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Abstract – 

The objective of this research is to evaluate 

vision-based pose estimation methods for on-site 

construction robots. The prospect of human-robot 

collaborative work on construction sites introduces 

new workplace hazards that must be mitigated to 

ensure safety. Human workers working on tasks 

alongside construction robots must perceive the 

interaction to be safe to ensure team identification 

and trust. Detecting the robot pose in real-time is 

thus a key requirement in order to inform the 

workers and to enable autonomous operation. 

Vision-based (marker-less, marker-based) and 

sensor-based (IMU, UWB) are two of the main 

methods for estimating robot pose. The marker-

based and sensor-based methods require some 

additional preinstalled sensors or markers, whereas 

the marker-less method only requires an on-site 

camera system, which is common on modern 

construction sites. In this research, we develop a 

marker-less pose estimation system, which is based 

on a convolutional neural network (CNN) human 

pose estimation algorithm: stacked hourglass 

networks. The system is trained with image data 

collected from a factory setup environment and 

labels of excavator pose. We use a KUKA robot arm 

with a bucket mounted on the end-effector to 

represent a robotic excavator in our experiment. We 

evaluate the marker-less method and compare the 

result with the robot’s ground truth pose. The 

preliminary results show that the marker-less 

method is capable of estimating the pose of the 

excavator based on a state-of-the-art human pose 

estimation algorithm. 
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1 Introduction 

Due to the hazardous working environment, 

construction site has a higher rate of fatalities and 

injuries throughout the industry [1]. On average, 53% of 

the fatal accidents that happen on construction sites are 

either struck by vehicle or equipment overturns and 

collisions [2], which causes almost $13 billion in extra 

cost per year [3]. Blind spots around the equipment are 

the main cause of such accidents [4]. When workers 

need to interact with the equipment on job sites, the 

equipment operator sometimes cannot locate all workers 

nearby and the workers also cannot locate the 

equipment components clearly. The prospect of 

collaborative human-robot teams on construction sites 

further heightens these concerns and highlights a need 

for developing on-site articulated equipment pose 

estimation methods. The pose of the construction 

equipment, such as an excavator, can be described as 

the angle between each component and the 6 degree-of-

freedom (6 DOF) coordinates. Therefore, determining 

each joint location and the angle between each 

component is the primary goal of the machine pose 

estimation, as shown in Figure 1. 

 

Figure 1. Excavator pose is determined by 

identifying its joints and components. 

In the real practice, two types of pose estimation 

methods are used on construction equipment, namely 

non-visual sensor-based and vision-based pose 

estimation method. For sensor-based pose estimation 

methods, Inertial Measurement Unit (IMU), Global 
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Positioning System (GPS), Wireless Local Area 

Network (WLAN), Radio Frequency Identification 

(RFID), and Ultra-Wide Band (UWB) are mainly 

deployed on equipment and construction site. IMU 

sensors need to be mounted on excavator joint 

components to measure the angle [5], which has drift 

issues [6]. GPS is known for outdoor used only [7], 

which is not suitable for some indoor construction site. 

WLAN system requires significant amounts of effort for 

calibration [8]. RFID and UWB methods both require 

sufficient preinstalled tags and readers on equipment 

and infrastructure [9–11]. They generally suffer from 

missing data issues [12] and are inadequate for pose 

estimation [13]. In addition, most of these methods 

cannot provide orientation information directly, except 

for IMU, are not suitable for construction scenarios. 

On the other hand, vision-based pose estimation 

methods are capable of analyzing position information 

as well as orientation information directly from input 

data, such as videos or point clouds. These methods 

generally recognize construction equipment on site [14–

17], then estimate their 6 degrees-of-freedom (6 DOF) 

pose [18,19], which can be categorized to two different 

group: marker-based and marker-less pose estimation. 

The marker-based pose estimation method recognizes 

all the markers mounted on equipment and estimates the 

pose by their geometric relations [20,21], whereas the 

marker-less pose estimation method directly extracts 

image features and estimates the pose by them [18]. The 

marker-based method has been extensively applied in 

indoor localization and facility management [22,23]. 

Similar to sensor-based pose estimation method, they 

also require preinstalled markers on equipment and 

environment.  

In addition to the marker-based method, the marker-

less pose estimation method only requires an on-site 

camera system, which is common on modern 

construction sites. Feature descriptor based is the first 

type of marker-less pose estimation method, such as 

Histograms of Oriented Gradient (HOG) [16], 3D 

principal axes descriptor (PAD) [14], Iterative Closest 

Point (ICP) [24], or Viewpoint Feature Histogram (VFH) 

[18]. Convolutional Neural Networks (CNN) is another 

type of pose estimation method [25], which has higher 

performance (accuracy and speed) in comparison with 

all other vision-based methods, especially for human 

pose estimation. Therefore, in this study, a CNN based 

marker-less pose estimation system is presented, which 

can distinguish excavator joint components and estimate 

their poses in images. This system is built on a state-of-

the-art human pose estimation network [26,27] and 

trained on an excavator image dataset collected in a 

factory setup lab environment. The excavator pose in 

this research is defined as the boom, stick, and bucket 

pixel-wise 2D location. 

2 Marker-less Pose Estimation System 

Our marker-less pose estimation system is 

developed based on a state-of-the-art human pose 

estimation algorithm, namely stacked hourglass network 

by Newell et al. [26,27]. This network scales the 

training image into different resolution and captures 

features, then combines the information together to 

predict the pose. Compared with the human pose, the 

construction equipment pose is much simpler, thus 

requires less information across different image 

resolutions. The detailed network architecture is further 

discussed in the next section. 

2.1 System Network Architecture 

We modify the stacked hourglass network to fit our 

target construction machine, mainly excavator. Unlike 

the complicated human skeleton, excavator pose only 

requires identifying three components, which are bucket, 

stick, and boom, as shown in Figure 1. Therefore, the 

complexity of the network needed is much less than the 

original network. Figure 2 shows the network 

architecture. Two convolutional layers followed by a 

max pooling layer are first applied to the training image, 

which shrinks the image down to the size of 64 pixels. 

Then three subsequent convolutional layers upscale the 

image to the size of 256 pixels before the hourglass 

module. Finally, three hourglass modules, output 

prediction modules, and residual link modules are used 

in the network. All the convolutional layers are 

followed by ReLu activation function, with stride 1 

except the Conv1 layer with stride 2, and with batch 

normalization except the convolutional layers in the 

output prediction module. 

 

Figure 2. Full system network architecture, 3 

hourglass modules are used in our system. 
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The hourglass module is the main part to collect 

features across different resolution, which is illustrated 

in Figure 3. The input passes into two parallel routes. In 

the first route, only one convolutional layer is applied to 

upscale the input to the size of 256 pixels. In the second 

route, one max pooling layer followed by three 

convolutional layers are applied to downscale the input 

to the size of 384 pixels, then resized to the size of 256 

pixels, as the first route result. Finally, two route results 

are added together through elementwise summation to 

generate the output. This can preserve the global feature 

and capture the local feature as well. In the Hourglass2 

and Hourglass3 module, we change the Conv_low2 

layer to another hourglass module. This recursive 

hourglass module will increase the output size for more 

features. 

 

Figure 3. Hourglass module architecture, 

convolutional upscale and downscale layers are 

the main features of the hourglass shape. 

The output prediction module and residual link 

module are applied after the hourglass module, as 

shown in Figure 4. Two convolutional layers are used in 

the output prediction module to generate the heat map 

of the possibility of the location of each joint. Figure 5 

shows the concept of the prediction heat map. Each red 

dot represents the highest probability of each joint 

location from which we can estimate the pose, as shown 

in Figure 1. The final layer is a one-by-one 

convolutional layer, which aims to calculate the 

possibility across the depth of the output of the Conv5 

layer. On the other hand, the residual link module 

combines the output from the previous hourglass and 

after the output prediction module to generate the input 

for next hourglass. The repeated hourglass and residual 

link module can preserve the spatial location and 

relation of each feature and apply to the final prediction 

step. 

 

Figure 4. Output prediction layers, the previous 

hourglass prediction results are added with 

current output prediction. 

 

Figure 5. The concept of the prediction heat map. 

Each red dot represents the highest probability of 

each joint location. 

2.2 Training Details 

We use the 𝐿2 -norm loss function to train our 

network, as shown in (1): 

𝐿2(𝑋̂𝑝, 𝑋𝐿) =∑(𝑋̂𝑝 − 𝐺(𝑋𝐿))
2

 
(1) 

where 𝑋̂𝑝  represents the predicted pose and 𝑋𝐿 

represents the labeled ground truth training data, 𝐺(∙) 
represents the Gaussian kernel function with 1-pixel 

standard deviation. The loss function directly calculates 

the error between training and predicting image. 

We implement the network system by modifying the 

original network using PyTorch [28] and the loss 

function described above. The network is trained on an 

excavator image dataset, which we collected from a 

factory setup lab environment with a simulated 

excavator and real construction site with real excavators. 

All the hyper-parameters are set the same as in [27]. 

The excavator dataset contains 1,000 training images 

and 500 testing images aligned with their pose 

annotating data. The detailed lab environment setup is 

discussed in section 3. 
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3 Experiment 

We collect the image data from a factory setup lab 

environment and from real construction sites. The 

dataset is separated into training and testing groups. The 

algorithm is trained by the training group and evaluated 

by the testing dataset. 

3.1 Implementation 

We used a KUKA 7 DOF robot arm to simulate the 

excavator and capture the image of the robot arm with 

different poses. The upper arm represents the excavator 

stick and the lower arm represents the excavator boom. 

A bucket is mounted on the robot arm for a more 

realistic simulation. Figure 6 shows the simulated 

excavator in a factory setup lab environment. In order to 

control the robot as an excavator, the profile of the 

mounted bucket must remain perpendicular to the 

ground level. We controlled the robot arm to perform 

several excavator tasks such as digging, moving, or 

unloading. 

 

Figure 6. The simulated excavator by a robot arm 

mounted with an excavator bucket. 

We used a Point Grey camera to capture the image 

of the simulated excavator. The camera was deployed in 

5 different location and orientation near the excavator to 

increase the variety of the dataset. A total of 1,000 

images were collected; 750 of them were used as 

training images and 250 of them were used as testing 

images. Figure 7 shows an example of the simulated 

excavator dataset with different camera location and 

orientation. The joints of the simulated excavator were 

labeled in 2D pixel-wise location via MATLAB code. 

The structure of the annotation data is the same as the 

well-known human pose dataset (MPII) [25]. 

To increase the variety of the dataset and augmented 

the background of the dataset, we also collected image 

data from the real construction site with real excavators, 

as shown in Figure 1. A total of 500 images were 

collected; 250 of them were used as training images and 

250 of them were used as testing images. 

 

Figure 7. Example of the simulated excavator 

dataset with different camera location and 

orientation. 

4 Results 

We evaluate the proposed method by comparing the 

prediction results of the testing images and the ground 

truth. Figure 8 demonstrates the results of the excavator 

pose estimation. The green, blue, and red line are 

corresponding to the bucket, stick, and boom prediction. 

These two images are in the testing dataset. We also 

evaluate the Euclidean distance between the predicted 

joint location and the ground truth joint location, and the 

error percentage of the predicted component length and 

the ground truth, which can be seen in Table 1 and For 

the error percentage of the predicted component length 

and the ground truth, we only evaluated the lab dataset 

because the length of each robot arm component is 

known but the real site excavators are unknown. The 

result is shown in Table 2. The error percentage of the 

boom and stick is about 35% to 45%, and the bucket is 

62%. The reason for the high error percentage in the 

bucket case is the occlusion issue. When the bucket is 

blocked or out of range, the predicted bucket location 

will be far away from its true location. In addition, the 

ground truth length of the bucket is short, which 

increases the differences between the ground truth and 

the false predicted result. Figure 9 shows two results of 

false prediction caused by occlusion. 

Table 2. The average Euclidean distance between 

the lab testing dataset and ground truth is 50.05 pixels 

and between the real site testing dataset and the ground 

truth is 71.95 pixels. The bucket location has the highest 

error because the bucket is blocked (occluded) or out of 

range in some of the image. The model still tries to find 

the location in these cases, which increases the error 
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distance. The error in the real site dataset is higher than 

the lab dataset. This is because the real site dataset has a 

greater variety of excavators and backgrounds. Only 

some of these variations were included in the testing 

dataset, so this caused a decrease in accuracy. 

Table 1. Results of the average Euclidean distance 

(pixel-wise) between the predicted and the ground truth 

joint location. 

(pixels) Lab Dataset Real site dataset 

Boom 42.01 67.12 

Boom Stick 45.37 59.99 

Stick Bucket 44.68 65.67 

Bucket 68.13 95.03 

 

 

Figure 8. The result of the excavator pose 

estimation. On the top is the simulated excavator 

and on the bottom is the real excavator. 

For the error percentage of the predicted component 

length and the ground truth, we only evaluated the lab 

dataset because the length of each robot arm component 

is known but the real site excavators are unknown. The 

result is shown in Table 2. The error percentage of the 

boom and stick is about 35% to 45%, and the bucket is 

62%. The reason for the high error percentage in the 

bucket case is the occlusion issue. When the bucket is 

blocked or out of range, the predicted bucket location 

will be far away from its true location. In addition, the 

ground truth length of the bucket is short, which 

increases the differences between the ground truth and 

the false predicted result. Figure 9 shows two results of 

false prediction caused by occlusion. 

Table 2. Results of the error percentage of the predicted 

component length and the ground truth. 

(%) Lab Dataset 

Boom 46.8 

Stick 34.3 

Bucket 62.8 

 

 

Figure 9. The result of the false prediction, both 

are out of range (top) or blocked (bottom). 

Based on the evaluation results, occlusion is the 

primary issue of the proposed system, which can be 

tackled by increasing the number and variety of the 

training dataset. Another problem is the multiple 

excavator situation. The proposed system can only 

identify one excavator pose. If there are two or more 

excavators in the image, the result will fail. We will 
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design a new network or method for multiple excavator 

situation in the future work. 

5 Conclusion 

In this research, we proposed and evaluated a vision-

based marker-less pose estimation system for 

construction robots, for which we used an excavator as 

our test-bed. The excavator boom, stick, and bucket 

joint positions are estimated with pixel-wise coordinates. 

We adapted and modified the state-of-the-art human 

pose estimation convolutional network, i.e., the stacked 

hourglass network, for our application. Three stacked 

hourglass modules and two residual links are included 

in the network. The network model is trained on an 

excavator dataset, which we collected and annotated 

from a factory setup lab environment with a KUKA 

robot arm representing an excavator from a real 

construction site. The results showed that the system 

can estimate the boom and stick joints but had higher 

estimation error for the bucket location due to the 

occlusion issue. Therefore, for the future work, more 

training image data with higher variety will be collected. 

We will also modify the proposed network to adapt to 

the multiple excavator situation. The comparison 

between the proposed system and the sensor-based 

system will be conducted as well. 
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