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Abstract 

Information retrieval and automated progress 

estimation of on-going construction projects have 

been an area of interest for researchers in the field of 

civil engineering. It is done using 3D point cloud as-

built and as-planned model. Advancements in the 

field of photogrammetry and computer vision have 

made 3D reconstruction of buildings easy and 

affordable. But the high variability of construction 

sites, in terms of lighting conditions, material 

appearance, etc. and error-prone data collection 

techniques tend to make the reconstructed 3D model 

erroneous and incorrect representation of the actual 

site. This eventually affects the result of progress 

estimation step. To overcome these limitations, this 

paper presents a novel approach for improving the 

results of 3D reconstruction of a construction site by 

employing two-step process for the reconstruction as 

compared to the traditional approach. In the 

proposed method, the first step is to obtain an as-built 

3D model of the construction site using 3D scanning 

techniques or photogrammetry in the form of point 

cloud data. In the second step, the model is passed 

through pre-trained machine learning binary 

classification model for identifying and removing 

erroneous data points in the captured point cloud. 

Erroneous points are removed by identifying the 

correct building points. This processed as-built model 

is compared with an as-planned model for progress 

estimation. Based on the proposed method, 

experiments are carried out using commercially 

available stereo vision camera for 3D reconstruction. 
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1 Introduction 

Traditional monitoring of construction projects has 

always been manually driven process involving visual 

inspection and human judgment.  This makes these 

methods slow and inaccurate, reducing the ability of 

infrastructure managers to monitor project performance 

indicators, including schedule and cost. These poor 

monitoring techniques are comprehended as one of the 

reasons for cost and time overruns in construction 

projects [1]. Importance of accurate and efficient 

progress monitoring have been reiterated by several 

researchers. Research establishes project monitoring as a 

critical success factor for in-budget completion of a 

construction project [2]. The time taken for identification 

of inconsistency between the as-built and as-planned 

model is proportional to the cost overrun and increased 

difficulty in implementation of the corrective measures 

in a project [3].  

In the past, several automated methods of progress 

monitoring have been developed and tested by 

researchers and practitioners to enable better monitoring.  

Automated progress monitoring can be divided into four 

steps: (1) Data acquisition, which is capturing digital 

representation of as-built scenes, (2) information 

retrieval, this refers to extraction of useful information 

from the data collected without loss of any information 

required for accurate progress estimation, (3) progress 

estimation, this is a comparison between as-built model 

and as-planned model in order to determine the state of 

progress, (4) visualization of the results obtained via 

previous steps [4]. 

Recent advancements in the field of reality capture 

technologies, like, 3D imaging, laser scanning, in-situ 

sensing equipment, onboard instrumentation and 

electronic tagging, has made data acquisition possible for 

automated progress estimation. Moreover, developments 

in the field of machine learning and computer vision have 

made analysis of the acquired data efficient. While the 

impacts of these advancements are compelling, 

numerous challenges continue to persist. [5][6] These 

challenges prevent them from maturing into technologies 

that could be deployed to an on-going construction site 

for monitoring without human intervention. It can be 

alleged that there are no practices which offer automated 

analysis of construction data to estimate progress [4]. 

Thus, the goal of the study is to improve the result of 

progress estimate of a construction by generating a 

correct 3D reconstruction of construction. Considering 
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the high variability in site conditions and data collection 

techniques, the method should be robust to these 

variations for any given site.  

It should be noted that 3D reconstructed point cloud 

model is obtained using commercially available stereo 

vision camera. The process of 3D registration of images 

to produce point cloud is known to be error-prone, 

producing erroneous points with no correspondence in 

actual site [7][8]. Thus, data pre-processing becomes of 

paramount importance, involving outlier removal and 

noise filtering. But these methods are preliminary in 

nature and erroneous points continue to exist in the point 

cloud data. Therefore, there is need to identify these error 

points. 

In this study, we work to improve the results of 

progress estimate of construction calculated by 

comparing as-built model, obtained using a 

commercially available stereo vision camera, and as-

planned model. The research employs machine learning 

techniques for processing and refining 3D point cloud 

model before progress estimation is made. The 

processing involves detection of the masonry followed 

by its distinction from erroneous points. This is done to 

obtain a more accurate representation of the captured 

scene as compared to the output of 3D reconstruction. 

Subsequently, this processed as-built model is used for 

progress estimation by comparing it with the as-planned 

model.  

In this paper, a novel method is proposed to classify 

between normal and erroneous points using machine 

learning techniques. “Normal” class representing points 

which correspond to constructed parts in the 3D point 

cloud model whereas “erroneous” class represents points 

which have no correspondence or correspond to parts 

other than constructed elements. In this method, a 

supervised binary classifier is built by training it over 

data collected. This trained classifier is used for 

identifying masonry points and thereby removing 

erroneous points from a point cloud, eventually 

producing better progress estimate. The study has been 

done for masonry construction, but can be extended to 

other types of construction. 

2 Problem Statement 

The aim of the paper is to develop an approach to 

reduce erroneous points generated in 3D reconstruction. 

Thus, it trains a classifier to reduce false positive in the 

3D point cloud model reconstructed. The study also deals 

with the impact of the different site conditions like 

lighting, and different data collection parameters, like the 

speed of capture, yaw of the camera, the pitch of camera, 

etc. on the 3D reconstruction and progress estimate. The 

methodology developed needs to be independent of these 

parameters. 

3 Review of the literature 

Laser scanning and photogrammetry are two popular 

techniques for obtaining as-built point cloud of a 

construction site. Although laser scanning produces 

dense point clouds capturing tiniest details of the site, it 

is very costly. On the other hand, though the camera has 

the drawback of lower geometric accuracy; flexibility to 

use and cost-effectiveness makes them a favorable choice. 

Bohn & Teizer have explored advantages and challenges 

of camera-based progress monitoring [9]. The efficacy of 

stereo vision cameras to obtain as-built point cloud model 

using 2D images and depth map has been studied and 

proved by various researchers. [10]–[12]. Thus, imaging 

(stereo vision camera) system is used to obtain input for 

the as-built modeling stage. 

The accuracy of reconstruction has a crucial impact 

on the progress estimate. The reconstructed models are 

highly corrupted with outliers and missing values 

because of imperfect conditions in which scanning is 

done, for instance, the motion of the object, multiple 

reflections, object occlusion, etc. Therefore, the output of 

the data acquisition step, that is reconstructed point cloud 

model, needs to be processed and analyzed before 

feeding to the next step of information retrieval and 

progress estimation. The standard tasks involved in pre-

processing of point cloud data are (1) Outlier removal, (2) 

Handling missing value and (3) Reducing noise (or 

smoothening) of data [13]. For large point clouds, 

downsampling through voxelization is done, in order to 

reduce the computational time and cost. 

Outlier removal for point cloud is a non-trivial task 

because of following reasons: geometrical discontinuities, 

no apriori knowledge of outlier distribution, and varying 

local point density [14]. Outlier removal methods in 

literature are mostly based on local properties of points, 

popularly calculated using density-based approach [15] 

and distance based approach [16]. Some of the local 

statistics are local point density, nearest neighbor 

distance, eigenvalues of the local covariance matrix, etc. 

[17]. Wang et.al, proposed connectivity-based and 

clustering approach for detection of outliers [14]. 

Similarly, the point cloud is processed for noise 

smoothening, involving noise filtering and point update. 

The processed as-built point cloud is to be compared 

to as-planned BIM model for progress estimate. There 

are two ways to do the comparison: (1) convert the point 

cloud model in BIM model (involving semantic 

segmentation and object recognition) and compare, (2) 

convert the as-planned model to point cloud format and 

compare. In this paper, latter is adopted progress 

estimation. 

It is worthy to note that in almost every data pre-

processing techniques, no apriori knowledge of error (i.e. 

outliers) distribution is used. Thus, though these 

techniques help in cleaning data to an extent, they cannot 
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remove incorrectly reconstructed points which are 

dependent on the methodology followed for 

reconstruction, data collection technique, and site 

conditions. In this paper, we propose a method to learn 

the characteristics of the construction materials and 

elements and use this knowledge to detect the same, and 

thereby removing the erroneous points. The erroneous 

points are detected using machine learning technique. 

This detection is posed as standard binary classification 

problem to classify between normal and erroneous points, 

which is solved by training a classifier based on local and 

contextual features (which are discussed in detail in later 

sections). 

4 Methodology of Research 

In this research, we focus to improve the as-built 

model reconstruction accuracy. In addition to, data pre-

processing, the point cloud is subjected to supervised 

binary classification for construction material detection. 

This detection method has two-fold advantages – First, it 

eliminates the need to manually assign threshold values, 

which requires expertise. Second, it enhances the ability 

to scale the method, as this can be easily re-implemented 

after re-training. The proposed methodology excluding 

data acquisition and pre-processing (outlier removal and 

noise smoothing), can be divided into four components: 

(1) Data generation, (2) Feature Engineering, (3) 

masonry recognition using machine learning based 

supervised classification, (4) progress estimation and 

evaluation. Each of the above components are discussed 

in detail in the following sub-sections: 

4.1 Data generation 

This is the first step in the proposed framework. The 

input to this method is point cloud data and 

corresponding BIM model. The point cloud is annotated 

Figure 1. Proposed Methodology 

(a) 

(b) 

Figure 2. A sample of 3D models used for 

data generation (a) as-built model showing 

erroneous points marked in yellow (b) as-

planned model corresponding to the model 

in figure 2(a). 
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using BIM model as ground truth. Instead of following 

the common strategy for point cloud labeling, which 

involves over-segmenting the data and then assigning 

labels to segments. The data is annotated pointwise, 

considering two-fold advantages – (1) to avoid 

inheritance of error from segmentation step (2) to prevent 

classifier from learning hand-crafted rules of 

segmentation algorithm, when used for training [18]. 

3D annotation is done by manually comparing the 

point cloud model with the BIM model. The two models 

are overlapped and annotation is done view-by-view. A 

view is fixed and in this view, all the points lying within 

the boundary of BIM model, with a small tolerance value, 

are marked as normal while the rest of the points are 

marked as erroneous. This process is iteratively repeated 

for different views until all the possible views are 

covered. The problem with this way of annotation is that, 

same points appear in different views, appearing 

erroneous in one view and normal in another. To tackle 

this problem, a point is marked normal if it appears 

normal from all possible views and erroneous if it 

appears as erroneous from any possible view. Eventually, 

the point cloud is separated and labeled into two classes 

– “normal” and “erroneous”.  

4.2 Feature Engineering 

Performance of any machine algorithm is only as 

good as the ability of the features (or parameters) used to 

distinctly define the underlying distribution. In this 

regard, we attempt to learn a list of features which can be 

used to identify point corresponding to masonry in a 

point cloud. Rashidi et.al., realized three categories of 

construction materials depending upon appearance and 

color features[19]. Thus, discriminating features are 

learned for masonry data through an iterative process of, 

feature extraction and feature selection. The types of 

features learned are spatial and color, which are 

discussed below: 

4.2.1 Spatial Features 

These features are used to model the geometrical 

properties, like angles, distances, and angular variations, 

of masonry data. In a 3D point cloud, these features for a 

point in space is calculated by considering the spatial 

arrangements of data points in the neighborhood. The 

neighborhood can be assumed to spherical [20] or 

cylindrical [21] with a fixed radius. The neighborhood 

can also be selected based on k-nearest neighbor, 

depending on 3D-distance from the query point, where k 

∈ N [22]. For classification, spatial features were 

calculated for fixed radius spherical neighborhood. In 

order to obtain appropriate and uniform features across 

different data models, features are calculated at a fixed 

scale. 

Neighboring points in a 3D model are known to be 

correlated and interdependent [23]. And therefore in 

order to capture this correlation, apart from individual 

features, some of the features are obtained which take this 

interdependency into consideration. Some of the features 

which are used are: 

 Individual: Normal,  local point density 

 Contextual: Fast point feature histogram (FPFH) 

descriptor  

FPFH descriptor is calculated in two steps: (1) for 

every point p, relationships are calculated between the 

neighbor and the query point, this histogram is named as 

simplified point feature histogram, SPFH. (2) In this step, 

for each of the query point, its nearest k neighbors are 

found, and FPFH is calculated using equation (1)    

FPFH(p)=SPFH(p)+ 
1

k
∑

SPFH(p
k
)

wk

k

i=1

 

 

(1) 

where, k represents the number of nearest neighbors 

to a query point, wk represents the distance between the 

query and the neighboring point.   

Figure 3 illustrates the influence diagram of a point 

and highlights the neighborhood of a point which 

contributes the feature at that point [24]. These features 

are computed using Point cloud library [25]. 

 

Figure 3. Influence diagram of FPFH to capture 

the interdependence of the neighboring points in 

the 3D point cloud [24] 

4.2.2 Color Features 

For the recognition of masonry, color values are very 

effective feature given its distinctive bright red color. It 

serves as an effective indicator for differentiating 

masonry from rest of the objects found on a construction 

site. However, it is worthy to note here that though the 

color value for a given does not vary drastically in a given 

point cloud, it might vary significantly when the same 

material is compared from two different point clouds, 
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captured for different site conditions. This is illustrated 

in figure 4. 

 The color values are obtained in the RGB space. 

Though these are most widely used color space, these 

RGB values are susceptible to a high variation on 

exposure to the same object under different illumination. 

And since illumination is an uncontrolled construction 

environment is ought to vary, dealing with these 

variations is highly important to produce effective results. 

Therefore, in this study, we have transformed the color 

space from RGB to HSI. It is compelling to make this 

transformation because: (1) it is very intuitive as it is 

similar to the way in which color is perceived by humans, 

(2) it separates the chrominance (color) and luminance 

(intensity) information, which has proved to be 

advantageous in image processing application. Hue (H) 

and Saturation (S) correspond to the color component of 

the RGB space, whereas Intensity (I) represents the 

illuminance-dependent part. Therefore, hue and 

saturation provide a good parameter for classifying 

masonry points from the rest. The color is changed from 

RGB to HSI using following equations: 

 

H= arctan 
√3 (G-B)

(R-G)+(R-B)
 (1) 

S= 1-3
min(R,G,B)

R+G+B
 

(2) 

I= 
1

3
(R+G+B) 

(3) 

4.3 Masonry recognition 

For the recognition of masonry in the point cloud, the 

pre-trained binary classifier is used. The following sub-

sections explain the details of the classification. 

4.3.1 Classifier training 

An SVM classifier is trained over a training dataset 

generated using the method explained in data generation 

step. Instead of using voxel-based approach for training, 

a point-based approach is used. Despite the 

computationally costly and time-consuming nature of 

point-wise training, it is acceptable because: (1) it helps 

in improving recall values while detecting concrete 

points, (2) training is a one-time process, to be done 

during the setting up of the system. Hence, selection of 

the approach was done based on accuracy rather than 

computational cost. 

Since the classification boundary was non-linear, 

Radial Basis Function (RBF) kernel was used. The 

parameters C and γ are to be determined for RBF kernel 

SVM model. C is regularization parameter and γ is kernel 

parameter [26]. In order to validate the results obtained 

using the training set, an independent validation set is 

used, which was obtained using a method similar to 

training data. 

4.3.2 Masonry detection 

The classifier obtained in section 4.3.1 is used for 

detection of points corresponding to masonry points in 

the post-processed point cloud. Features are extracted 

from the input 3D point cloud data (different from the 

data used for classifier training) depending on which 

classification is done. The point cloud is separated and 

classified as in two classes: “normal” and “erroneous".   

4.4 Evaluation 

For evaluating the performance of the system, two 

popular measures – Precision and recall are used.  

Precision =  
TP

TP + FP
 

 

(4) 

Recall =  
TP

TP + FN
 

 

(5) 

Where, TP represents true positives, a number of 

points that are correctly predicted, belonging to the 

normal class, FP represents false positive, points which 

are predicted as normal but are actually erroneous, FN 

represents false negative, points which are erroneous but 

are predicted as normal. 

5 Preliminary results 

Based on the study, it is observed that colour features 

are distinctly different for both classes and therefore 

contribute most to the classification results. This is 

attributed to rich colour properties of a masonry 

construction. The erroneous points are observed to have 

Figure 4. Hue and Saturation plot for two 

different datasets, collected under different 

conditions  
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low values of hue and saturation. The performance of the 

system with only colour features used for the training of 

the classifier is 69% in precision and 72% in recall. This 

result of colour acting as dominating feature in masonry 

detection is in coherence with different studies done in 

the past [12] [27].    

The value of the evaluation metrics obtained in the 

preliminary study is given in Table 1. These results were 

obtained using all the features discussed in Section 4.2. 

The precision and recall values obtained are low in 

comparison to other studies which were conducted using 

2D images as the dataset. These low values are the result 

of low point density in comparison to a high pixel density 

of an image. Moreover, training dataset used for training 

of the classifier was small in number. Therefore, these 

values need be improved further by using a larger 

training dataset, which is representative of the entire 

population of variations causing erroneous points 

reconstruction. 

Table 1. Precision and recall value obtained from the 

test dataset    

Metric Percentage (%) 

Precision 73.1 

Recall 77.3 

6 Conclusion and Future work 

This study has presented an automatic system for 

information retrieval and progress estimation, with a goal 

to improve progress estimate by introducing a step of 

construction elements/material recognition. Masonry 

brick wall is used as a construction element in the study. 

The work needs to be extended to other construction 

materials/elements. A larger dataset needs to developed 

which can be used produce better results by employing 

data-intensive machine learning techniques, like tree 

family algorithms and deep learning algorithms.  In 

future work, apart from geometric and colour features, 

texture features and other local geometric features needs 

to be explored in order to obtain better results. Although 

stereo vision-based imaging was employed for the study, 

the proposed methodology is expected to perform equally 

well irrespective of the technique used for data collection, 

as long as inputs are in the form of 3D point cloud with 

colour features. Moreover, detection of construction 

material can help in case of occluded scenes, where the 

building is to be separated from the rest of surrounding.  
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