
35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

Transfer Learning-Based Crack Detection by

Autonomous UAVs

F. Kucuksubasia and A.G. Sorgucb

a,b Department of Architecture, Middle East Technical University, Turkey

E-mail: fatihk@metu.edu.tr, arzug@metu.edu.tr

Abstract – Unmanned Aerial Vehicles (UAVs) have

recently shown great performance collecting visual

data through autonomous exploration and mapping

in building inspection. Yet, the number of studies is

limited considering the post processing of the data

and its integration with autonomous UAVs. These will

enable huge steps onward into full automation of

building inspection. In this regard, this work presents

a decision making tool for revisiting tasks in visual

building inspection by autonomous UAVs. The tool is

an implementation of fine-tuning a pretrained

Convolutional Neural Network (CNN) for surface

crack detection. It offers an optional mechanism for

task planning of revisiting pinpoint locations during

inspection. It is integrated to a quadrotor UAV system

that can autonomously navigate in GPS-denied

environments. The UAV is equipped with onboard

sensors and computers for autonomous localization,

mapping and motion planning. The integrated system

is tested through simulations and real-world

experiments. The results show that the system

achieves crack detection and autonomous navigation

in GPS-denied environments for building inspection.

Keywords –

Unmanned Aerial Vehicle; Building Inspection;

Crack Detection; Transfer Learning; Autonomous

Navigation

1 Introduction

Inspection of buildings throughout their lifecycle is

vital in terms of human safety as the number of structures

increases expeditiously. In line with this objective,

periodic inspections are essential for residents’ safety.

For instance, systematic bridge inspections are done

periodically in six years to detect structural cracks [1].

In this context, Unmanned Aerial Vehicles (UAVs)

have been widely used in inspection operations in the last

decade since their workspace is superior than that of

ground vehicles. Today, UAVs are employed especially

in visual building inspections by utilizing onboard

cameras.

Moreover, the robotics community has increased the

automated capabilities of the UAVs in terms of data

acquisition and processing for inspection. In [1], a micro

helicopter using computer vision approaches to be able to

inspect bridges is presented. In [2], authors introduced a

UAV system for inspecting culverts utilizing GPS,

LIDAR and IMU. The data acquired from these sensors

are fused to estimate the state enabling autonomous

outdoor navigation.

A methodology to monitor the changes due to

corrosion damages on industrial plants by using UAV is

presented [3]. Images acquired at different instances are

aligned through geometric transformation to highlight

the changes above a threshold which is automatically

determined by assuming damages that have usually

different aspects with respect to the surrounding

structures. In [4], researchers demonstrated a quadrotor

MAV integrated with a stereo camera configuration that

can explore GPS-denied indoor environments. They

validated the system by autonomous flights inside an

industrial boiler.

Recently, a lot of effort is put on crack detection using

UAVs. A hybrid image processing technique that

estimates crack width while decreasing the loss in crack

length information is reported [5]. Another approach for

crack detection and mapping using UAVs is presented in

[6]. However, the previous works mainly focus on either

autonomous navigation or post-processing of the

acquired data (i.e. defect detection) by mostly using

traditional image processing techniques (as in [7] & [8])

that may fail in different lighting conditions and/or

materials.

In this context, the aim of this research is to achieve

autonomous navigation and revisit motion planning of

UAVs to surface crack locations in order to perform

automated building inspection operations since the

inspections are generally periodic and requires revisiting

for close examination. This revisit task planning strategy

enables UAVs to autonomously navigate in different

environments while proposing a decision making tool by

crack detection. The major contribution of this

dissertation can be stated as an implementation of

autonomous building inspection considering not only the

mailto:fatihk@metu.edu.tr
mailto:arzug@metu.edu.tr

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

Figure 1. Schematic of the high-level system

architecture

data acquisition phase but also revisiting crack

locations by transfer learning.

In this regard, an autonomously navigating quadrotor

UAV is developed to be able to revisit pinpoint locations.

For this purpose, SLAM using onboard visual-inertial

localization and mapping to explore the environment in

which the UAV is located and motion planning with

obstacle avoidance are applied. Transfer learning

approach is used to identify surface cracks from images

so that possible revisiting locations can be determined for

high-level decision making during inspections. Finally, a

commercial quadrotor UAV is integrated with onboard

sensors and computers in order to validate and verify the

methods by testing.

2 System Overview

The necessary software for autonomous navigation

and crack detection is both developed and implemented

from open source libraries and packages supported by the

community in the scope of this study. Figure 1 presents

the schema of the software architecture for the overall

system. all the computations are done onboard except

from GUI and image classifier which runs on a ground

station computer. The developed software components

for this research is open-source and available online [9].

The flight controller of the quadrotor platform [10]

ensures the low-level (attitude and velocity) control of

the vehicle. Modified open-source software is

implemented for SLAM and motion planning strategies.

RGB-D camera is the source for the visual odometry and

mapping processes, and it is fused with onboard IMU and

ultrasonic sensor for state estimations by an Extended

Kalman Filter. Also, a CNN is employed as the image

classifier for surface crack detection. It presents an

optional support mechanism for task planning of

revisiting locations during inspection. It is built on top of

autonomous navigation capability of the UAV with a user

interface.

A graphical user interface that runs on a ground

station computer is developed for high-level planning of

the revisiting tasks. The interface wraps the capabilities

of the system and enables users to utilize it without a prior

knowledge of robotics. Functional callbacks for planning,

motion control and other features for visualization

purposes such as live video stream are other aspects

derived from this interface.

The integrated system aims autonomous navigation

with onboard computations. The objectives of

autonomous navigation of the UAV in GPS-denied

environments are determined as follows:

1. Real-time state estimation of the UAV during flight,

2. Mapping of the environment in which the UAV

operates for global localization and motion

planning,

3. Motion planning with obstacle avoidance to target

locations of revisiting.

In order to achieve these objectives, software is

developed and implemented on top of open source

software packages and algorithms presented by the

robotics community through Robot Operating System

(ROS) so that the software can be modular and

extendable. Implementation of the software throughout

this work is achieved by using ROS framework.

Attitude control is achieved by using velocity control

mode of the onboard flight controller in the employed

UAV. A graph-based RTAB-MAP [11] ROS node is

used both for visual odometry and mapping. A RGB-D

camera is integrated with the UAV for visual odometry

and onboard IMU is fused with visual odometry with an

Extended Kalman Filter [12] at 50 Hz.

Motion planning is achieved with an implementation

of MoveIt! [13] ROS node with OMPL [14] backend. A

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

Universal Robot Description Format (URDF) of the

UAV is constructed for collision checking. An algorithm

is developed for interoperability of the motion planner

and the revisit planner.

3 Revisit Planning

The proposed revisit planning workflow in Figure 3 is

demonstrated step-by-step as follow:

1. Images acquired during flight are shown in the GUI

for users to pick a revisiting location. Each image

corresponds a location (position and orientation) in

the algorithm since these images are previously

linked with locations.

2. (Optional) A crack detector can step in to process

images if a user aims to use the crack detection

approach as a support for decision making of

locations to revisit.

3. If Step-2 is fulfilled, the GUI visualizes the new

cracks on a new set of images.

4. By the corresponding image, a location for

revisiting is found. Then, the GUI delivers this goal

to the motion planner.

5. The GUI receives an obstacle-free optimal

trajectory as the form of waypoints if available.

6. For UAV to cover the path, the required velocities

between the waypoints are calculated by an

algorithm. In case of being successful or having no

feasible motion plan, the GUI reports feedback.

Figure 3. Workflow of the revisit planning

strategy

For the step 1, Matching the images with their

corresponding locations is essential for this strategy. A

ROS node is developed in order to match images with

poses (position and orientation) where the UAV had been

visited during inspection for possible revisiting in future

missions. This algorithm subscribes to both visual-

inertial odometry and RGB images. Then, it matches

them using Approximate Time Synchronizer message

filter of ROS in a predefined period (2 Hz in this

implementation). The images saved with their

corresponding poses in favor of the revisit planner.

In order to provide the step 4&5, an algorithm is

developed using Python interface of MoveIt!. It sends the

goal to the motion planner and computes the velocities

from the corresponding trajectory. It runs at the backend

of the GUI.

4 Crack Detection

Crack detection is one of the most common objectives

in building inspection. Increasing efficiency of visual

inspection can be achieved by decreasing the time spent

for post-processing on captured images during flight.

In this context, Convolutional Neural Networks

(CNN) are one of the most commonly used architectures

since they can overcome most of the contemporary

challenges in crack detection [15]. They are getting more

accurate and robust for image classification in recent

years.

On the one hand, CNNs are easy to train and can be

applied from open source libraries. On the other hand,

training an entire CNN from scratch is not preferable for

the majority because it is comparatively difficult to have

a sufficient amount of data. Transfer Learning has

eventually emerged. It uses a pretrained network on a

large dataset (e.g. ImageNet which contains 1.2 million

images with 1000 categories) as an initialization or a

fixed feature extractor for the newly created network.

Fine-tuning is one of the methods in Transfer Learning

which is used as a complementary of CNN in this study.

For working efficiently with small datasets and using a

pretrained networks that assures time effectiveness, this

approach becomes appropriate in the scope of this

research.

4.1 Training the CNN

In this work, InceptionV3 [16] network model with

ImageNet weights is fine-tuned since it has relatively

high performance in top-1 validation accuracy than most

of the top scoring single-model architectures (Figure 4).

Keras with TensorFlow backend is used for the

implementation. Graphics Processing Units are utilized

in training sessions. For this purpose, a modified version

of [17] is used.

In the fine-tuning of the CNN, ‘Crack’ and

‘NonCrack’ classes are designated for the image

classifier. The training dataset is collected from Middle

East Technical University campus buildings. It includes

582 images with cracks, and 458 images without cracks

(Figure 5). Since a poor performance was observed on

brick wall images in the first implementation, a group of

brick wall images are added to the ‘NonCrack’ dataset in

order to detect cracks on brick materials. Additionally,

data augmentation function is applied to increase the

number of the data for greater performance.

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

Figure 4. 13 Single-crop top-1 validation

accuracies for top scoring single-model

architectures [18]

The training and validation accuracies over each

epoch are shown in Figure 6. After 5 epochs, the model’s

training accuracy jumps over 90%. After 20 epochs, the

training and validation accuracies attain to approximately

98%. The training and validation losses over each epoch

are shown in Figure 7. The losses converge to 0.05 after

20 epochs.

Figure 5. Sample of images used in the training

(‘Crack’ images at left, ‘NonCrack’ images at

right)

4.2 Cross-validation

After the training session, cross validation is done by

using a different dataset in terms of image variation. The

cross validation dataset consists of 64095 images. 19368

of these have surface cracks while there are no cracks in

the rest. The fine-tuned model accurately predicts 62417

from the 64095 image. The accuracy is 97.382% in the

cross validation. These results clearly demonstrate the

convenience of using an InceptionV3 model as the

backbone for transfer learning for such a crack detection

application.

Figure 6. Accuracy vs. epoch number in the

training and the validation sets

Figure 7. Loss vs. epoch number in the training

and the validation sets

5 Experiments

In order to validate the system, autonomous

navigation and crack detection capabilities are tested

through computer simulations and real-world

experiments.

5.1 Simulations

The simulations are performed in order to verify the

state estimation performance of the system. For this

purpose, a simulated environment is created inside

Gazebo simulator. The environment is constructed to

mimic an indoor space to be able to verify the

performance of visual-inertial navigation of the system in

GPS-denied environments. Figure 8 shows the

environment used in simulations. Two connected spaces

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

in the environment is enclosed by 3x1x3 m (height x

width x length) brick walls. Another wall with relatively

monotonous texture is located because identifying loop-

closures is harder when repetitive patterns are present in

the environment. In this way, the performance of loop

closure detection is more indicative since it is a more

challenging case.

Figure 8. Indoor test environment used in the

simulations

5.1.1 Mapping

After the simulation environment is established, the

tests are performed to evaluate the performance of the

mapping, the state estimation, and planning approaches.

First, an exploration (of the environment) session is

conducted by manually operating the quadrotor UAV, a

3D voxel grid map is constructed Figure 9. The

performance of the mapping is assessed by comparing it

with the original environment in the simulations.

Figure 9. Reconstructed 3D voxel grid map of the

environment

5.1.2 State Estimation

In order to evaluate the state estimation performance

of the system, the position (global x-y-z) and orientation

(yaw) estimates are compared with the corresponding

ground truth values. The ground truth values are obtained

from the simulation environment. Visual odometry and

visual-inertial odometry results are plotted along with

ground truth values (Figure 10). The estimates are closely

tracking the actual measurements of the trajectory.

Figure 10. Ground truth vs. Visual-inertial

estimations (x-direction at top-left, y-direction at

top-right, z-direction at bottom-left, yaw degree at

bottom-right)

The maximum deviations (errors) in state estimates

are presented in Table 1 in order to comprehend the

results in a clearer way. It can be observed that visual-

inertial odometry has superior performance than visual

odometry as expected. Although the maximum

deviations in the x, y and z direction are close to each

other, the errors in the yaw angle are slightly dramatic

compared to them. This expected behavior shows the

importance of fusing inertial measurements with visual

odometry since yaw angle of IMUs are generally prone

to have error due to the fact that the gravity measured by

accelerometers cannot be used to help to estimate it [19].

The values in the table show that the maximum error

along the estimated trajectory is in the order of 0.1 m.

This value is negligible relative to the building scale so,

the performance of the state estimation can be evaluated

as sufficient in terms of building inspection.

Table 1. Maximum deviations in the state estimation

 Visual

Odometry

Max.

Deviation

Visual-Inertial

Odometry

Max.

Deviation

Global

x-direction

0.146157219 m 0.145886557 m

Global

y-direction

0.064824391 m 0.052191800 m

Global

z-direction

0.058057038 m 0.054663238 m

Yaw Angle 0.23723990 rad 0.02274868 rad

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

5.2 Indoor Experiment

The second test case is conducted indoor to be able to

verify the fully integrated system. After verifying the

state estimation and mapping performances in

simulations, experiments are performed in a GPS-denied

environment for evaluation of the integrated system. The

experiments are conducted in the workshop of Design

Factory in Middle East Technical University that can be

seen in Figure 10.

Figure 11. Indoor experimentation environment

5.2.1 Hardware

In real-world tests, hardware of the system is

composed of five components which are an aerial

platform, an onboard visual sensing system, a RGB-D

camera and an onboard computer. As the aerial platform,

DJI Matrice 100 [10] is employed. It is a vertical take-off

and landing (VTOL) quadrotor vehicle with

reconfigurable hardware installation capability. Matrice

100 is used since it meets the requirements of this

research by having onboard low-level flight controller

that handles attitude control.

For the onboard visual sensing system, five units of

low resolution stereo camera and one processor named

Guidance [20] are implemented. Guidance is compatible

with the flight controller of the aerial platform, and it

fuses stereo camera data for real-time obstacle avoidance

in this work.

As the onboard RGB-D sensor, a widely used and

open sourced hardware, Microsoft Kinect v1 is used.

Having served for the purpose of mapping and

localization, it has an RGB camera and infrared depth

camera with 43° vertical by 57° horizontal field of view

at 30 frames per second.

As the onboard computer of the system, DJI Manifold

that has a quad-core, 4-plus-1 ARM processor, NVIDIA

Kepler-based GeForce graphics processor, 2GB memory

with customized version of Ubuntu 14.04LTS is

preferred. Besides, it has a wireless connection chips and

antennas for communication purposes.

Figure 12. Integrated quadrotor UAV used in this

work

5.2.2 Revisiting a Defected Location

The first phase of this test case is the mapping phase.

A low resolution point cloud representation is presented

in Figure 13. The environment is partially mapped since

it is sufficient for the evaluation of the system. For

mapping of the environment, the UAV is covered a

trajectory (blue marker in Figure 13). The trajectory

contains overlapping positions so that loop closures can

be detected.

The test case is demonstration of a revisiting task. For

this purpose, the images acquired during the mapping

phase are processed with the image classifier developed

to detect cracks on walls of the environment.

The algorithm that is developed for matching the

images with their corresponding locations acquires 20

images (Figure 14) in the mapping phase. 13 of these

images are replaced with images that contain cracks

(Figure 15) since there are no surface cracks available in

the test environment. The registered locations (positions)

are kept same as in mapping but only the images are

changed. In this way, the developed task planning

pipeline as well as the crack detection approach can be

tested.

Then, these 20 images are fed into the CNN in order

to identify the cracks. After processing, the CNN

classifies 16 of the images as cracks although it should

be 13. Several other elements such as windows and

radiator mislead the CNN as in the extra 3 images. The

other 13 images are those which have cracks. Thus, it can

be stated that the crack detection application gives

sufficient performance as a decision support tool.

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

Figure 13. Reconstructed maps of the

environment

Figure 14. Sample images acquired during the

mapping session

Figure 15. Sample crack images that are replaced

with the acquired images

5.2.3 Motion Planning

After the crack detection, one of these crack images

that corresponds to a specified location that is selected as

the goal position for revisiting. The goal position is

selected so that the most complicated motion plan should

be achieved in the environment. Thus, the distance

between the start and the goal positions is set to be as long

as possible in the map. Moreover, the walls and the

windows exist between them as obstacles so that the

UAV should takeoff and move around the junction of the

two walls for obstacle avoidance during motion.

Path planning algorithms that are available in MoveIt!

are tested for the motion planning problem between start

and goal positions. PRM*, RRT and RRT* algorithms

compute solutions while EST, SPL, LBKPIECE, PRM,

BKPIECE algorithms are not able to solve the problem.

The reason is possibly the sampling strategies of these

algorithms. They might not be able to sample the

workspace such that the start and the goal positions are

covered for a complete solution. The solution of the

PRM* algorithm (Figure 16) is not acceptable in terms of

both the optimality and the motion constraints since it

requires large roll degrees in the motion that may cause

overturn. The trajectory planned by RRT (Figure 16) has

a sudden jump in the motion which is not possible for the

UAV to execute. On the other hand, RRT* computes a

trajectory (Figure 16) that satisfies criteria for motion

planning. The trajectory is collision-free and smooth as

well as optimal in terms of length. Therefore, the motion

planner is set to use RRT* as the main algorithm in the

motion plans. After the motion is planned, the UAV can

be sent to the goal location for revisiting the crack

location.

Figure 16. Motion plans (PRM* at top-left, RRT

at top-right, RRT* at bottom) Red circles show

the motions that violate the planning objectives

35th International Symposium on Automation and Robotics in Construction (ISARC 2018)

6 Conclusion

In this work, an integrated system that enables

revisiting crack locations during building inspections by

means of a quadrotor UAV is presented. Autonomous

navigation of the UAV in GPS-denied environments is

achieved by integrating and developing open source

software. A task planning strategy is developed in order

to revisit defected locations. Transfer learning is used for

surface crack detection. Simulations and indoor

experiments are conducted for the system verification.

The major contribution of this work can be stated as

a application for building inspection by autonomous

UAVs considering not only the data acquisition

(mapping) phase but also the subsequent close

examination (revisiting) of crack locations that are

identified by a CNN. Future work will focus on

improvements of crack detection on different materials

and of crack properties.

References

[1] Metni, N., & Hamel, T. (2007). A UAV for bridge

inspection: Visual servoing control law with

orientation limits. Automation in Construction,

17(1), 3–10.

[2] Serrano, N. E. (2011). Autonomous quadrotor

unmanned aerial vehicle for culvert inspection

(Doctoral dissertation, Massachusetts Institute of

Technology).

[3] Moranduzzo, T., & Melgani, F. (2014). Monitoring

Structural Damages in Big Industrial Plants With

UAV Images, 4950–4953.

[4] Nikolic, J., Burri, M., Rehder, J., Leutenegger, S.,

Huerzeler, C., & Siegwart, R. (2013, March). A

UAV system for inspection of industrial facilities.

In Aerospace Conference, 2013 IEEE (pp. 1-8).

IEEE.

[5] Kim, H., Lee, J., Ahn, E., Cho, S., Shin, M., & Sim,

S.-H. (2017). Concrete Crack Identification Using a

UAV Incorporating Hybrid Image Processing.

Sensors, 17(12), 2052.

[6] Phung, M. D., Dinh, T. H., Hoang, V. T., & Ha, Q.

(2017). Automatic Crack Detection in Built

Infrastructure Using Unmanned Aerial Vehicles. In

The 34th International Symposium on Automation

and Robotics in Construction (ISARC).

[7] Rau, J. Y., Hsiao, K. W., Jhan, J. P., Wang, S. H.,

Fang, W. C., & Wang, J. L. (2017). BRIDGE

CRACK DETECTION USING MULTI-ROTARY

UAV AND OBJECT-BASE IMAGE ANALYSIS.

ISPRS - International Archives of the

Photogrammetry, Remote Sensing and Spatial

Information Sciences, XLII-2/W6(2W6), 311–318.

[8] Choi, S., & Kim, E. (2015). Building crack

inspection using small UAV. In 2015 17th

International Conference on Advanced

Communication Technology (ICACT) (Vol. 2015–

Augus, pp. 235–238). IEEE.

[9] https://github.com/fatihksubasi/orko

[10] DJI. Matrice 100. On-line:

www.dji.com/matrice100, Accessed: 19/12/2017

[11] Labbe, M., & Michaud, F. (2013). Appearance-

based loop closure detection for online large-scale

and long-term operation. IEEE Transactions on

Robotics, 29(3), 734-745.

[12] Moore T., Stouch D. (2016) A Generalized

Extended Kalman Filter Implementation for the

Robot Operating System. In: Menegatti E., Michael

N., Berns K., Yamaguchi H. (eds) Intelligent

Autonomous Systems 13. Advances in Intelligent

Systems and Computing, vol 302. Springer, Cham

[13] Sucan, I. A. & Chitta, S. MoveIt! On-line:

http://moveit.ros.org, Accessed: 15/11/2017

[14] Sucan, I. A., Moll, M., & Kavraki, L. E. (2012). The

Open Motion Planning Library. IEEE Robotics &

Automation Magazine, 19(4), 72–82.

[15] Pauly, L., Peel, H., Luo, S., Hogg, D., & Fuentes, R.

(2017). Deeper Networks for Pavement Crack

Detection. In Proceedings of the 34th ISARC. 34th

International Symposium in Automation and

Robotics in Construction (pp. 479–485).

[16] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., &

Wojna, Z. (2016). Rethinking the Inception

Architecture for Computer Vision. In 2016 IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR) (pp. 2818–2826). IEEE.

[17] Varga, D. Keras Finetuning. On-line:

https://github.com/danielvarga/keras-finetuning,

Accessed: 21/12/2017

[18] Canziani, A., Paszke, A., & Culurciello, E. (2016).

An Analysis of Deep Neural Network Models for

Practical Applications, 1–7.

[19] Neto, P., Mendes, N., & Moreira, A. P. (2015).

Kalman Filter-Based Yaw Angle Estimation by

Fusing Inertial and Magnetic Sensing. In Lecture

Notes in Electrical Engineering (Vol. 321 LNEE, pp.

679–688).

[20] Zhou, G., Fang, L., Tang, K., Zhang, H., Wang, K.,

& Yang, K. (2015). Guidance: A Visual Sensing

Platform for Robotic Applications. CVPR2015

Workshop.

