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Abstract –  

 

This paper proposes a new approach that 

recognizes different kinds of small objects that are 

commonly seen on walls and ceilings of buildings 

(Figure 1). The general idea supported in this paper 

is that such objects, called service building 

components (SBCs), should be inserted into the 

structure of the standard existing as-is BIM models, 

as they are automatically generated. But identifying 

these small building components within the vast 

dataset provided by the scanner is a difficult issue 

not solved yet. Our approach first processes a dense 

coloured point cloud and extracts global geometry 

and colour features to identify potential SBCs. A 

novel consensus algorithm between geometry and 

colour features is the basis to efficiently recognize 

and calculate the position of the existing small 

objects in the as-is BIM model of the building. The 

method has been tested in real and simulated 

environments providing encouraging results. 
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1 Small building service components: the 

last semantic level of a BIM model 

Many researchers are currently working on the 

automatic creation of as-is BIM models at several 

semantic levels. This paper is framed into the methods 

that automatically obtain some sort of 3D building 

model from 3D data. Nowadays, and roughly speaking, 

we can distinguish between four semantic levels which 

go from a mere point cloud model to a detailed 3D CAD 

model of the building structure. 

The first semantic level covers the set of automatic 

data acquisition algorithms that provide a rough point 

cloud of the building. This model usually has a poor-

semantic content and most of the research efforts are 

focused on finding an efficient scan planning algorithm, 

which provides a complete dataset of the indoors [1], [2] 

or outdoors [3] of buildings.  

 

Figure 1. The image represents a coloured point 

cloud and different objects recognized in a wall. 

Apart from the doors, our recognition algorithm 

identifies five service building components. 

 

The second level is achieved after processing the 

initial point cloud of the scene. The data are usually 

segmented into a set of representative parts, which 

follows specific geometric patterns (e. g. 

vertical/horizontal flat regions), and the scene is finally 

represented by a B-rep model. Essentially, this is a 

polyhedral model with certain attributes (i.e. vertex, 

edge and face) and their corresponding relationships. 

Works at this level can be found in [4], [5]. 

In the third level the segment extracted in the second 

level are recognized as essential constructive elements 

of the building. This is a higher semantic level in which 

a meaning of the earlier data segments is introduced. At 

this level, the model contains primarily objects such as 

“wall”, “ceiling”, “floor” and “column” ([6], [7]). 

The fourth level completes the previous level by 

adding other important elements which lie in the 

constructive elements, such as windows, doors and 

frames. Examples of models at this level are that of 

references [8]–[10]. Other works include pipes or 
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scaffolding in the BIM models of industrial facilities 

([11], [12]). 

Beyond the fourth level, there are more components 

of a building that could be introduced in the BIM model 

as permanent or as-designed components. These small 

components are related with the habitability of the 

building, mainly related with power and security issues. 

As is argued in the abstract, from a constructive point of 

view, these components might have a relative 

importance, but are however essential for a safe and 

reliable life of the inhabitants of the building. Therefore, 

we propose a fifth level that includes such components 

which, from here on, we call service building 

components (SBCs). Previous work in the detection of 

SBCs is dealt in the next section. 

2 Detection of SBCs: previous work. 

Very few proposals achieve this level of detail in a 

3D semantic building model and only partial solutions 

that recognise luminaries, sockets or other particular 

SBCs have been published to date. In addition, most of 

these works are framed in robot interaction applications. 

Specific electrical equipment can be easily detected 

in thermal point clouds. For example, in [13] hot and 

cool regions are detected on ceilings. These regions are 

assumed to be electrical systems, heating, ventilation 

and air-conditioning components.  

In [14], Díaz-Vilariño et al. process 2D coloured 

images of ceilings and identify two types of light 

fixtures. It is assumed that the segmented regions 

correspond to these objects, so that there is no proper 

recognition algorithm. Sockets and switches are also 

recognized in 2D images in [15]. Eruhimov et al. ([16]) 

classify between power holes, ground holes and the 

background in images acquired by a mobile robot. 

Meeussen et al. ([17]) recognize doors, door handles, 

electrical plugs and sockets, also under robotic 

applications. 

Some authors provide more encouraging results. In 

[18], insulations, electrical outlets, studs and different 

states for drywall sheets are detected in 2D images. 

Unfortunately, the recognised objects are not positioned 

into a 3D model of the facility. The sensorial system 

presented by Bonanni et al. in [19] identifies - with the 

help of a human being- a set of usual small components, 

such as electrical outlets, fire extinguishers, hydrant 

boxes and printers. This is again a part of a human-robot 

system which is not related with the extraction of 

semantic models of buildings. The recognised small 

components are not therefore integrated into a 3D 

building model. 

As is clear, the aforementioned SBCs detection 

methods are frequently associated with the recognition 

and pose estimation of objects in 2D images, which is 

not connected with an as-is semantically-rich 3D model 

of the building. 

3 Justifying a new SBC recognition 

method in a BIM framework. 

Recognition of SBCs in the BIM context is a 

difficult problem in which the origin and quality of the 

data to be processed plays an important role.  

As is known, in general the problem of recognizing 

objects in 2D images has been extensively studied for 

many years and multitude of efficient solutions - 

including SIFT, SURF and others - have been proposed. 

All these algorithms commonly work on high quality 

images taken from medium/high resolution cameras, 

which signifies that the objects appear clear enough, 

with sufficient resolution and without significant 

superimposed noise. Nevertheless, object recognition in 

2D images is restricted to merely identify, but not to 

estimate the position of the object in the 3D space (i.e. 

into a 3D indoor model). 

Additionally, these techniques could yield 

frustrating results when applied to the raw scan data (the 

kind of data used for the construction of as-is 3D 

models), more precisely to the orthoimages generated 

from a coloured point cloud. Note that a balance 

between the resolution of the collected point cloud, the 

associated memory and the time requirements must be 

imposed in a building scanning process. On the other 

hand, in order to avoid occlusions, several scans must 

be taken (and later aligned) from different scanner 

positions. All this entails imprecisions on the 

coordinates of the registered data along with slight 

variations in the colour assigned to the surface of the 

potential SBCs (which have been viewed from different 

angles). Consequently, the orthoimages generated from 

the accumulated coloured point cloud are frequently, if 

not always, noisy and of a low resolution. 

In practice, our automatic building scanning system 

generates orthoimages of 5mm/pixel. This resolution is 

achieved with an angular stepwidth of 0.065º, which 

yields 10 million points in 83 seconds per 360-scans. Of 

course, we can force the scanner up to a stepwidth of 

0.0024º, but in this case, the system would become 

impractical. 

To recognize a query (small) object in such a poor 

quality and low-resolution image (in fact, it is an 

orthoimage), new recognition methods need to be 

applied. The contributions of our approach lie in two 

pillars. 

First, the geometry and colour data contained in the 

coloured point cloud are separately processed. 

Afterwards, the corresponding results are put in 

common by following an original consensus procedure. 

This is the most important issue of the paper, which is 



35th International Symposium on Automation and Robotics in Construction (ISARC 2018) 

explained in detail in Section 4. 

The second pillar consists of avoiding local features 

and descriptors in the recognition algorithms. Since the 

orthoimages might appear blurred and with a poor 

colour quality, we define a supervised learning 

algorithm that uses a pattern composed of global 

descriptors, which are invariant to scale and rotation. In 

the experimental section, we briefly refer to a particular 

feature pattern that has provided encouraging 

recognition results. 

Figure 2 illustrates the poor quality and low 

resolution of the SBCs’ images contained in the 

orthoimage of the frontal wall of Figure 1. Note the 

poor quality of the fire-alarm switch image with 26x26 

pixels in size (13x13 cm). 

 

Figure 2. Images corresponding to BSCs in the 

scene shown in Figure 1. 

4 A consensus framework for SBC 

recognition 

4.1 Assumptions and inputs 

The objective of this paper is not to explain specific 

recognition algorithms, but to propose a new approach 

that identifies and calculate the position of SBCs by 

means of a consensus between geometric and colour-

based recognition strategies. We therefore present a 

consensus approach by assuming that a number of 3D 

processing stages have already been completed. 

Let us consider that previous pre-processing stages, 

such as data collection, registration, colour fusion and 

initial data segmentation have successfully been carried 

out. Let us also assume that the accumulated point cloud 

has been segmented into the essential constructive 

elements of the building, including openings. According 

to the earlier semantic building model classification 

presented in Section 1, we start our SBC recognition 

approach on the basis that the fourth semantic level is 

available. At this level, the coloured point cloud 

associated with an already detected and modelled wall is 

therefore available. The reader can obtain complete 

information about our mobile mapping system for 

digitization (MoPAD) and our last works on extraction 

of automatic BIM models in references [20]–[22]. 

The set of coloured data belonging to a wall is 

structured as a 4D orthoimage, 𝐽𝐶𝐷, in which each pixel 

has colour (RGB) and depth (i.e. an orthonormal 

distance between the 3D points and the wall plane). The 

colour and depth components of 𝐽𝐶𝐷  are decomposed 

into 𝐽𝐶   (colour) and 𝐽𝐷  (depth), and two different 

geometric and colour-based algorithms are afterwards 

applied on the respective orthoimages 𝐽𝐶   and 𝐽𝐷 . 

Let us assume that, as a result of the earlier 

processes, for each expected object 𝑂𝑖 , 𝑖 = 1…𝑁, two 

lists of candidates {𝐶}𝑂𝑖  and {𝐷}𝑂𝑖are identified in both 

images 𝐽𝐶  and 𝐽𝐷 . 

4.2 The Recognition Coherence Matrix 

Since there could be more than one instance of the 

object 𝑂𝑖  in the wall, after the consensus between the 

lists {𝐶}𝑂𝑖  and {𝐷}𝑂𝑖  , the output could be composed of 

several regions (RoIs) located on the wall. 

In order to evaluate all possible combinations of 
{𝐶}𝑂𝑖  and {𝐷}𝑂𝑖 , we define a Recognition Coherence 

Matrix Ψ . Each entry in Ψ𝑂𝑖
 is the Recognition 

Coherence Level α, which measures the coherence 

between a pair of RoIs found in images 𝐽𝐶  and 𝐽𝐷 . This 

parameter is ranged in the interval [0,1] and will be 

defined below. 

The flowchart in Figure 3 explains how Ψ is built 

for each query object, N being the number of SBC 

classes lying on the wall. Symbols 𝑛𝐶  and 𝑛𝐷  are 

formally: 𝑛𝐶 = 〈{𝐶}𝑂𝑖〉  and 𝑛𝐷 = 〈{𝐷}𝑂𝑖〉 , where 〈𝐴〉 

represents the cardinal of the set A. 

The Recognition Coherence Level 𝛼  between two 

candidates is calculated by assessing the overlap 

between a pair of RoIs, 𝐵𝐶
𝑗

 and 𝐵𝐷
𝑘  (with centroid 

coordinates 𝑐𝐶
𝑗

 and 𝑐𝐷
𝑘  respectively) found in the 

respective images 𝐽𝐶   and 𝐽𝐷 . There are three cases: 

1. Partial Intersection. 𝐵𝐶
𝑗

 and 𝐵𝐷
𝑘  overlap. In this 

case, 𝛼 measures the relative overlap with respect 

to the bounding box 𝐵𝐶𝐷
𝑗𝑘

 that encloses 𝐵𝐶
𝑗
 and 𝐵𝐷

𝑘 . 

The expression of 𝛼 is given in equation (1). 

 

𝛼 =
〈𝐵𝐶

𝑗〉 ∪ 〈𝐵𝐷
𝑘〉

〈𝐵𝐶𝐷
𝑗𝑘〉

 (1) 

 

2. No intersection. 𝐵𝐶
𝑗

 and 𝐵𝐷
𝑘  does not overlap. In 

this case, 𝛼 = 0. 

3. Exclusive detection. ∄𝐵𝐶
𝑗
 or ∄𝐵𝐷

𝑘 . In this case, 𝑂𝑖  

is only recognized in 𝐽𝐶 or in 𝐽𝐷, and 𝛼 = 0.5. 
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Figure 3. Algorithm for the construction of N 

Recognition Coherence Matrices. 

 

4.3 Recognizing objects from the Recognition 

Coherence Matrix  

The Recognition Coherence Matrix is completed 

with a new row and column, inserting the value 0.5 on 

them. The extra row and column are included because, 

besides the usual assignation of pairs of RoIs candidates, 

the exclusive detection by colour and depth is always 

considered in the resolution of the Recognition 

Coherence Matrix. In this way, Ψ𝑂𝑖
 is eventually a 

(𝑛𝐶 + 1) × (𝑛𝐷 + 1) matrix. 

Once Ψ has been filled, the recognition consensus 

decision is solved iteratively following four steps (see 

Figure 4 for a better understanding): 

4. The highest value of Ψ is selected and considered 

to be a recognized instance of the query object 𝑂𝑖 . 
5. The corresponding row and column of Ψ are 

eliminated, except when the selected cell 

corresponds to an exclusive detection case. In this 

case, only the corresponding cell is set to 0. 

6. The coordinates of each recognized instance of the 

object 𝑂𝑖  in the orthoimage 𝐽𝐶𝐷, are calculated by 

means of a weighted mean of the corresponding 

RoIs centroid coordinates, 𝒄𝑪
𝒋
 and 𝒄𝑫

𝒌 . 

7. Steps 1, 2 and 3 are iterated until Ψ is null or until 

the number of selected cells is equal to the number 

of expected instances of the query object in the 

wall. 

 

 

Figure 4. Recognition consensus algorithm. 

 

Equation (2) shows two weights 𝜌𝐶
𝑗
 and 𝜌𝐷

𝑘  that are 

defined depending on the specific geometric and colour 

based recognition algorithms used when the lists of 

candidates {𝐶}𝑂𝑖  and {𝐷}𝑂𝑖are obtained. In our case, we 

take 𝜌𝐷
𝑘  as the cross-correlation coefficient, which is 

obtained when correlating the RoI 𝐵𝐷
𝑘  with that of the 

depth model of object 𝑂𝑖 . The weight 𝜌𝐶
𝑗
 is a normalized 

distance coefficient that evaluates the goodness of the 

recognition algorithm when comparing 𝐵𝐶
𝑗

 with the 

colour model of object 𝑂𝑖 . This is a minimum distance 

classifier algorithm that compares patterns composed of 

global colour features. 

𝑐𝑗𝑘 =
𝜌𝐶
𝑗
𝒄𝑪
𝒋
+ 𝜌𝐷

𝑘𝒄𝑫
𝒌

𝜌𝐶
𝑗
+ 𝜌𝐷

𝑘
 (2) 

4.4 Showing a case of study 

In this section we explain in detail the recognition 

procedure in a representative case of study. We have 

simulated the digitization of an indoor floor using the 

Blensor software [23]. This tool allows us to simulate a 

scanning process on a 3D building model by using the 

same scanner we have got in our lab. 

The indoor consists of several rooms with a wide set 

of SBCs lying on the walls. A representative wall of the 

room #4 has been taken to run our recognition strategy. 

This wall contains the following SBCs: an electric panel, 

two sockets, a switch, a fire extinguisher sign and an 

extinguisher (Figure 5 a)). 

The orthoimage of the wall is decomposed into 

images 𝐽𝐶   and 𝐽𝐷 , and then processed separately. The 
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results obtained from the colour and depth-based 

algorithms yield two lists of candidates {𝐶}𝑂𝑖  and {𝐷}𝑂𝑖 . 

Figure 5 b) highlights in blue the RoI candidates in 

images 𝐽𝐶   and 𝐽𝐷. Note that the first columns show the 

colour model of the query objects. 

Initially, some surprising candidates are assigned at 

this stage, particularly in the case of the colour-based 

recognition. For example, note that the region that 

contains the electric panel is within the list of candidates 

of the objects “socket” and “switch”. The explanation of 

this apparently strange result is that we identify the 

regions in which the query object could be located and, 

since we use global colour descriptors, the recognition 

algorithm is invariant to the scale. Obviously, some of 

the global colour descriptors of the socket could match 

with that of the regions in which the electric panel lies, 

and for this very reason, this could be included in the 

list of candidates {𝐶}𝑂𝑖 .  

 

 
a) 

 
b) 

Figure 5. a) up) Representative wall of room #4 

and the details of the coloured point clouds of the 

SBCs obtained from the virtual scanning. Down) 

Decomposition of the orthoimage 𝐽𝐶𝐷  into  𝐽𝐶   

(colour) and 𝐽𝐷  (depth). b) The set of candidates 
{𝐶}𝑂𝑖  and {𝐷}𝑂𝑖  obtained after applying the 

recognition algorithms in images 𝐽𝐶  and 𝐽𝐷 . 

Candidate regions are highlighted in blue. 

Since there are five different objects on the wall, 

five Recognition Coherence Matrices Ψ1, Ψ2, Ψ3, Ψ4 and 

Ψ5 must be calculated. Figure 6 illustrates details of the 

Recognition Coherence Matrix Ψ1 corresponding to the 

object “socket”. Since 〈{𝐶}𝑂1〉 = 4, 〈{𝐷}𝑂1〉 = 2, Ψ1 is a 

5 × 3  matrix. The figure shows the positions of the 

candidates for each assigned pair and, according to the 

explained in Section 4.2, its corresponding overlapping 

type. Since we assume two instances of the object 

“socket” in the wall, the resolution process of Ψ1 will 

take two iterations (See Figure 7). 

As was explained in Section 4.3, the highest 

Recognition Coherence Level of Ψ1 is taken as the first 

recognition result. This happens for the pair (C3, D2). 

The centre of the recognized instance of the object 

“socket” is then calculated according to equation (2). 

After deleting the corresponding row and column, the 

second assignation (C2, D1) is established and the same 

process follows. Since the number of selected cells is 

equal to the number of expected instances of the query 

object, the recognition process for the object “socket” 

comes to an end. 

 

 
a) 

 

 
b) 

Figure 6. a) RoI candidates for the object “socket” 

in images 𝐽𝐶   and 𝐽𝐷 . b) The Recognition 

Coherence Matrix Ψ1. Visualization of each pair 

of associated RoIs and the corresponding value 

of the Recognition Coherence Level in Ψ1. 

Ψ(𝑂1)

α C1 C2 C3 C4
No

Color

D1 0 0.95 0 0 0.5

D2 0 0 0.97 0 0.5

No 
Depth

0.5 0.5 0.5 0.5 0

𝐶1
𝐷1

Case II

𝐷2𝐶1

Case II

𝐷2𝐶2

Case II

𝐷2
𝐶3

Case I
𝐷2

𝐶4

Case II

𝐷1

𝐶4

Case II

𝐷1𝐶3

Case II

Case III

𝐷1
𝐶2

Case I
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Figure 7. Solving the Recognition Coherence 

Matrix of the object “socket” and final 

recognition result. 

5 Experimental test 

This section is devoted to showing the efficiency of 

the geometric versus colour consensus approach in an 

experimental test. We simulated an indoor floor 

composed of 5 rooms containing 116 SBCs of 13 

classes (See Figure 8). This scenario was virtually 

scanned with Blensor [23], which allows us to simulate 

the same real scanning process as with our Riegl VZ-

400 3D laser scanner. In order to make the data 

acquisition process more realistic, noise to the position 

and colour of the collected point cloud was added. 

The objective of this test is to compare the 

recognition results using, on one hand, separated colour-

based and geometric-based algorithms (algorithm I and 

II in Table 1) and, on the other hand, the consensus 

approach (algorithm III in Table 1). 

As mentioned in Section 4.3, our geometric-based 

recognition approach is a simple cross-correlation 

algorithm that compares the obtained RoIs 𝐵𝐷  with that 

of the depth models of the objects existing on the wall. 

The colour-based recognition algorithm is a minimum 

distance classifier algorithm that takes some global 

colour features, such as the two principal saturation 

values in the HSV colour-space, the redness versus 

greenness and the yellowness versus blueness, which 

are parameters a and b in the Lab colour-space. Anyway, 

it is noteworthy to point out that the most important 

thing here is not in the specific geometric and colour-

based algorithm applied, but in the efficiency of the 

consensus approach. 

 

 

Figure 8. Simulated scenario used in the 

experimental test and the set of service building 

components included in the scenario. 

 

Table 1. shows the recognition results after applying 

the aforementioned algorithms. The table includes the 

true positive cases (the algorithm recognizes 

successfully the query object), the false positive cases 

(the algorithm recognizes an object that is not the query 

object) and the false negative cases (the algorithm does 

not recognize the query object). Columns #1 to #5 refer 

to the five rooms of the scenario, column T is the total 

count and column Perc. signifies the recognition 

percentage. 

The consensus algorithm achieves the greatest 

recognition percentages (90,5%) compared with 

algorithms I (83,6%) and II (41,4%). Although the 

geometric-based algorithm yields the lowest false 

positive percentage (5,2%), there is not a significant 

difference compared to that of the consensus algorithm 

(8,6%). In addition, the false positive rates are usually 

considered as the least important numbers in a 

recognition assessment. However, a more significant 

improvement can be seen in the figures concerning the 

false negative percentages. Clearly, the use of our 

consensus approach reduces the percentages yielded by 

the colour (16,4%) and the geometric-based (58,4%) 

approaches. 

α C1 C2 C3 C4
No

Color

D1 0 0.95 0 0 0.5

D2 0 0 0.97 0 0.5

No 
Depth

0.5 0.5 0.5 0.5 0

α C1 C2 C3 C4
No

Color

D1 0 0.95 0 0 0.5

D2 0 0 0.97 0 0.5

No 
Depth

0.5 0.5 0.5 0.5 0

 𝑪 𝑫 =  .   

 𝑪 𝑫 =  .   

END

𝐷2
𝐶3

𝐷1
𝐶2

α C1 C2 C4
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Color

D1 0 0.95 0 0.5

No 
Depth

0.5 0.5 0.5 0

α C1 C2 C4
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Color

D1 0 0.95 0 0.5

No 
Depth
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Figure 9 shows the extracted BIM model and the 

SBCs recognized after applying our algorithm. In this 

figure, each red spot represents the centroid of each 

recognized object. 

 

Figure 9. Recognition results superimposed onto 

the extracted as-is 3D model of the indoor floor. 

Red spots represent the recognized objects. 

 

Table 2. provides more information about the false 

negative percentages for each one of the existing SBCs. 

In general, it can be stated that the objects with low-

frequency colour/intensity components in the frequency 

domain (i. e. flat colour RoIs) are hardly detected by 

method I. Thus, the fire alarm switch (O1), the electric 

panel (O2) and the smoke detector (O10) are not 

recognized in half of the cases. In regard to the method 

II, owing to the lack of depth discontinuity with respect 

to the wall, the regions with signs (e.g. O8, O9) and 

built-in sockets (e. g. O6) are not detected as potential 

RoIs.  

Note that the consensus algorithm decreases (or at 

least it is equal) the false negative percentages in all the 

cases. Significant improvements appear for the 

extinguisher (O4), the socket x4 (O5) and the smoke 

detector (O10), in which both algorithms I and II fail. In 

O4 and O5, the false negative cases are eliminated and, 

in the case of O10, the percentage in reduced up to 20%. 

Table 1. SBC recognition results for the colour-based 

algorithm (I), the geometric-based algorithm (II) and the 

consensus approach (III). T=Total, Perc.=percentage 

Algorithm   #1 #2 #3 #4 #5 T Perc. 

 TP 20 24 18 21 14 97 83,6 

I FP 4 1 5 5 1 16 13,8 

 FN 4 3 5 5 2 19 16,4 

 TP 12 6 12 10 8 48 41,4 

II FP 1 0 0 3 2 6 5,2 

 FN 12 21 11 16 8 68 58,6 

 TP 23 25 21 22 14 105 90,5 

III FP 1 1 2 4 2 10 8,6 

 FN 1 2 2 4 2 11 9,5 

Table 2. False negative percentages obtained per object. 

Alg. O1 O2 O3 O4 O5 O6 O7 

I 50,0 50,0 0 11,1 27,3 16,7 0 

II 75,0 25,0 10,00 55,6 36,4 100 83,3 

III 37,5 25,0 0 0 0 16,7 0 

Alg.  O8 O9 O10 O11 O12 O13 Total 

I 25,0 11,1 50,0 0 0 0 16,4 

II 100 100 30,0 0 70,0 25,0 58,6 

III 25,0 11,1 20,0 0 0 0 9,5 

6 Conclusions 

As is known, electric components (e. g. sockets and 

switches), fire devices (e. g. fire alarms and 

extinguishers) and a diversity of signs (e. g. exit signs 

and prohibition signs) are frequently placed inside the 

buildings, constituting a further but necessary part of the 

building. These small components, mostly related with 

the habitability of the building, should be included in 

the current as-is BIM models of buildings. 

In order to recognize and estimate the position of 

such secondary components, this paper proposes a 

methodology that takes advantage of the geometric and 

colour information provided by the current 3D sensors 

(usually 3D laser scanners). But, owing to the poor 

quality and resolution of the orthoimages generated 

from the collected coloured point cloud, the SBC 

detection and its subsequent integration into the as-is 3D 

model of the building becomes a difficult problem, 

which needs to be addressed from new strategies. 

The solution presented in this paper separates colour 

and geometric characteristics and proposes a consensus 

between the respective separated recognition results. 

This consensus has been implemented by means of the 

original concepts Recognition Coherence Matrix and the 

Recognition Coherence Level, which allows us to 

recognize multiple instances of the same object. 

The method has successfully been tested on real and 

simulated data. The results yielded from the 

experimental work show that SBC recognition rates are 

greatly improved when our strategy is applied. These 

improvements signify that the use of the proposed 

consensus method makes the whole recognition process 

more robust and effective. In conclusion, our approach 

recognizes more objects and commits fewer 

identification failures, thus providing a rich fifth-level 

semantic 3D model of the building. 
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