
35th International Symposium on Automation and Robotics in Construction (ISARC 2018) 

Performance Comparison of Pretrained Convolutional 

Neural Networks on Crack Detection in Buildings  

Ç.F. Özgenela and A. Gönenç Sorguçb  

abDepartment of Architecture, Middle East Technical University, Turkey 

E-mail: fozgenel@metu.edu.tr, arzug@metu.edu.tr   

 

Abstract –  

Crack detection has vital importance for 

structural health monitoring and inspection of 

buildings. The task is challenging for computer vision 

methods as cracks have only low-level features for 

detection which are easily confused with background 

texture, foreign objects and/or irregularities in 

construction. In addition, difficulties such as 

inhomogeneous illumination and irregularities in 

construction present an obstacle for fully autonomous 

crack detection in the course of building inspection 

and monitoring. Convolutional neural networks 

(CNN’s) are promising frameworks for crack 

detection with high accuracy and precision. 

Furthermore, being able to adapt pretrained 

networks to custom tasks by means of transfer 

learning enables users to utilize CNN’s without the 

requirement of deep understanding and knowledge of 

algorithms. Yet, acknowledging the limitations and 

points to consider in the course of employing CNN’s 

have great importance especially in fields which the 

results have vital importance such as crack detection 

in buildings. Within the scope of this study, a 

multidimensional performance analysis of highly 

acknowledged pretrained networks with respect to 

the size of training dataset, depth of networks, 

number of epochs for training and expandability to 

other material types utilized in buildings is conducted. 

By this means, it is aimed to develop an insight for 

new researchers and highlight the points to consider 

while applying CNN’s for crack detection task.  
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1 Introduction 

Architectural artefacts and civil infrastructures are 

exposed to loss of structural performance due to both 

deterioration of materials in time and structural 

challenges such as natural disasters. Structural 

monitoring and assessment of buildings have utmost 

importance for both sustaining the lifespan of structures 

and predict possible failures.  

Visual crack inspection and detection is a widely used 

method for gaining insight into the condition of the 

architectural artefacts and structures. While the majority 

of the inspection is conducted by means of manual 

observations, several disadvantages of manual 

observation process are documented in literature such as 

being time-consuming and subjectivity of the evaluation. 

[1,2] 

Advancements in robotics and image capturing 

hardware make autonomous data capturing possible 

while machine learning methods and deep learning 

algorithms in image processing show promise in the fully 

autonomous inspection of structures. Utilization of deep 

learning in these tasks not only provides reduction of 

computational time but also enables precise measurement 

of features to be inspected without human error.  

On the other hand, autonomous conduction of visual 

crack detection is a challenging task for all image 

processing methods due to three major practical reasons 

caused by nature of the subject matter as:  

1. discriminative crack features are low-level which is 

easily confused with noise in the background 

texture or foreign objects (such as hair or vegetation) 

2. inhomogeneous illumination of the surface 

endangering the conservation of crack continuity [3] 

3. irregularities in the application such as exposure of 

jointing 

These practical challenges mentioned above are 

illustrated in Figure 1. 

Resolving the practical challenges of images based 

crack detection in the course of autonomous inspection is 

an active field of study.  

Convolutional neural networks (CNN’s) are adequate 

frameworks with their high accuracy predictions in 

image classification and recognition tasks. There are 

several studies on crack detection on buildings and civil 

infrastructures with the use of CNN’s. Within the scope 

of this study, it is aimed to investigate the relationship 

between the performance of CNN’s and the affecting 

parameters.  
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Figure 1. Practical challenges for crack detection, 1) 

the painting as the noise at the background (top), 2) 

shadow obfuscating crack and present noise 

(middle), 3) jointing at left presents noise (bottom)   

2 Background 

Visual crack detection task can be evaluated as a 

classification problem of crack presence in essence. Two 

types of methodological approaches are observed in the 

course of autonomous visual crack detection. The first 

type of studies is based on the sequential operation of 

feature extraction and classification by means of machine 

learning classifiers [4, 5]. In such studies, adaptive filters, 

transformations and/or morphological operations are 

utilized for extraction of features which are to be used for 

discriminating crack images from non-crack images. 

These features are then fed to machine learning 

classifiers to conduct classification. Studies of Adhikari 

et al. on pavement cracks [2] and Wu et al. and Sinha et 

al. on pipe defects [4,5] can be given as exemplary 

studies of this group. The second type of methodological 

approach is observed in studies utilizing deep learning 

(e.g. convolutional neural networks) which the feature 

extraction stage is conducted within the black box 

algorithm. In such a workflow, the input data is provided 

as raw images without the specification of features to 

search for, and algorithm finds patterns among the image 

data to conduct the desired task. As the features to be 

used for the classification of crack presence are 

determined by the system, human bias/error is avoided 

but replaced with the error of the system. In this sense, 

the workflow has a data-driven approach rather than 

knowledge-driven approach. Even though the 

adaptability and extensibility of the framework are more 

promising than sequential workflow, the errors and the 

factors affecting should be understood to further progress 

the potentials of deep learning based implementations.  

Following studies are exemplary studies employing 

CNN’s. It should be noted that it is not aimed to make a 

complete list but rather provide a baseline for the present 

study. The studies are compared in terms of number of 

convolutional layers utilized, number of images used for 

training and reported accuracy for crack detection. On the 

other hand, the classification accuracies of the inspected 

studies are highly dependent on the training and test 

datasets and not directly comparable. 

Studies of Zhang et al. [6] and ASINVOS developed 

by Eisenbach et al. [7] can be given as example studies 

regarding the application of convolutional neural 

networks on crack detection on roads. Zhang, et al. uses 

a CNN with 6 convolution layers to conduct binary crack 

detection task on roads. Authors used 600K images for 

training and 200K for testing and got 0,8965 F1 scores. 

The framework utilized in Eisenbach et al.’s study 11 

convolution layers. Authors used 4,9 M image patches 

and tested the network with 1,2M images. ASINVOS is 

reported to score slightly better than the network 

developed by Zhang, et al. by scoring 0,7246 F1 score 

compared to 0,6707 Zhang, et al.’s network on the 

dataset provided by Eisenbach et al. Similarly, Wang et 

al. [3] utilizes CNN with 5 convolutional layers for 

classification of asphalt pavement cracks but differently 

from the studies mentioned above, Wang et al. utilizes 

3D data input including depth with 1mm resolution. 

Authors used 640K training image cells, 128K test image 

cells and scored 0,9429 accuracy. Pauly, et al. [8] also 

focus on crack detection on pavements and investigate 

the relation between the number of layers in CNN 

(deepness of network) by comparing performances of 6 

layered and 7 layered networks. Authors also worked on 

two different subsets with the first subset contains 200K 

training images versus 40K test images, and the second 

subset contains 40K training images versus 60K testing 

images which are collected from different locations 

compared to training images.  Study scored 0,913 

accuracy with CNN containing 7 convolutional layers on 

the first subset. As the studies mentioned above are 

trained from scratch, they require a considerable amount 

of images for training which can be a limiting factor in 

terms of layers utilized in the network.  

The study conducted by Cha, et al. [9] uses deep 

learning for crack damage detection for structural health 

monitoring. In that sense, the study is significant as it is 

implemented on building scale which the illumination 

conditions and forces which the material is subjected to 
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show more variations compared to pavement and road 

inspections. Authors used a framework with 4 

convolutional layers for concrete crack detection. The 

network is trained with several datasets with varying 

sizes from 2K to 40K images and testing is done with 54 

full resolution images. Based on validation accuracies it 

is advised to use more than 10K images for training a 

network from scratch. For test results, mean accuracy of 

0,9683 scored.  

Availability of the pretrained networks eases the 

applicability of CNN’s in new tasks without the 

requirement of high computational cost and deep 

knowledge on how CNN’s operate. AlexNet developed 

by Krizhevsky, et al. [10], VGG networks developed by 

Oxford Visual Geometry Group [11], GoogleNets [12], 

and ResNet networks developed by Microsoft [13] can be 

given as examples for highly acknowledged pretrained 

networks which are used as the basis for application to 

new tasks. Study of Gopalakrishnan et al. [14] can be 

given as an example which uses transfer learning to 

utilize a pretrained network for pavement distress 

detection and employs the VGG16 network trained on 

ImageNet data. The study compares different classifiers 

in conjunction with VGG16 network. Authors used 760 

images for training and 212 images for testing purposes 

and achieved the highest accuracy of 0,90 with the single-

layered neural network classifier.  When compared to 

studies which CNN’s are trained from scratch, a similar 

accuracy is obtained with considerably fewer data with 

the use of transfer learning which is promising in terms 

of fast and easy implementation to new tasks. 

All of these studies are concluded with accuracies 

above 90% for detecting cracks in images. On the other 

hand, performance of the mentioned studies based on 

several factors such as selection of data, number, and 

type of layers utilized other than convolutional layers, 

choice of filter sizes. Hence, these studies don’t provide 

any indication of how deepness of networks and size of 

image datasets affect the performance of these 

frameworks.  

Within the scope of this study, a comprehensive 

analysis on the applicability of CNN’s on crack detection 

in building-oriented applications is conducted by means 

of transfer learning. In this regard, the influence of 

training dataset size, number of epochs used for training, 

number of convolution layers and learnable parameters 

on the performance of CNN’s are inspected. In addition, 

transferability to new material types are investigated.  

3 Data Preparation 

In the present study, datasets utilized are explained in 

three categories as training, validation and test sets. The 

base dataset is obtained by extracting 40K image patches 

with the dimensions of 224 to 224 pixels, from 500 full 

resolution (4032 pixels to 3024 pixels) images taken from 

walls and floors of several concrete buildings in METU 

Campus. These images are taken approximately 1m away 

from the surfaces with the camera facing directly to the 

target. Even though the concrete surfaces have variation 

in terms of surface finishes (exposed, plastering and 

paint), the images are captured on the same day with 

similar illumination conditions. No data augmentation in 

terms of random rotation or flipping is applied. Image 

samples for training and test cases are shown in Figure 2. 

The base dataset is publicly shared [15].   

The preparation of these datasets are explained as 

below: 

Training dataset: As a convention, %70 of randomly 

selected images from the base dataset is used for training 

while %15 is used for validation throughout the training 

and %15 is used for testing. As a result, the biggest 

training dataset consists 28K images. The size of training 

dataset is then randomly reduced from 28K to 21K, 14K, 

7K, 3,5K, 1,75K, 0,7K and 0,35K to imitate grid search 

for investigation of the relation between performance and 

size of the training dataset. All of the datasets are 

balanced in terms of classes, containing an equal number 

of positive and negative images.  

Validation dataset: Validation dataset is used 

throughout the training to monitor the learning curve of 

the networks. The number of images used for validation 

is chosen with regard to the size of the respective training 

dataset size. The %70-%15 ratio between the training set 

and validation set is conserved for all training cases 

 

 

Figure 2. Training and test image samples. 

Positive training samples (top left), Negative 

training samples (top center), Possible false-

positive training samples (top right), Concrete test 

samples (bottom left), Pavement test samples 

(bottom center), Brickwork test samples (bottom 

right) 

Test datasets: Four distinct cases are chosen for testing 

purposes. The first case uses 6K images which are 

randomly chosen from the 40K base dataset. This 

partition corresponds to the %15 of the 40K dataset 
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which is not utilized in either training or validation. All 

networks which are trained with varying sizes of training 

datasets are subjected to the same test dataset in order to 

observe the effect of training dataset size and 

performance in predicting visually similar images.  

The second, third and fourth cases focus on the 

performance of the trained networks to investigate the 

transferability of learned features to new cases in terms 

of both physical conditions, such as illumination or 

camera angle, and material variations. The cases are 

respectively crack detection in pavements with concrete 

material, in buildings components with concrete material, 

and in buildings with brickwork material. 50 full 

resolution images are used for obtaining 500 test images 

per test case. All images are taken from different 

buildings and locations compared to the ones used 

training and validation at different times of the day.  

The number of images used for training, validation, 

and tests is shown in Table 1 and Table 2. 

 
Table 1. Number of images in datasets used for training, 

validation  

 
Training Validation 

Positive Negative Positive Negative 

28K 14000 14000 3000 3000 

21K 10500 10500 2250 2250 

14K 7000 7000 1500 1500 

7K 3500 3500 750 750 

3,5K 1750 1750 375 375 

1,75K 875 875 188 188 

0,7K 350 350 75 75 

0,35K 175 175 38 38 
 

Table 2. Number of images in datasets used for testing 

Cases 
Testing 

Positive Negative 

15% randomly selected from 

base dataset (Test1) 
3000 3000 

Concrete Pavements (Test2) 250 250 

Concrete Buildings (Test3) 250 250 

Brickwork Buildings(Test4) 250 250 

4 Performance Comparison 

Within the scope of this study, the performance of 

seven highly acknowledged pretrained networks; 

namely, AlexNet [6], VGG16, VGG19 [7], GoogleNet 

[8] and ResNet50, ResNet101, and ResNet152 [9] on 

crack detection of concrete surfaces are inspected in 

relation with the size of training dataset size and number 

of epochs to obtain best results. In addition, the effect of 

complexity and depth of CNN’s are investigated. The 

number of convolutional layers and number of learnable 

parameters which gives an insight into the number of 

filters used by networks is shared in Table 3. 

Table 3. Pretrained networks, number of convolution 

layers and learnable parameters 

 

# of 

Convolution  

Layers 

# of 

Learnable 

Parameters 

AlexNet 8 60M 

VGG16 16 138M 

VGG19 19 144M 

GoogleNet 22 7M 

ResNet50 50 25.6M 

ResNet101 101 44.5M 

ResNet152 152 60.2M 

 

The networks utilized in the scope of the study are 

pretrained on ImageNet data and obtained from 

MatConvNet website [16]. All tests are conducted using 

MatConvNet and Matlab on a desktop workstation with  

2 Intel Xeon E5-2697 v2 @2,7 GHz CPU cores, 64GB 

RAM and NVIDIA Quadro K6000 GPU. While batch 

size is bounded with the GPU memory, other 

hyperparameters are determined as provided by 

MatConvNet website. On the other hand, the approach 

followed for the comparison is extendable to any 

pretrained network on any dataset with varying 

hyperparameter values. 

Each of the pretrained network mentioned above is 

trained with training datasets shown in Table 1 for 10 

epochs. It is observed that 10 epochs are sufficient for 

convergence of all network and after 10 epochs 

performance of networks fluctuate. Training on 7 

pretrained networks on 8 different sizes of training 

datasets for 10 epochs yields 560 trained networks 

corresponding to all combinations of parameters taken 

into account in the comparison. After obtaining trained 

networks, the performance of these networks is evaluated 

with four cases resulting in 2240 scores which can be 

represented as 7x8x10x4 (network, dataset, epoch, test 

case respectively) matrix. For performance evaluation 

metrics, accuracy and F-scoring are used.  

It is observed that the accuracy and F-scores of best-

performing networks are compatible with each other.  

Even though the discussion regarding the performance of 

networks is advanced mentioning accuracy scores, the 

same remarks can be made for F-score results. For the 

sake of simplicity, the maximum accuracy and F-score 

results obtained per network are shown in Table 4 

together with training dataset and epoch information. The 

results per row are discussed below. 
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Table 4. Maximum validation and test accuracies of pretrained networks 
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4.1 Test Results 

 AlexNet, VGG16, VGG19 and GoogleNet networks 

converge quickly by scoring over 0,90 accuracy at the 

first epoch with 350 training samples while ResNet 

family achieved poorer scores at first iteration with the 

smallest training dataset. At second epoch all networks 

scored over 0,9. However, it is observed that higher test 

scores are obtained from higher epochs and larger 

datasets.  

All networks benefitted from larger datasets achieving 

the best test score with more than 14K training samples. 

While ResNet50 and ResNet152 achieved best scores 

with 14K training set, VGG16, GoogleNet, and 

ResNet101 obtained best scores with 21K training 

dataset. Yet, the accuracy differences between results 

obtained with 14K, 21K, and 28K are barely noticeable 

and it is not possible to make an inference regarding the 

performance comparison of networks by solely 

inspecting maximum scores for test 1 which is based on 

the images similar to training dataset. Following test 

cases, which shows diversity in terms of illumination, 

camera orientation and distance with respect to the 

surface and material, are conducted to examine whether 

the networks overfit or prominent to learn generic crack 

features for further cases. 

As can be seen from Figure 2, crack images on 

pavements are visually more discernable due to 

homogeneous illumination conditions and high contrast 

between cracks and background textures with respect to 

building application. As a result, all networks except 

AlexNet scored higher or similar scores with respect to 

third and fourth test cases. Low scores of ResNet101 and 

ResNet152 networks show that these networks are 

subjected to overfitting even with 350 training images. 

While both networks scored 0,99 accuracy in test 1 case, 

the maximum score obtained for test case 2 is below 0,8. 

The mismatch between the networks showing best 

performance for accuracy and F-score metrics also 

indicate that the networks are not stable.  

Also, ResNet50 achieved the highest score with 

smallest training size and first epoch showing tendency 

to overfit. This tendency is evaluated as a mismatch 

between ResNet’s high capability of classifying objects 

with high-level features and cracks’ low-level features.  

GoogleNet and VGG19 networks achieve over 0.95 

accuracies with relatively limited training data. For 

VGG16, even though the obtained highest score is with 

the 21K dataset, it achieved 0.96 accuracy with 0,35K 

dataset at first and second epochs which are also 

comparable with successful counterparts. 

Similar to the pavement case study, VGG networks, 

and GoogleNet were able to transfer learned features to 

building case scoring over 0,92 accuracy with at most 

3,5K training dataset. While VGG networks are barely 

affected by the variations in illumination, background 

texture and camera orientation with respect to the 

surface, GoogleNet is subjected to 0,06 performance loss. 

On the other hand, ResNet networks show overfitting 

with decreasing scores regardless of the size of training 

data and number of epochs.  

Brickwork images are relatively the most challenging 

case among the four test cases as brickwork jointing and 

background textures are challenging noises. Among the 

tested cases, VGG16 and GoogleNet achieved more than 

0,90 accuracy. Especially 0,96 accuracy performance of 

VGG16 is promising in terms of achieving a generic 

crack detection framework regardless of material with 

limited dataset size.  

4.2 Discussions  

Regardless of the test case and utilized network, the 

performance of training datasets with fewer samples are 

comparable to counterparts with a high number of 

samples.  While obtaining test 1 accuracy with the 

highest number of training samples, training datasets 

with 3,5K were sufficient for obtaining the best scores for 

other test cases. One exception can be given as the 

ResNet family performance for Test 2, Test 3, and Test 4 

where the performance scores significantly drop 

indicating overfitting. In the case of the training data and 

test data being similar, size of training dataset positively 

influences accuracy. On the other hand, when the 

networks are used for varying cases in terms of 

illumination or spatial relations between camera and 

surface, then the increasing the size of dataset pose a risk 

of overfitting. This analysis is also valid for training 

epochs. As the number of epoch for training increase, 

accuracy for test data with similar conditions increases 

while for diverse test cases, the networks have a tendency 

to overfit or have a bias towards the training dataset with 

the increased number of epochs. For future studies, it is 

advised to start with few hundreds of images per class for 

training and gradually increase the number of training 

samples until overfitting is observed. It is also noted that 

the level of variance in the dataset is more important than 

the number of samples. Yet, variance among the training 

dataset is highly case specific and should be evaluated 

with respect to representation level of real-life cases.   

Regarding the influence of network complexity in 

terms of the number of convolution networks and 

learnable parameters, it is observed that the influence of 

the number of convolution layers is more dominant than 

the number of learnable parameters. Best performing 

pretrained networks have 16-22 convolution layers 

(VGG16, VGG19, and GoogleNet). While AlexNet with 

8 convolutional layers has difficulties in transferring 

learned features to new cases, ResNet networks with 

more than 50 convolutional layers have a tendency to 

overfit the training data. It should be noted that the layer 

configuration (GoogleNet having inception module and 
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ResNet being based on residual units) is disregarded 

within the scope of this study. In order to examine the 

influence of different layer configuration ResNet family 

networks are required to be truncated to obtain the same 

number of convolution layers. On the other hand, similar 

layer configuration of AlexNet, VGG16, and VGG19 

shows that increased number of convolution layers 

contributes to the performance of networks in crack 

detection task for VGG16 and VGG19 compared to 

AlexNet. Another deduction can be made considering the 

number of fully connected layers. Simple CNN’s having 

hierarchical layer connections (AlexNet and VGG 

networks) have shown resilience in varying test cases 

while DAG networks (GoogleNet and ResNet networks) 

have difficulty in transferring learned features to new 

cases. Even though the number of fully connected layers 

is not the only reason for the performance drop, 

hierarchical networks have proven themselves to adapt to 

new cases.  

The number of learnable parameters, on the other 

hand, does not have a direct relationship with the 

performance but plays a significant role in computation 

time. GoogleNet, having almost five percent of VGG 

parameters scored a similar score. This can be linked to 

the low number of features defining cracks.  

The computational time required to train 28K dataset 

per epoch for all networks are shared in Table 4.  

Table 4. Computational time for training 28K dataset 

per epoch 

28K dataset | per Epoch Training Time (s) 

AlexNet 133 

VGG16 2827 

VGG19 2943 

GoogleNet 1227 

ResNet50 1666 

ResNet101 2447 

ResNet152 3789 

 

It should be noted that the majority of the learnable 

parameters are used by the fully connected layers of 

VGG networks. Hence, the trade-off between 

computational time and performance emerges as a trade-

off between the number of fully connected layers and 

training time. On the other hand, it is possible to limit the 

number of filters to reduce the number of learnable 

parameters, thus the computational time while 

conserving the number of convolution layers for 

developers constructing the network from scratch.  

5 Conclusion 

Within the scope of the study, the performance of 

highly acknowledged pretrained networks on crack 

detection task is evaluated for buildings. The relations 

between training dataset size, number of epochs for 

training, number of CNN layers and learnable parameters 

are thoroughly investigated. It is shown that the 

pretrained networks can be fine-tuned for crack 

classification task with a limited number of training 

samples when the variance among data is provided or the 

test case constitutes images similar to the training 

samples. In the absence of variance among training 

images, increasing number of image samples not only 

contributes to the computational time without enhancing 

performance but also increases the risk of overfitting as 

the number of images with similar features analyzed per 

epoch increases. In the case of test case being visually 

incompatible with respect to training samples, it is 

advised to train the network with a limited number of 

samples and observe the tendency to overfit with the 

increasing number of training dataset size. 

Regarding the effect of the number of convolutional 

layers to accuracy, even though the study does not 

involve a grid search for an optimum number of layers 

for the task, networks with 16 to 22 convolutional layers 

scored highest compared to both AlexNet with 8 

convolutional layers and ResNet networks with more 

than 50 layers. In addition, networks with hierarchical 

layer connections and multi fully connected layers are 

observed to perform better in varying conditions and 

show promise in the course of achieving a generic crack 

detection framework regardless of material.  

In conclusion, the pretrained networks have high 

applicability on crack detection even if they are trained 

on completely different datasets due to the low-level 

features shared with cracks and any objects with more 

abstract features. It is observed that the features learned 

in the course of training are transferable to other 

materials with high accuracy. In addition, the required 

number of less training samples and fast convergence 

networks make pretrained networks a favorable option 

for implementing CNN’s for crack detection task.  
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