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Abstract -
In this paper, we propose an approach and workflow in

order to detect humans in the environment around a crane
with Monocular Images. The considered area is split up into
a zone around the crane truck and one around the load.
The load will be monitored with an optical zoom camera
where we can control the zoom. We discretize the zoom lev-
els and a Convolutional Neural Network for each zoom level
is trained. Afterwards a Meta Convolutional Neural Net-
work is trained in order to select the next zoom level. Since
there are no public datasets available for this kind of task
we propose to generate the needed data with a photorealistic
simulation.

Keywords -
Crane; Safety; Human Detection; Deep Learning; CNN;

Simulation

1 Introduction

In the construction site environment each human is ex-
posed to many potentially dangerous objects. Common
sources for injuries are heavy-duty commercial vehicles.
The distribution of accidents in the example of an excava-
tor can be seen in figure 1. As one can see most accidents
happen in an area which is not visible to the operator, i.e.,
behind the vehicle or at the opposite site of the operator.

Figure 1. Distribution of fatal and critical accidents
with excavators shown in the blue circles[14].

It is, therefore, necessary to support the operator of
heavy-duty machines when the area around it is not closed
off and humans can appear unexpectedly. Though the
problem gets even worse with bigger machines where
even bigger areas are occluded by the machine. Therefore
there is a need to detect humans in the potential risk areas
of a crane, which is definitely one of the biggest machines
in a construction site environment. The work presented
in this paper is focused on mobile cranes and caterpillar
cranes, so specifically tower cranes are not considered.
Universal usability for cranes of different manufactures
is nonetheless important. We therefore do not make us
of the internal crane data. When operating a crane there
are two main areas which include a potential threat to hu-
mans, one is the crane truck itself and the other is the load
of the crane. It is necessary to consider both parts for a
reasonable approach.

We therefore propose a methodology which can be used
to detect humans around the crane. It mostly relies on
already tested Deep Learning approaches for object de-
tection. Our methodology does not only detect humans
around the crane but also around the load, which is more
complicated due to some further restrictions. Additional
challenging elements are due to the construction site en-
vironment. In road scenarios one can assume that the ve-
hicles are in either a highway, city, urban or metropoli-
tan area, while a construction machinery can operate in
a mining field, building site, forest or even rough terrain.
The environment effects type and activity of each object
that the system is going to encounter during the detection
task. One further handicap is that standard approaches for
detecting humans around the load are not suitable. Since
the shape and material of the load is not known in advance
and the load can potentially be moved in a big area, which
is also not necessarily planned beforehand. The only re-
maining possibility is to mount cameras on the crane it-
self. Because of the sheer size of the crane, off the shelf
solutions for detecting humans are not applicable due to
unusual perspectives and distances .

In the following sections we describe our approach in
detail. The rest of the paper is organized as follows: Sec-
tion 2 discusses the state-of-the-art of human detection al-
gorithms split it up into the different perspectives which
are used in the proposed approach. In section 3 the general
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structure of the proposed approach is described and again
split up in the different zones of interest. Section 4 is con-
sidered with the generation of the needed datasets with a
simulation tool. Section 5 takes a look at the network ar-
chitectures chosen in section 3 to solve the detection tasks.
Finally in section 6 we recap the proposed methodology.

2 Related work
In construction machines, safety systems mostly con-

duct without any automatic brake when possibility of a
collision occurs. The system simply alarms the operator
to brake manually. In some systems, the operator needs
to acknowledge the alarm by e.g. touching the moni-
tor screen. Traditionally, safety in construction sites is
done by direct manual observation [17]. It mainly uses
non vision-based sensors, e.g., RFID tag, ultrasonic or in-
frared sensors. The sensors can be attached on the work-
ers’ helmets or wristbands and inform the crane operator
about their position. Due to the characteristics of prox-
imity sensors, these safety systems are unable to predict a
person’s trajectory and absolute position due to an insuf-
ficient detection range. Most vision-based safety systems
take advantage of specific cues of a persons appearance.
In the construction site environment many such visual fea-
tures can be used, e.g., hard helmet detection [26], detect-
ing workers from reflective vest [19]. Even though dress
code in construction site is strict, some people could un-
intentionally ignore it or do not realize the risk this poses.

2.1 Crane Truck View

For the detection of humans around the crane most state
of the art Convolutional Neural Networks(CNNs) can be
used as a basis. The perspectives are quite similar, even
though the appearance of most humans is a lot more de-
fined due to the presence of reflective vests and helmets.
As a basis we refer for example to [24, 15, 23], which
of course does not cover the whole extend of work in the
field of human detection.

2.2 Load View

Most Detection algorithms for top view camera systems
can be found in surveillance systems. Many different pro-
posed methodologies have been proposed, however, these
are not really suited to our needs. These approaches of-
ten times make use of the fact that either the camera it-
self is static [31, 33] or uses distinct features of the back-
ground, like a street [3]. Some methodologies use fea-
tures which are prevalent even in top view images, like
the head-shoulder shape [34], which may be different due
to helmets or carried objects in an construction site en-
vironment. Some also simply try to estimate the number
of persons in an image [13, 6]. Most are quite often not

build to deal with images from a distance as far as in a
crane scenario [22, 6, 30].

Another approach is to use a human detection algo-
rithm which works for the front view case and adapt it
in order to deal with different views and scenes [32, 1].
We do not only have to deal with the fact, that there is
no fitting approach for our use-case but also no public
available dataset. Recent advancements in the usage of
simulated data for machine learning have been made in
reinforcement learning [18], object detection via CNNs
[21], viewpoint estimation via CNNs [20] and segmen-
tation tasks [25]. Hence, there are many possibilities to
tackle the introduced task, but additionally to the so far
presented state-of-the-art it may be necessary to use do-
main adaptation techniques in order to improve the results
as in [4, 16, 29, 35, 2]

3 Proposed Approach
The application seems to encourage an approach which

is separated into the detection around the crane and
around the load. In our approach we will follow this idea
and deal with both problems in a separate manner. We
start with the setup of the sensor system in each case. Af-
terwards we shortly talk about the used CNNs and how to
train them specifically for our application scenario.

3.1 Human Detection Crane Truck

In this subpart of our Application scenario we use a
camera setup which roughly looks like presented in figure
2.

Figure 2. Sketch of camera setup at the crane truck

We have a couple of cameras mounted on the crane
truck. They look into different directions in order to have
the possibility to detect humans in the blind spot of the
operator. In the crane scenario the blind spots are not
static, due to the revolving superstructure. We are then
able to work on each camera image individually and then
merge the results. In order to detect humans in each of
the images we use a Neural Network. Like already elab-
orated in section 2, CNNs yield solid performances when
dealing with human detection for such frontal views. As
for the explicit architecture of the used CNN we refer to
[15], since we do not adapt the actual structure to much,
still some additional work is needed. Off the shelf trained
networks will not yield perfect results since the construc-
tion site environment differs from most available train-
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ing data. Going into a construction site environment and
collecting enough labeled data of typical workers to train
such a network from scratch is very time consuming. We
therefore use a pretrained Network as initialization. Af-
terwards we apply transfer learning with some examples
from construction site environment workers. We also will
use simulated data since we will need to generate it any-
way, as explained further below. The workflow will be
similar to figure 4, but keep in mind that we start with a
pretrained network and do not need to train from scratch.
With this in hand we have all the necessary parts to com-
bine it into a human detection algorithm around the crane
truck.

3.2 Human Detection Load

The detection of humans around the load is more in-
volved. The first problem is how and where to mount the
camera system. The possibility of putting, e.g., cameras
on tripods on the ground and then merging the images is
not feasible due to the fact that the exact trajectory the
load will take is often times adapted during the hoisting
process. Therefore constant rearrangement of the tripods
would be needed, which is not feasible. Another possibil-
ity would be to mount a mobile camera below the load,
which is only practical with a wireless connection. This is
also not feasible due to most loads containing lots of metal
parts and therefore greatly interfering with the data trans-
mission. Additionally one needs to consider the fact that
a complete hoisting cycle may take up to several hours,
which further solidifies the need for a wired connection
because of the battery capacity of wireless cameras. So
the only possibility which is left is to mount a camera
on the crane itself. Of course many cameras could be
mounted on the crane boom. We selected the boom top
as a first choice, since for other locations at the boom ad-
ditional need for an alignment with the load is present.
This is not the case for the boom top due to the load being
approximately perpendicular to the ground.

There are however some other problems arising from
mounting the camera on the boom top. A crane can eas-
ily reach a height of 100m, but the boom top may also
be close to the ground depending on the hoisting process.
So we have to deal with many different perspectives and
distances to the ground. This greatly affects the size of
the humans in the image. Therefore there is a reasonable
necessity for a camera with controllable optical zoom in
order to deal with these differing camera heights.

If however one has such a controllable zoom additional
effort needs to be made in order to chose the zoom value
accordingly. Of course a high zoom value is desirable
since then the size of a human in the images is bigger. On
the other hand a low zoom value gives us a wider view
of the scene. Specifically for the crane scenario an ad-

(a) 0Zoom (b) 25Zoom

(c) 50Zoom (d) 75Zoom

Figure 3. View of different levels of zoom

ditional limitation is the occlusion due to the position of
the load. This occlusion will always be present, so we
need to try and optimize the occlusion by adjusting the
zoom level accordingly. The optimal zoom level is not
only dependent on the pose of the boom but also on the
position of the load, see figure 3. We therefore propose
the following approach. We split up the zoom levels in
discrete parts, for simplicity we here take the zoom lev-
els of 0%,25%,50%,75%. For each of the zoom lev-
els we want to individually train a CNN, called Zoom0,
Zoom25, Zoom50, Zoom75. Each of the networks take
images as inputs and we choose the same architecture for
each of the networks. Training for each network will be
done with its one appropriate dataset. We so to speak
need a DatasetZoom0, DatasetZoom25, DatasetZoom50
and DatasetZoom75. Since such datasets are not publicly
available we follow the workflow proposed in figure 4 for
each network individually.

Figure 4. Proposed workflow for each individual
network

Assuming this training is finished we take an additional
network which we will call MetaNetwork, which differs
in its architecture. See section 5 for a closer look at the
architecture and the training process. This MetaNetwork
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will take the current image and the corresponding zoom
level as input. Its output is then the proposed number of
human each of the four Networks will detect. The idea
here is, that the MetaNetwork can, e.g., due to a uniform
texture, see figure 3, detect when the zoom level is too
high and we have a lot of occlusion. On the other hand
the MetaNetwork may notice that only a small amount of
occlusion is present, but we are far away from the ground
and therefore may say that a bigger zoom level may de-
tect more pedestrians due to bigger humans. Then a de-
ciding algorithm should determine what the appropriate
zoom level is and also select the network accordingly. The
whole architecture is presented in figure 5.

Figure 5. Complete architecture

In its easiest form such a Decider could just take the
network with the highest proposed number of detected
humans. Also more sophisticated versions are possible,
e.g., only switch after a certain amount of time has past to
prevent constant switching or do not directly switch be-
tween Zoom0 and Zoom75. If all this is put into place we
have an algorithm which gives an educated guess which
zoom level to choose and then puts a detection network in
charge which is specialized to exactly this zoom level.

4 Dataset Generation
A common problem for Machine Learning in the con-

text of commercial vehicles is the very small number of
public datasets. A huge volume of image data is needed.
The common datasets and benchmarks which are used in
learning process of classification or object detection tasks,
e.g., KITTI [12], Daimler [8, 11, 27], Caltech [7], INRIA
[5], PASCAL [10], ETHZ [9] are not really applicable to
our situation. So in order to generate the needed data we
exploit a simulation tool, Unreal Engine 4. The idea of
the approach is similar to [28]. Instead of training the hu-
man detector using only real-world image data. The Un-
real Engine can produce realistic images of a construction
site environment e.g different workers, different kinds of
weather conditions such as snow, rain, cloud. For such
effects see figure 6.

Also different times of day and therefore different light-
ning conditions are easily simulated. In the case of the

(a) Image with segmentation

(b) Caterpillar crane (c) Rain and snow

Figure 6. Examples of synthetic data generated
from UE4: (a) Hoisting with the appropriate seg-
mentation by the object instance mask, (b) and (c)
are scene in construction site.

construction worker, the tool allows us to create desired
character appearance, motion or posture, based on motion
capture data. Also different perspectives of the same sit-
uation, at the same time are possible. As we will see in
section 5 we need to have the exact same situation with
different zoom levels in order to get an objective ground
truth for training the MetaNetwork. Data gathered in real-
life would not be able to fulfill this constraint, since either
the timing or the perspective of each zoom level would be
slightly off.

The annotation of the synthetic data can be automati-
cally achieved by an object instance mask plugin. In a
dataset which is annotated by hand there is always a con-
cern left, that the data may be annotated in a wrong man-
ner. Manual annotation is a tedious task so one can not
be sure to, e.g., not miss a human in the image or have
slight errors in the localization of an object. All these
concerns vanish with the use of automatic annotated data,
since the simulation environment knows the ground truth
and is therefore inherently objective.

5 Learning Framework

In the proposed approach a couple of networks are in-
volved. For the detection in each of the zoom levels and
around the crane we just use a state of the art object detec-
tion network and adjust the trained weights with transfer
learning, see [15] for a detailed look on the base architec-
ture. The MetaNetwork needs to be constructed in a dif-
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ferent manner. Since it does not only take the image but
also the current zoom level as an input we can not sim-
ply use a standard architecture but have to adapt to this
format. The proposed architecture can be seen in figure 7

Figure 7. Network architecture of the MetaNetwork

So as we can see we first have a CNN, with nearly the
same architecture as in the detection networks for each
zoom level. We remove the last layers in order to just
pass on the feature vector which is normally evaluated in
the last layers of a network. We then connect this feature
vector and the zoom level, encoded simply as an integer
value, with a fully connected layer. Then the result of
this fully connected layer will be given to our four desired
outputs. The idea is that this MetaNetwork will deduce
similar information as the detection networks but take the
current zoom level into account and by that help to chose a
suitable network. The training process will differ slightly
from a normal CNN. Since the ground truth is the ac-
tual number of humans each of the networks detects, the
dataset needs to reflect that. Therefore the dataset needs
to contain 4 images, one for each zoom level, while the
ground truth is the actual evaluation of each image by the
corresponding zoom network. Then during training one
of the four contained images can be chosen arbitrarily and
the zoom level input needs to be passed on accordingly.
This means that before we can train the MetaNetwork
each of the specialized ZoomNetworks has to be trained
sufficiently.

6 Conclusion and Future Work
Let us recap the approach presented in this paper. We

defined a sensor setup which is able to detect humans
around the crane truck and around the load. This camera
setup contains standard monocular cameras and a zoom
camera with a controllable zoom. Additionally we pre-
sented a CNN structure which is used for each of the
mounted cameras individually. Then a meta algorithm,
which is itself again a neural network yields a first estima-
tion what an appropriate zoom level would be. According
to this estimate the zoom level and the specialized net-
work is chosen. After the proposed approach is evaluated

a prototype system which is able to inform the crane oper-
ator about humans or other potentially endangered objects
entering the working area is being developed
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