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Abstract – Unmanned Aerial Vehicles (UAVs) have 

recently shown great performance collecting visual 

data through autonomous exploration and mapping 

in building inspection. Yet, the number of studies is 

limited considering the post processing of the data 

and its integration with autonomous UAVs. These will 

enable huge steps onward into full automation of 

building inspection. In this regard, this work presents 

a decision making tool for revisiting tasks in visual 

building inspection by autonomous UAVs. The tool is 

an implementation of fine-tuning a pretrained 

Convolutional Neural Network (CNN) for surface 

crack detection. It offers an optional mechanism for 

task planning of revisiting pinpoint locations during 

inspection. It is integrated to a quadrotor UAV system 

that can autonomously navigate in GPS-denied 

environments. The UAV is equipped with onboard 

sensors and computers for autonomous localization, 

mapping and motion planning. The integrated system 

is tested through simulations and real-world 

experiments. The results show that the system 

achieves crack detection and autonomous navigation 

in GPS-denied environments for building inspection. 
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1 Introduction 

Inspection of buildings throughout their lifecycle is 

vital in terms of human safety as the number of structures 

increases expeditiously. In line with this objective, 

periodic inspections are essential for residents’ safety. 

For instance, systematic bridge inspections are done 

periodically in six years to detect structural cracks [1].  

In this context, Unmanned Aerial Vehicles (UAVs) 

have been widely used in inspection operations in the last 

decade since their workspace is superior than that of 

ground vehicles. Today, UAVs are employed especially 

in visual building inspections by utilizing onboard 

cameras.  

Moreover, the robotics community has increased the 

automated capabilities of the UAVs in terms of data 

acquisition and processing for inspection. In [1], a micro 

helicopter using computer vision approaches to be able to 

inspect bridges is presented. In [2], authors introduced a 

UAV system for inspecting culverts utilizing GPS, 

LIDAR and IMU. The data acquired from these sensors 

are fused to estimate the state enabling autonomous 

outdoor navigation.  

A methodology to monitor the changes due to 

corrosion damages on industrial plants by using UAV is 

presented [3]. Images acquired at different instances are 

aligned through geometric transformation to highlight 

the changes above a threshold which is automatically 

determined by assuming damages that have usually 

different aspects with respect to the surrounding 

structures. In [4], researchers demonstrated a quadrotor 

MAV integrated with a stereo camera configuration that 

can explore GPS-denied indoor environments. They 

validated the system by autonomous flights inside an 

industrial boiler.  

Recently, a lot of effort is put on crack detection using 

UAVs. A hybrid image processing technique that 

estimates crack width while decreasing the loss in crack 

length information is reported [5].  Another approach for 

crack detection and mapping using UAVs is presented in 

[6]. However, the previous works mainly focus on either 

autonomous navigation or post-processing of the 

acquired data (i.e. defect detection) by mostly using 

traditional image processing techniques (as in [7] & [8]) 

that may fail in different lighting conditions and/or 

materials. 

In this context, the aim of this research is to achieve 

autonomous navigation and revisit motion planning of 

UAVs to surface crack locations in order to perform 

automated building inspection operations since the 

inspections are generally periodic and requires revisiting 

for close examination. This revisit task planning strategy 

enables UAVs to autonomously navigate in different 

environments while proposing a decision making tool by 

crack detection. The major contribution of this 

dissertation can be stated as an implementation of 

autonomous building inspection considering not only the  
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Figure 1. Schematic of the high-level system 

architecture 

 

data acquisition phase but also revisiting crack 

locations by transfer learning. 

In this regard, an autonomously navigating quadrotor 

UAV is developed to be able to revisit pinpoint locations. 

For this purpose, SLAM using onboard visual-inertial 

localization and mapping to explore the environment in 

which the UAV is located and motion planning with 

obstacle avoidance are applied. Transfer learning 

approach is used to identify surface cracks from images 

so that possible revisiting locations can be determined for 

high-level decision making during inspections. Finally, a 

commercial quadrotor UAV is integrated with onboard 

sensors and computers in order to validate and verify the 

methods by testing. 

2 System Overview 

The necessary software for autonomous navigation 

and crack detection is both developed and implemented 

from open source libraries and packages supported by the 

community in the scope of this study. Figure 1 presents 

the schema of the software architecture for the overall 

system. all the computations are done onboard except 

from GUI and image classifier which runs on a ground 

station computer. The developed software components 

for this research is open-source and available online [9]. 

The flight controller of the quadrotor platform [10] 

ensures the low-level (attitude and velocity) control of 

the vehicle. Modified open-source software is 

implemented for SLAM and motion planning strategies. 

RGB-D camera is the source for the visual odometry and 

mapping processes, and it is fused with onboard IMU and 

ultrasonic sensor for state estimations by an Extended 

Kalman Filter. Also, a CNN is employed as the image 

classifier for surface crack detection. It presents an 

optional support mechanism for task planning of 

revisiting locations during inspection. It is built on top of  

 

 

 

 

 

autonomous navigation capability of the UAV with a user 

interface. 

A graphical user interface that runs on a ground 

station computer is developed for high-level planning of 

the revisiting tasks. The interface wraps the capabilities 

of the system and enables users to utilize it without a prior 

knowledge of robotics. Functional callbacks for planning, 

motion control and other features for visualization 

purposes such as live video stream are other aspects 

derived from this interface. 

The integrated system aims autonomous navigation 

with onboard computations. The objectives of 

autonomous navigation of the UAV in GPS-denied 

environments are determined as follows: 

1. Real-time state estimation of the UAV during flight, 

2. Mapping of the environment in which the UAV 

operates for global localization and motion 

planning, 

3. Motion planning with obstacle avoidance to target 

locations of revisiting. 

In order to achieve these objectives, software is 

developed and implemented on top of open source 

software packages and algorithms presented by the 

robotics community through Robot Operating System 

(ROS) so that the software can be modular and 

extendable. Implementation of the software throughout 

this work is achieved by using ROS framework. 

Attitude control is achieved by using velocity control 

mode of the onboard flight controller in the employed 

UAV. A graph-based RTAB-MAP [11] ROS node is 

used both for visual odometry and mapping. A RGB-D 

camera is integrated with the UAV for visual odometry 

and onboard IMU is fused with visual odometry with an 

Extended Kalman Filter [12] at 50 Hz. 

Motion planning is achieved with an implementation 

of MoveIt! [13] ROS node with OMPL [14] backend. A 
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Universal Robot Description Format (URDF) of the 

UAV is constructed for collision checking. An algorithm 

is developed for interoperability of the motion planner 

and the revisit planner. 

3 Revisit Planning 

The proposed revisit planning workflow in Figure 3 is 

demonstrated step-by-step as follow: 

1. Images acquired during flight are shown in the GUI 

for users to pick a revisiting location. Each image 

corresponds a location (position and orientation) in 

the algorithm since these images are previously 

linked with locations.  

2. (Optional) A crack detector can step in to process 

images if a user aims to use the crack detection 

approach as a support for decision making of 

locations to revisit. 

3. If Step-2 is fulfilled, the GUI visualizes the new 

cracks on a new set of images. 

4. By the corresponding image, a location for 

revisiting is found. Then, the GUI delivers this goal 

to the motion planner. 

5. The GUI receives an obstacle-free optimal 

trajectory as the form of waypoints if available. 

6. For UAV to cover the path, the required velocities 

between the waypoints are calculated by an 

algorithm. In case of being successful or having no 

feasible motion plan, the GUI reports feedback.   

 

Figure 3. Workflow of the revisit planning 

strategy  

For the step 1, Matching the images with their 

corresponding locations is essential for this strategy. A 

ROS node is developed in order to match images with 

poses (position and orientation) where the UAV had been 

visited during inspection for possible revisiting in future 

missions. This algorithm subscribes to both visual-

inertial odometry and RGB images. Then, it matches 

them using Approximate Time Synchronizer message 

filter of ROS in a predefined period (2 Hz in this 

implementation). The images saved with their 

corresponding poses in favor of the revisit planner. 

In order to provide the step 4&5, an algorithm is 

developed using Python interface of MoveIt!. It sends the 

goal to the motion planner and computes the velocities 

from the corresponding trajectory. It runs at the backend 

of the GUI. 

4 Crack Detection 

Crack detection is one of the most common objectives 

in building inspection. Increasing efficiency of visual 

inspection can be achieved by decreasing the time spent 

for post-processing on captured images during flight.  

In this context, Convolutional Neural Networks 

(CNN) are one of the most commonly used architectures 

since they can overcome most of the contemporary 

challenges in crack detection [15]. They are getting more 

accurate and robust for image classification in recent 

years.  

On the one hand, CNNs are easy to train and can be 

applied from open source libraries. On the other hand, 

training an entire CNN from scratch is not preferable for 

the majority because it is comparatively difficult to have 

a sufficient amount of data. Transfer Learning has 

eventually emerged. It uses a pretrained network on a 

large dataset (e.g. ImageNet which contains 1.2 million 

images with 1000 categories) as an initialization or a 

fixed feature extractor for the newly created network. 

Fine-tuning is one of the methods in Transfer Learning 

which is used as a complementary of CNN in this study. 

For working efficiently with small datasets and using a 

pretrained networks that assures time effectiveness, this 

approach becomes appropriate in the scope of this 

research. 

4.1 Training the CNN 

In this work, InceptionV3 [16] network model with 

ImageNet weights is fine-tuned since it has relatively 

high performance in top-1 validation accuracy than most 

of the top scoring single-model architectures (Figure 4). 

Keras with TensorFlow backend is used for the 

implementation. Graphics Processing Units are utilized 

in training sessions. For this purpose, a modified version 

of [17] is used.  

In the fine-tuning of the CNN, ‘Crack’ and 

‘NonCrack’ classes are designated for the image 

classifier. The training dataset is collected from Middle 

East Technical University campus buildings. It includes 

582 images with cracks, and 458 images without cracks 

(Figure 5). Since a poor performance was observed on 

brick wall images in the first implementation, a group of 

brick wall images are added to the ‘NonCrack’ dataset in 

order to detect cracks on brick materials. Additionally, 

data augmentation function is applied to increase the 

number of the data for greater performance. 
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Figure 4. 13 Single-crop top-1 validation 

accuracies for top scoring single-model 

architectures [18] 

The training and validation accuracies over each 

epoch are shown in Figure 6. After 5 epochs, the model’s 

training accuracy jumps over 90%. After 20 epochs, the 

training and validation accuracies attain to approximately 

98%.  The training and validation losses over each epoch 

are shown in Figure 7. The losses converge to 0.05 after 

20 epochs.  

    

Figure 5. Sample of images used in the training 

(‘Crack’ images at left, ‘NonCrack’ images at 

right) 

4.2 Cross-validation 

After the training session, cross validation is done by 

using a different dataset in terms of image variation. The 

cross validation dataset consists of 64095 images. 19368 

of these have surface cracks while there are no cracks in 

the rest. The fine-tuned model accurately predicts 62417 

from the 64095 image. The accuracy is 97.382% in the 

cross validation. These results clearly demonstrate the 

convenience of using an InceptionV3 model as the 

backbone for transfer learning for such a crack detection 

application. 

 

 

Figure 6. Accuracy vs. epoch number in the 

training and the validation sets 

 

Figure 7. Loss vs. epoch number in the training 

and the validation sets 

5 Experiments 

In order to validate the system, autonomous 

navigation and crack detection capabilities are tested 

through computer simulations and real-world 

experiments.  

5.1 Simulations 

The simulations are performed in order to verify the 

state estimation performance of the system. For this 

purpose, a simulated environment is created inside 

Gazebo simulator. The environment is constructed to 

mimic an indoor space to be able to verify the 

performance of visual-inertial navigation of the system in 

GPS-denied environments. Figure 8 shows the 

environment used in simulations. Two connected spaces 
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in the environment is enclosed by 3x1x3 m (height x 

width x length) brick walls. Another wall with relatively 

monotonous texture is located because identifying loop-

closures is harder when repetitive patterns are present in 

the environment. In this way, the performance of loop 

closure detection is more indicative since it is a more 

challenging case. 

 

Figure 8. Indoor test environment used in the 

simulations 

5.1.1 Mapping 

After the simulation environment is established, the 

tests are performed to evaluate the performance of the 

mapping, the state estimation, and planning approaches. 

First, an exploration (of the environment) session is 

conducted by manually operating the quadrotor UAV, a 

3D voxel grid map is constructed Figure 9. The 

performance of the mapping is assessed by comparing it 

with the original environment in the simulations.  

 

Figure 9. Reconstructed 3D voxel grid map of the 

environment 

5.1.2 State Estimation  

In order to evaluate the state estimation performance 

of the system, the position (global x-y-z) and orientation 

(yaw) estimates are compared with the corresponding 

ground truth values. The ground truth values are obtained 

from the simulation environment. Visual odometry and 

visual-inertial odometry results are plotted along with 

ground truth values (Figure 10). The estimates are closely 

tracking the actual measurements of the trajectory. 

 

 

Figure 10. Ground truth vs. Visual-inertial 

estimations (x-direction at top-left, y-direction at 

top-right, z-direction at bottom-left, yaw degree at 

bottom-right) 

The maximum deviations (errors) in state estimates 

are presented in Table 1 in order to comprehend the 

results in a clearer way. It can be observed that visual-

inertial odometry has superior performance than visual 

odometry as expected. Although the maximum 

deviations in the x, y and z direction are close to each 

other, the errors in the yaw angle are slightly dramatic 

compared to them. This expected behavior shows the 

importance of fusing inertial measurements with visual 

odometry since yaw angle of IMUs are generally prone 

to have error due to the fact that the gravity measured by 

accelerometers cannot be used to help to estimate it [19]. 

The values in the table show that the maximum error 

along the estimated trajectory is in the order of 0.1 m. 

This value is negligible relative to the building scale so, 

the performance of the state estimation can be evaluated 

as sufficient in terms of building inspection. 

Table 1. Maximum deviations in the state estimation 

 Visual 

Odometry 

Max. 

Deviation 

Visual-Inertial 

Odometry 

Max. 

Deviation 

Global            

x-direction 

0.146157219 m 0.145886557 m 

Global            

y-direction 

0.064824391 m 0.052191800 m 

Global            

z-direction 

0.058057038 m 0.054663238 m 

Yaw Angle 0.23723990 rad 0.02274868 rad 
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5.2 Indoor Experiment 

The second test case is conducted indoor to be able to 

verify the fully integrated system. After verifying the 

state estimation and mapping performances in 

simulations, experiments are performed in a GPS-denied 

environment for evaluation of the integrated system. The 

experiments are conducted in the workshop of Design 

Factory in Middle East Technical University that can be 

seen in Figure 10. 

 

Figure 11. Indoor experimentation environment 

5.2.1 Hardware 

In real-world tests, hardware of the system is 

composed of five components which are an aerial 

platform, an onboard visual sensing system, a RGB-D 

camera and an onboard computer. As the aerial platform, 

DJI Matrice 100 [10] is employed. It is a vertical take-off 

and landing (VTOL) quadrotor vehicle with 

reconfigurable hardware installation capability. Matrice 

100 is used since it meets the requirements of this 

research by having onboard low-level flight controller 

that handles attitude control.  

For the onboard visual sensing system, five units of 

low resolution stereo camera and one processor named 

Guidance [20] are implemented. Guidance is compatible 

with the flight controller of the aerial platform, and it 

fuses stereo camera data for real-time obstacle avoidance 

in this work. 

As the onboard RGB-D sensor, a widely used and 

open sourced hardware, Microsoft Kinect v1 is used. 

Having served for the purpose of mapping and 

localization, it has an RGB camera and infrared depth 

camera with 43° vertical by 57° horizontal field of view 

at 30 frames per second.  

As the onboard computer of the system, DJI Manifold 

that has a quad-core, 4-plus-1 ARM processor, NVIDIA 

Kepler-based GeForce graphics processor, 2GB memory 

with customized version of Ubuntu 14.04LTS is 

preferred. Besides, it has a wireless connection chips and 

antennas for communication purposes. 

 

Figure 12. Integrated quadrotor UAV used in this 

work 

5.2.2 Revisiting a Defected Location 

The first phase of this test case is the mapping phase. 

A low resolution point cloud representation is presented 

in Figure 13. The environment is partially mapped since 

it is sufficient for the evaluation of the system. For 

mapping of the environment, the UAV is covered a 

trajectory (blue marker in Figure 13). The trajectory 

contains overlapping positions so that loop closures can 

be detected. 

The test case is demonstration of a revisiting task. For 

this purpose, the images acquired during the mapping 

phase are processed with the image classifier developed 

to detect cracks on walls of the environment.  

The algorithm that is developed for matching the 

images with their corresponding locations acquires 20 

images (Figure 14) in the mapping phase. 13 of these 

images are replaced with images that contain cracks 

(Figure 15) since there are no surface cracks available in 

the test environment. The registered locations (positions) 

are kept same as in mapping but only the images are 

changed. In this way, the developed task planning 

pipeline as well as the crack detection approach can be 

tested. 

Then, these 20 images are fed into the CNN in order 

to identify the cracks. After processing, the CNN 

classifies 16 of the images as cracks although it should 

be 13. Several other elements such as windows and 

radiator mislead the CNN as in the extra 3 images. The 

other 13 images are those which have cracks. Thus, it can 

be stated that the crack detection application gives 

sufficient performance as a decision support tool.  
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Figure 13. Reconstructed maps of the 

environment  

  

Figure 14. Sample images acquired during the 

mapping session 

 

Figure 15. Sample crack images that are replaced 

with the acquired images 

5.2.3 Motion Planning 

After the crack detection, one of these crack images 

that corresponds to a specified location that is selected as 

the goal position for revisiting. The goal position is 

selected so that the most complicated motion plan should 

be achieved in the environment. Thus, the distance 

between the start and the goal positions is set to be as long 

as possible in the map. Moreover, the walls and the 

windows exist between them as obstacles so that the 

UAV should takeoff and move around the junction of the 

two walls for obstacle avoidance during motion. 

Path planning algorithms that are available in MoveIt! 

are tested for the motion planning problem between start 

and goal positions. PRM*, RRT and RRT* algorithms 

compute solutions while EST, SPL, LBKPIECE, PRM, 

BKPIECE algorithms are not able to solve the problem. 

The reason is possibly the sampling strategies of these 

algorithms. They might not be able to sample the 

workspace such that the start and the goal positions are 

covered for a complete solution. The solution of the 

PRM* algorithm (Figure 16) is not acceptable in terms of 

both the optimality and the motion constraints since it 

requires large roll degrees in the motion that may cause 

overturn. The trajectory planned by RRT (Figure 16) has 

a sudden jump in the motion which is not possible for the 

UAV to execute. On the other hand, RRT* computes a 

trajectory (Figure 16) that satisfies criteria for motion 

planning. The trajectory is collision-free and smooth as 

well as optimal in terms of length. Therefore, the motion 

planner is set to use RRT* as the main algorithm in the 

motion plans. After the motion is planned, the UAV can 

be sent to the goal location for revisiting the crack 

location. 

 

 

Figure 16. Motion plans (PRM* at top-left, RRT 

at top-right, RRT* at bottom) Red circles show 

the motions that violate the planning objectives 
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6 Conclusion 

In this work, an integrated system that enables 

revisiting crack locations during building inspections by 

means of a quadrotor UAV is presented. Autonomous 

navigation of the UAV in GPS-denied environments is 

achieved by integrating and developing open source 

software. A task planning strategy is developed in order 

to revisit defected locations. Transfer learning is used for 

surface crack detection. Simulations and indoor 

experiments are conducted for the system verification.  

The major contribution of this work can be stated as 

a application for building inspection by autonomous 

UAVs considering not only the data acquisition 

(mapping) phase but also the subsequent close 

examination (revisiting) of crack locations that are 

identified by a CNN. Future work will focus on 

improvements of crack detection on different materials 

and of crack properties.  
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