracking
was lost. [35] shows the tracking state in the ORB-SLAM
Module.

5 System Evaluation and Results
The proposed system is tested in three different outdoor

environments with various object and weather conditions
as shown in Table 1. The Figure 9 shows a representative
image of the environment and a screenshot of the occu-
pancy grid map during its generation. The RVIZ tool of
ROS is used to visualize the occupancy grid map. The red
line in the image is the trajectory of the robot and the grey
rectangles represent the mapped areas.
The focus of the validation in this research is on the

integrated robotic system which brings multiple compo-
nents together and runs in real-time. The videos of the
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Table 1. Environment description
Evironment Type Object Type Weather

Condition
Video Length
(minutes)

Number of processed
frames (pipeline rate of 1 Hz)

Parking space 1 Car, curb Cloudy 12.7 762
Construction site Wooden planks,

trash bin, cement slab Cloudy 15.15 909
Parking scene 2 Trash bins, utility cart Sunny 9.5 570

Figure 9. Image of the environment (bottom) and its corresponding occupancy map (top).

whole pipeline demonstrate the capabilities of this inte-
grated system in near real-time [36–38].
The computational load on the Jetson boards is also

presented for future systems and pipelines (see Table 2).
Since the Jetson board has a quad-core processor, the per-
centages for the CPU arewithin a range of zero to 400. The
CPU usage of ORB-SLAM is very high, but the scaling
process in SLAM Module requires light computing. Fig-
ure 10, shows that the Context-Awareness Module runs
heavily on the GPU. When an image is passed over to
the ENet network, a segmented image is produced and is
shown as a spike in the GPU usage in Figure 10. This
process publishes the boundary-position vector at the end
of processing. The hardware usage forMappingModule is
not significant and it shows the potential of implementing
more than one module on one Jetson.

Table 2. CPU usage statistics. (100 corresponds to
full usage of one core)

Code/CPU Usage Average CPU Usage
ORB SLAM 186
odometry scaler 5
segmentation process 101
store_images 33
global Map 54
local Map 18

Figure 10. Context-Awareness Module GPU usage
graph (%)

6 Conclusion
This paper presents an integrated mobile robotic system

that runs multiple vision-based components in real-time.
The proposed system implements monocular SLAM and
contextual understanding of a scene, which creates a 2D
spatial map with detected obstacles. This system show-
cases the importance of a modular framework which can
include latest SLAM and Context-Awareness algorithms
in a plug and play format. This system is effective and
can be run in real-time on multiple embedded platforms
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that are integrated as a system. The proposed system is a
step forward in making intelligent and contextually aware
robots ubiquitous. The results also demonstrate the poten-
tial for enabling a computer vision system for autonomous
navigation.
Some of the possible extensions and improvements to

this projects are documented as follows. For instance, the
proposed system does not have an effective way to deal
with a large area to be mapped in real-time. A potential
solution is to remove older parts of the global map and
will be investigated in the authors’ future work.
The use of higher resolution input images with more

features will result in better tracking and mapping. To
ensure that the algorithm still runs in real-time, the fea-
ture extraction and matching parts can be moved to the
GPU. This will allow us to get better results in a dynamic
environment.
The computational load put on each Jetson board shows

that the module corresponding to the segmentation task
runs heavily on the GPU. The size of the model and high
memory usage along with the need for real-time perfor-
mance restricts the speed of the Husky [39]. Improving
the segmentation model in order to reduce the computa-
tional load in the Context Awareness Module will address
this issue.
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