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Abstract –  

Sophisticated geometric and semantic models are 
the basis for many applications in the field of Building 
Information Modeling. While the requirements in 
terms of detail, flexibility and conformity on those 
models and thus on the corresponding modeling tools 
increase, especially in the case of parametric and 
procedural modeling, open questions remain 
regarding the support of the user during the modeling 
process and the loss of modeling knowledge after 
finishing a modeling task. Graph Theory can be used 
when addressing these questions. It can be employed 
to represent parametric models in a vendor-neutral 
way and to capture modeling operations by 
formalizing them in graph rewrite rules. This paper 
describes the further development and generalization 
of graph-based model creation for the support of 
feature-based parametric modeling. We show how 
such procedural 3D models that are based on two-
dimensional sketches can be represented by graphs 
and how modeling steps can be formalized by using 
rule-based graph rewriting. This approach enables a 
user to semi automatically reuse previously 
formalized modeling tasks, thereby supports and 
accelerates the modeling process and, additionally, 
allows the formal definition of expert engineering 
knowledge for later use and reapplication. 
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1 Introduction 
Realizing the design and engineering of construction 
projects successfully is a challenging process for all the 
parties involved. 

While even small and straightforward projects may 
evoke complex issues, this is typically the case for large 
projects in which various boundary conditions and 
constraints as well as a vast number of participants from 
different areas of expertise are involved. 

The technological advancements developed 
alongside the ongoing introduction of Building 
information modeling have addressed those challenges 
and support designers and engineers in their daily work 
and their interdisciplinary communication. However, the 
availability of sophisticated models containing geometry 
as well as semantics are a major requirement for many 
applications and workflows. Use scenarios such as 
automated construction progress monitoring [1], 
automated code compliance checking [2], automated cost 
analysis or BIM-based generation of construction 
schedules [3] would not be possible without underlying 
BIM-models comprising various kinds of information. 

The task of creating models is therefore an 
indispensable prerequisite for the use cases mentioned 
above as well as a large variety of additional scenarios. 
The modeling of shield-tunnels, for example, can benefit 
from geometric models comprising different Levels of 
Detail (LoD) as introduced by Borrmann et al. [4]. To 
avoid inconsistencies among the different LoDs, it is 
necessary to apply parametric modeling techniques, 
which allow the automatic preservation of the model’s 
consistency across the different LoDs in case of 
alterations. The research by Borrmann et al. has revealed 
that the manual creation of consistency preserving 
parametric product models is a very complex, time 
consuming and error-prone task. An approach by 
Vilgertshofer and Borrmann [5,6] introduces the 
possibilities of using graphs and graph transformation to 
support the necessary modeling process by formalizing 
parametric 2D sketching operations and subsequent 
procedural operations, which semi-automatically create 
3D models for linear parts of shield-tunnel facility 
models. In this context, “linear” denotes the part of the 
model that rely solely on the course of the alignment, the 
most important basis for infrastructure facilities ranging 
over longer distances. Parts of the model which are 
positioned at specific points on the alignment (crosscuts, 
fire exit shafts, etc.) are called “non-linear”.  

An overview of the concept of this existing approach 
is shown in Figure 1, which conceptually illustrates how 
a model is represented by a graph and how this graph is 
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transformed by applying predefined rewrite rules. An 
arrow “rule” indicates the application of a rewrite rule. 
At each stage of this process, a parametric CAD system 
can interpret and process the graph in order to create an 
editable parametric model. This model is further called 
the evaluated model. An arrow labeled “evaluation” 
marks the generation of the evaluated model out of the 
graph. Note, that the graphs in Fig. 1 do not actually 
represent the respective geometry. They merely illustrate  

the presented concept. 

In this paper, we will show how this approach can be 
refined and developed further in order to enable the 
representation and formal generation of more complex 
models. In the case of shield-tunnel models we extend the 
method towards the additional support of nonlinear 
(meaning “not based solely on the alignment”) geometry 
parts, such as fire exit shafts or crosscuts. Furthermore, 
we will introduce a possibility to use the graph-based 
method for the semi-automatic parametric model 
generation in the scope of high-rise construction, namely 
steel connections (Figure 2). To achieve this, we will 
show how we can refine our graph rewrite system to 
allow the representation of procedural models 
comprising assemblies and constraints on assembly level. 

The paper is structured as follows: Subsequent to the 
introduction, Section 2 will give an overview of previous 
and related research as well as the theoretic background 
of parametric modeling and graph rewriting. Section 3 
will introduce our method of graph-based description of 
parametric modeling and show how this method is further 
refined. Additionally, it will summarize our 
implementation work and possible use cases of our 
extended method. The paper concludes with a summary. 

2 Background and related work 
The benefits of the computer-aided or (semi-)automated 
creation of designs and models have been addressed by 
researchers before. This section puts the presented 
approach in context of a short overview of existing 
approaches. It further presents the theoretical background 
of the proposed methodology in terms of parametric and 
procedural modeling and graph rewriting. 

2.1 Modeling support 
Computers successfully support the process of 
generating technical drawings or product models and 
parametric CAD software is widely used and enormously 
valuable in the building sector [7]. However, the main 
purpose of such software is to assist an engineer in his 
creative design work, which is one of the most complex 
human tasks, as it depends on the consideration of 
various constraints to obtain satisfactory solutions [8]. 
Therefore, a further step is the development of methods 
and tools, which actively support a designer by 
automatically generating whole sets of design variants or 

 

Figure 2: Detailing of a steel connection. 

Figure 1: Conceptual illustration of using graph rewrite rules that formalize detailing steps of 
the graph-based representation of a shield-tunnel model. Each instance of the graph can be 
evaluated to create an actual model in a parametric CAD-system. 
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by the automation of repetitive and trivial tasks in the 
design process. As the concept presented in this paper 
contributes to this field of research, major approaches, 
which also utilize graph representations, are summarized 
here. 

In the field of Computational Design Synthesis (CDS), 
Helms [9] uses a graph grammar for the computational 
synthesis of product architectures. Design knowledge is 
captured in a port-based metamodel and the procedural 
design rules of the grammar. Hoisl [10] presents an 
approach for creating a general spatial grammar system 
that introduces interactive definition and application of 
grammar rules in the scope of CDS. It aims at actively 
supporting a designer in the modeling process using 
mechanical CAD systems. The approach by Kniemeyer 
[11] in the domain of biology makes use of a graph 
grammar to design and implement a language to support 
the functional-structural modeling of plants. 

Furthermore, Lee et al. [12] fundamentally describe 
how parametric building object behavior can be specified 
for building information modeling systems. Their 
approach shows how a common method to “describe the 
design intent in order to share and reuse the user-defined 
parametric objects” between collaborating experts can be 
realized. This approach, however, is not intended to 
automate the encoding of parametric object behavior 
definitions. 

2.2 Parametric modeling 
The concept of parametric, procedural and feature-based 
modeling was developed in the 1990s [13] and is by now 
well established and used in many commercial and open 
source CAD applications such as Autodesk Inventor, 
Siemens NX and FreeCAD. 

While a pure geometric model stores only the 
coordinates of the geometric elements, the concept of 
parametric feature-based modeling is to store the 
sequence of sketching and subsequent 3D modeling 
operations: The construction history of the model. 
Generally, a construction history has the following 
structure: Parametric geometric 2D models (sketches) are 
composed of geometric objects and parametrical 
constraints. During the creation of a sketch in a 
parametric CAD application, a system of constraints and 
objects is defined and forms a constraint problem. A 
geometric constraint solver (GCS) [14] can solve such a 
problem. Schultz et al. [15] define the set of parametric 
constraints that is implemented by all major constraint 
solvers as the standard geometric constraint language. It 
comprises the dimensional constraints for distances and 
angles as well as the following geometric constraints: 
coincident, collinear, tangential, horizontal, vertical, 
parallel, perpendicular and fixed. 

A parametric sketch created in this manner can then 
be used as the basis for an extrusion, sweep, loft or 

rotation to create a 3D object, a so-called feature. By 
applying Boolean operations, several of these features are 
then combined to models that are more complicated and 
result in parts. The combination of various parts lead to 
the creation of an assembly. On assembly level, different 
parts are arranged by mating conditions, which are 
basically complex parametric constraints applied to 
points, lines or surfaces of parts. 

The main advantage of a 3D model created in this 
manner is, that it allows changes of any operation in the 
construction history without losing the consecutive 
modeling operations. Therefore, alterations are easier, 
and errors can be fixed without the necessity of a 
complete remodeling. This modeling technique, however, 
relies on a deep understanding of its basics and therefore 
requires extensive training of possible users, as a 
multitude of constraints and parts lead to very 
complicated models that can get almost unmanaged 
without knowing the originator’s intentions Lee et al. 
[12]. Our approach therefor aims at introducing 
automation mechanisms into parametric feature-based 
modeling. 

2.3  Graph rewriting 
The presented approach for automating the detailing 
process in this paper is based on graph theory and also 
uses graph rewriting methodology as comprehensively 
described by Rozenberg et al. [16]. We employ graphs 
and graph rewriting mechanisms to enable the 
representation and the modification of procedural 
parametric models. An application of graph rewriting to 
semi-automatically create and alter parametric sketches 
has been presented in Vilgertshofer and Borrmann [5] 
and was further developed [6]. 

Graph rewriting operations are used to create a new 
graph out of an existing graph by altering, deleting or 
replacing parts (subgraphs) of the existing graph. The 
changes are formalized through graph rewrite rules 

 

Figure 2: Graph rewriting via the SPO 
(inspired by Blomer et al. [19]). 
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written as L→R. A graph rewrite rule is defined by a 
pattern graph L and a replacement graph R. When a rule 
is applied to a graph (called the host graph), this graph is 
searched to find a subgraph that matches the graph 
pattern defined by L. A successful matching leads to the 
replacement of L with R under the consideration of a 
preservation morphism r. This preservation morphism 
controls how R substitutes or alters an instance of L in the 
host graph. The outcome of this rule application is called 
the result graph H’ as illustrated in Fig. 2. 

There are several different approaches to graph 
rewriting. Two main examples are the Single-Pushout 
Approach (SPO) and the Double-Pushout Approach 
(DPO) [17]. 

3 Conceptual approach 
This section will give an overview of the basic 

concept of our existing approach and show how it was 
extended 

3.1 Graph-based description of parametric 
models 

In the following section, we will first give a short 
comparison of our work so far and discuss its limits. 
Thereafter, we describe how we revise and extend it to 
generate a wider range of parametric models. 

3.1.1 Overview 

Parametric modeling CAD-systems use geometric 
elements such as points, lines or circles as primitive 
planar entities. The parametric constraints as described in 
Section 2.2 define the topology of these entities and result 
in parametric sketches. Those are the basis for further 
procedural modeling operations, which create 3D 
features. To represent a procedural parametric model by 
means of a graph, it is necessary to define, which types 
of geometric elements, parametric constraints and 
procedural modeling operations are employed. In the 
scope of our research so far, we generally considered the 
following types: 

• geometric elements: point, line, spline circle, arc 
• parametric constraints: 

o geometric constraints: coincident, collinear, 
equal, concentric, horizontal, vertical, parallel, 
perpendicular, fixed 

o dimensional constraints: dimensions of one 
geometric element, distances between two 
geometric elements 

• procedural modeling operations: workplane, 
extrusion, sweep 

This listing roughly reflects the standard geometric 
constraint language defined in Schultz et al. [15] 

summarizing the most common operations provided by 
any parametric CAD system (see Section 2.2). 

3.1.2 Formalization 

For formal representation of these items, a graph 
metamodel describes the necessary attributed types of 
graph nodes and edges are. They can then be instantiated 
during the generation of a graph. The metamodel also 
forms the basis for the definition of graph rewrite rules, 
which formally describe modeling steps. An end user can 
apply those instead of manually executing the underlying 
procedural or parametric modeling operations. Fig. 1 in 
Section 1 conceptually illustrates how a graph represents 
a model and how the application of predefined rewrite 
rules transforms this graph. 

The graph representing a procedural geometry model 
is a directed multigraph with loops G = (V, E ,Tv ,Te , s, t, 
lb, tyv, tye, att). It is defined as follows: 

• V = VP ˅ VS is a nonempty finite set of vertices. 
Elements of VP are vertices that represent 
procedural modeling operations, while elements of 
VS represent geometric objects in a sketch. 

• E = EP ˅ ES is a nonempty finite set of edges. 
Elements of EP are used to represent general 
relations or dependencies between the procedural 
operations and allocate geometric elements to a 
specific sketch. Elements of ES represent parametric 
constraints of a geometric element or between two 
geometric elements. 

• VP ˄ VS = Ø and EP ˄ ES = Ø. 
• s : E → V is a mapping that indicates the source 

node of all edges. 
• t : E → V is a mapping that indicates the target node 

of all edges. 
• Σ is an alphabet of labels of vertices and edges. 
• lb : E ˅ V → Σ is a labeling function. 
• Tv = TP

v ˅ TS
v is a set of types for the vertices in V. 

TP
v and TS

v are sets of types for nodes in VP and VS 
respectively. 

• Te = TP
e ˅ TS

e is a set of types for the edges. TP
e and 

TS
e are sets of types for nodes in EP and ES 

respectively. 
• tyv : V → Tv is a typing function for the vertices, 

such that tyv(VP) ˄ tyv(VS) = Ø. 
• tye : E → Te is a typing function for the edges, 

such that tye(EP) ˄ tye(ES) = Ø. 
• At is a set of attributes of vertices and edges. 
• att : E ˅ V → At is an attributing function. 

The metamodel describes the possible set of types Tv 
and Te of the graph entities V and E. They can then be 
instantiated to execute a rewrite rule to create or alter the 
graph. Additionally, the metamodel defines the attributes 
of a certain type as well as conditions that control which 
nodes and edges may be incident or which node types can 
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be adjacent. As the type of a graph entity clearly 
determines which attributes that entity has, an attributing 
function is not given. 

Instead of using separate graphs to represent sketches 
and subsequent procedural operations we concluded that 
combing all information needed for the representation of 
a particular model should be embedded in a single graph. 
This is realized by integrating graphs that represent a 
sketch into the procedural graph. The benefits of this 
method are presented in [6] in detail. We still 
conceptually separate the subgraphs representing 
sketches and the procedural operations that subsequently 
create 3D features and therefore use the terms sketch 
graph and procedural graph. 

3.1.3 Limits 

While the presented method enables the automated 
generation of basic shield tunnel models, based on the 
alignment, limitations occur. This is especially the case, 
when we approach the question of non-linear geometry 
or use cases in other domains. Creating and placing 
various features in a model proves quite difficult when 
there is no possibility to arrange them without altering the 
position of the sketches. In the parametric feature-based 
modeling theory, so-called assemblies remedy this 
problem. One or more features are combined into one 
part, whereas an assembly consists of multiple parts. 
While each part has its own local coordinate system to 
position one or more features (each sketch has its own 
local coordinate system, too), the assembly itself defines 
yet one more coordinate system in which the different 

parts are positioned. This placement is achieved by using 
either fixed coordinates (which is usually the case for the 
first part to be positioned) or by placing one part 
relatively to another one. The relative positioning works 
quite similar to the parametric constraints, which define 
the topology of the geometric elements in a sketch. In this 
context, however, the term mating conditions is used. 
Basic mating conditions define points, lines or faces of a 
part to be constrained to those of another part in terms of 
being coincident (points), collinear (lines) or on the same 
plane (faces). 

In this regard, we also encountered the problem of 
referencing geometric entities that are the result of a 

 

Figure 4: Structure of a model consisting of 
sketches, features, parts and assemblies.  

Figure 5: Extended version of the graph metamodel. 
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procedural operation in the graph. The extrusion of a 
rectangle, for example, forms a cuboid. Here, the four 
points and four lines that the sketch describing the 
rectangle contains, are represented in the graph. Another 
eight lines, however, bound the resulting cuboid. 
Additionally, four new points connect those lines and the 
cuboid itself comprises six faces. However, the graph 
does not represent these 18 new entities and it is therefore 
not possible to reference them in subsequent graph 
transformation operations. Therefore, we need to refine 
the rules creating subgraphs that represent feature objects 
to comprise such geometric entities, if they objects need 
to be referenced by consecutive rewriting operations. 

The necessary extensions to our graph metamodel in 
order to include assemblies and mating conditions are 
described in the following subsection.   

3.2 Extension of the approach 
As the graph metamodel is the formal description of 
types of graph nodes and edges that can be instantiated, 
it has to be extended in order to cover the representation 
of the described modeling operations on an assembly 
level. Figure 5 depicts the previous version of the 
metamodel in black color, while the necessary extensions 
are drawn in red color. 

Most important extensions are the new node types 
part and assembly. They are used in a similar manner as 
sketch nodes are used to group the geometric elements of 
a sketch: Part nodes group one or more features created 
from sketches, whereas assembly nodes group one or 
more parts. Furthermore, constraints in the procedural 
context are added, to define the relative positioning of the 

parts in an assembly. 
While this refinement is not extensive in terms of new 

node and edge types, it allows us to model more complex 
geometry than in the previously presented approach. We 
are now able to construct a model consisting of more than 
one part and to position these parts relative to one another. 
This decomposition of the model allows us to generate 
subgraphs representing model parts that are either 
completely independent from one another or only related 
by mating constraints. 

 

Figure 7: A model before and after applying three 
different types of mating constraints: coplanar, collinear 
and coincident. 

These mating constraints are much better suited to the 
relative positioning of three-dimensional objects to one 
another than parametric constraints, as we do not have to 
consider the positioning of workplanes or the projection 

Figure 6: Modeling of a steel connection with the use of features/parts as an 
assembly. 
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of existing geometry between sketches. During the 
modeling of parts those operations are still necessary and 
helpful, though. When positioning parts in an assembly 
they can also be rotated via the application of mating 
conditions. As this is not the case with features combined 
in a part without using a procedural operation, this also 
gives us more freedom in the positioning process. The 
graph is in its definition now much more conform to the 
general concept of parametric feature based modeling. 

As described before, the entities that mating 
constraints link to one another have to be present in the 
graph in order to apply those constraints. We 
concentrated on two possible solutions for this problem: 
We can either define a rewrite rule in a way that all new 
entities (points, lines and faces) are also created within 
the representing graph and can be referenced by further 
rewrite rules. Another possibility is to only create those 
entities that are necessary for later rewriting operations. 
This, of course, is only reasonable if we know at that 
point, which entities this will be. We are still considering 
which of these solutions is more constructive or if they 
should both be implemented simultaneously. 

3.3 Use cases and implementation 
For the definition and extension of the graph rewrite 
system consisting of a metamodel and appropriate graph 
rewrite rules, the graph rewrite generator 

GrGen.NET [18] has been used while the generation of 
the evaluated sketch is performed with the commercial 
parametric CAD application Autodesk Inventor. Inventor 
contains a geometrical constraint solver, which interprets 
the constraint problem defined by the graph. A software 
prototype was developed to utilize both the 
functionalities of GrGen.NET and of Autodesk Inventor 
to apply rewrite rules and perform the consecutive 
creation of the evaluated model.  
In order to verify the improvements made to the graph 
rewrite system we examined two test scenarios. First, we 
employed the graph system to model the connection of 
two steel beams (Figure 6). Here, the connecting plate is 
designed from extruding a sketch to create a 3D feature. 
A part consisting only of this feature is then combined 
with two other predefined parts (the beams) in an 
assembly. To position those three parts in accordance 
with each other, several planes of the respective parts 
were constrained by mating conditions. 

In the scope of modeling non-linear geometry of 
shield-tunnels, a crosscut was added to an existing model 
of a tunnel. We also realized this by using the introduced 
assembly nodes. While the tunnel model without the 
crosscut would be modeled as only one part, we now cut 
the alignment at both sides of the future position of the 
crosscut. As we now have three alignment sections, we 
use them as basis for three different parts. The two outer 
parts are created by reapplying the existing rules that 

Figure 8: Process of adding a crosscut to a tunnel model. Bottom: States of the graph representing the  model. 
Top: Geometric result of the graph transformation process. 
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rewrite the graph to create the linear 3D geometry. The 
inner part however is represented by a new subgraph. 
This subgraph is created by executing a corresponding 
rewrite rule that creates the representation of a tunnel 
section comprising the opening for the crosscut. This 
process is graphically illustrated in Figure 8. Thereby we 
create three rather independent subgraphs representing 
the three model parts shown in the figure. Mating 
constraints are then used to combine them to a consistent 
model. In the graph representation the subpgraphs are 
therefore connected by edges representing those mating 
constraints. For example, they are used to mate the faces 
of two tunnel parts that have to align in order to keep 
those parts in position respective to each other. 

4 Summary 
The presented research introduces and extends a concept 
for the graph-based representation of product models and 
their automatic generation and detailing by performing 
graph rewrite operations based on formal rules defined in 
a graph rewriting system. 

It has already been successfully applied to the product 
models of shield-tunnels and the automatic creation of 
consistency preserving multi-scale versions of such 
models. The main contribution is the further elaboration 
of the underlying graph rewriting system that enables the 
generation of more complex graphs covering the 
representing of a larger variety of parametric 
representations.  To prove the feasibility of our approach, 
the graph rewriting system has been implemented in the 
graph rewriting tool GRGEN.NET. 

Further research will focus on creating a larger set of 
rewrite rules, which enables end users to create more 
diversified models in different contexts. 
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