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Abstract –  

In the U.S., the increasing electricity demand gives 

pressure on the power grids because of its limited 

capacity to serve demand. Instead of building new 

power plants to meet the increasing demand, Demand 

Response (DR) programs incentivize end-consumers 

to reduce certain electricity demand during certain 

periods (e.g., peak demand and emergency times). In 

the current practice, saving potential of buildings, i.e., 

the amount of electricity that end-consumers can save 

during an event, is usually determined using the 

technical specifications of equipment installed, which 

is unrealistic and leads to over or underestimation of 

the expected saving potential. In this study, the 

authors developed a data-driven framework to 

quantify the electricity saving potential in buildings. 

The framework was applied to nineteen campus 

buildings. Several prediction algorithms were used to 

fit models to the integrated datasets of these buildings, 

and models were evaluated using four criteria to 

avoid over-fitting and under-fitting. The best 

performance of the models resulting in 0.86 of R2, 

which represents high capability to quantify the 

electricity saving potential. The contribution of this 

study is the proposed data-driven framework, which 

provides facility operators with reliable tools to 

accurately quantify saving potential of buildings. The 

conducted case study using the framework on 19 test 

buildings showed that facility operators could avoid 

unnecessary penalties by eliminating them to sign up 

for unrealistic targets, and help them to gain the most 

value out of the DR programs by knowing the true 

potential of their buildings.  
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1 Introduction 

The electricity demand in the U.S. is in incline [1], 

which increases the pressure on power grids; hence the 

chance of electricity blackouts. In New York and 

California, electricity blackouts caused billions of dollars 

of loss to businesses and individuals [2][3]. Demand 

response (DR), one of the demand side management 

(DSM) techniques, is able to provide the necessary 

flexibility to the grid by incentivizing end-consumers to 

reduce their electricity demand during certain periods 

such as peak and emergency situations [4]. Meanwhile, 

building sector accounted for 74% of the total electricity 

consumption in 2016 [5], making buildings significant 

candidates for DR programs. In New York, buildings that 

were enrolled in DR programs managed to provide more 

than 31K MW/year of load curtailment and millions of 

benefits in recent years [6][7]. Hence, maximizing 

energy saving potential in buildings for DR is essential 

for peak reduction and energy savings. 

The saving potential of a building (i.e., DR 

enrollment) refers to the amount of electricity that the 

building can save during a DR event. The problem in the 

current practice is that this potential is usually calculated 

based on simplified information such as design 

specifications of equipment in the building or historical 

metering data, resulting in the loss of opportunities to 

know the true energy-saving capacity of buildings. In the 

current practice, end-consumers usually work with third 

aggregators to determine the saving potential during DR 

events and customize their DR protocols. DR protocols 

are instructional statements for building operators to 

follow to operate major equipment in that building. For 

buildings which participated in DR program earlier, a 

yearly assessment is conducted by DR engineers and they 

will simply increase or decrease the DR enrollment by 

comparing the average performance on savings for 

events that happened in that year with the previous DR 

enrollments [30].  

Buildings and the operation procedures are inherently 

much more complex than the simplified calculation due 

to their interconnections among their diverse systems 

[10]. Therefore, using the simplified calculation to 

estimate the energy saving potential can result in over or 

underestimation of the DR enrollment of buildings. Such 

performance issues were observed in the case-buildings 

analyzed for this study, as shown in Figure 1. The graph 
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on the left indicates that Building A did not meet the DR 

enrollment (determined using the design information), 

which results in penalties for the end-consumer for 

exceeding the consumption beyond the enrollment value. 

The figure on the right illustrates that Building B saved 

more electricity during the event than the DR enrollment 

value, which indicates the potential money left on the 

table for the facility for not enrolling in more. Partly the 

problem was due to the lack of consideration of the 

context of the building during the event time such as 

different baseline values (i.e., the amount of the 

electricity that a building usually consumes under the 

same condition without DR operation), weather 

condition, and event time. These and similar examples 

from the literature [30] show that calculating saving 

potentials in DR programs simply using average 

benchmarking values from generic design specifications 

and not taking into account the context around event 

times result in a loss for building owners in either way. 

Hence, facility operators and third aggregators are in 

need of tools to accurately estimate the true potential of 

buildings by relying on integrated information including 

protocols, historical energy performance data, and 

contextual data around the event times (e.g., baseline 

values corresponding to the event times, weather data, 

etc.).  

 

Figure 1. Performance of two buildings (Building 

A on the left, Building B on the right) during a 

peak event as compared to the DR enrollment 

(also marks the time range that an event occurred 

on the horizontal scale) 

The objective of this paper is to quantify the true 

saving potential of buildings during DR events by 

integrated analysis of historical electricity consumption 

data, weather condition, DR protocol statements, and DR 

profiles (which provide information about DR event 

times, electricity consumption baselines, and DR 

enrolment values for buildings). Information from DR 

protocols can provide insights about buildings and 

equipment, and the electricity meter provides historical 

electricity consumption of buildings operated as the DR 

protocol instructions. In addition, the authors included 

weather condition information as it plays a crucial role in 

DR events and electricity consumption of buildings. A 

framework was developed by the authors for the stated 

objective, which is composed of two major modules: DR-

dataset pre-processing and saving potential estimation. 

The details of the framework are presented in Section 3. 

The framework has been evaluated using data and 

protocols from nineteen buildings and six DR events that 

occurred in 2016. 

The paper is structured as follows. A comprehensive 

review of the previous efforts on quantifying the saving 

potential of buildings in the literature has been provided 

in Section 2. In Section 3, the authors overview the 

framework and present the criteria to evaluate it. The 

implementation of the framework on nineteen buildings 

along with the results is discussed in Section 4. Section 4 

also provides discussions on the challenges and future 

work. Conclusions are presented in Section 5. 

2 Literature Review 

There are three general types of models that have 

been used in previous studies to quantify electricity 

consumption and DR electricity saving potential: 

physical, statistical and simulation, and hybrid models 

[10]. Studies that developed physical models use 

equations and physics laws to predict saving potentials 

[8][9][18][19]. A large group of previous research studies 

concentrates on heating, ventilating, and air conditioning 

(HVAC) systems due to the fact that they account more 

than half of the energy consumption in buildings. Some 

of these studies developed simplified equivalent thermal 

parameters model to simulate saving potential for HVAC 

systems by adjusting the set-points [19-21]. While other 

studies implemented physical-statistical models to 

simulate the impact of adjusting parameters of HVAC 

systems on electricity consumption, which can further 

inform about the saving potential of HVAC systems 

during DR events [10][20][22][29].  Instead of using only 

HVAC system models, researchers also implemented 

physical models that include other systems that utilize 

electricity such as lighting, refrigerating, and appliances, 

and then quantified the saving potential by simulations of 

the testbeds [23][25]. These studies provide valuable 

insights of physical mechanism and potential knowledge. 

However, they usually are limited to the simplification of 

model equations and lack of consideration of the 

stochastic behaviors that happen in buildings- resulting 

in poor performance [10].   

Statistical models, on the contrary, are developed 

based on experimental data. Large national level datasets 

of building energy use have been studied to identify the 

energy saving potential by comparing energy usage and 

data-driven saving analysis [26][27], yet the results from 

these studies are often in a very coarse-resolution, which 

cannot help DR engineers when determining the saving 
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potential of a building for upcoming DR events. 

Researchers also compared the performance of both 

physical and simple statistical models for forecasting 

energy consumption in residential buildings as hybrid 

models and concluded that they both work with the 

slightly better performance than the statistical model 

(artificial neural network) [28]. Other than studies that 

emphasize the use of overall electricity consumption, 

load profiles of major household appliances were also 

utilized to identify their saving potential [24]. Despite the 

achievement of good results these models had in 

predictive modeling, they are often limited in the scope 

of certain purpose they aimed at in a restricted number of 

buildings/systems due to their inherent computational 

complexity [10]. 

This study is motivated by the need for accurately 

estimating the saving potential of different buildings 

during DR events. The framework developed in this 

study aimed at estimating the generic building-level 

saving potential instead of system-level saving potential 

by integrating the whole building energy consumption 

data, DR protocols, and contextual data around event 

times. This study differs from the studies in literature by 

providing a way to take into account contextual datasets 

that relate to DR assessment and analyze them in an 

integrated way using state of the art data-driven 

approaches.  

3 Research Approach 

3.1 Overview 

The framework contains two main modules, which 

identify and extract the attributes to train the models, 

integrate datasets, and then fit models to estimate the 

electricity saving potential of buildings. The input of the 

DR dataset pre-processing is the DR protocol statements 

along with the building type, and a set of attributes for 

each building are extracted by the authors manually. 

Then, the extracted DR attributes dataset is integrated 

with other datasets from different sources, such as 

weather condition dataset, electricity meter dataset, and 

DR profiles (event time, electricity consumption baseline, 

DR enrollment). The second module, saving potential 

estimation, takes the integrated attributes dataset as input 

to fit machine learning models to estimate the electricity 

saving potential of buildings and provides the best 

performing model as a decision-making solution for 

facility operators for determining the true saving 

potential of buildings. 

3.2 DR Dataset Pre-processing  

In this study, the authors examined the DR protocols 

for a group of buildings to extract related attribute-pairs 

along with a building attribute: Building_type. The 

authors first categorized actions based on the equipment 

types and recorded the quantity of the impacted areas and 

equipment types. Details of this study are provided in a 

recent publication [11]. As stated in [11], DR protocols 

for buildings include five types of equipment: HVAC 

units (e.g., Air handling, fan coil, fan power units), fans, 

lights, elevators, and appliances. In this study, appliances 

are excluded because of its high dependence on 

occupancy data and lack of access to data on occupancy 

in spaces. For HVAC units, fans, and lights, the quantity 

of each equipment along with affected areas were 

extracted. Therefore, the data on attribute-pairs included: 

equipment_action and equipment_quantity for each 

equipment type.   

The next step was to link the extracted data to the rest 

of the datasets. The weather information during the DR 

events is acquired from weather underground API [12], 

and the weather attributes included weather condition, 

temperature, humidity, and wind speed. The data on the 

DR profile of buildings included the electricity 

consumption baselines, the enrollment values and event 

times. More details of the datasets and the merging keys 

are provided in Section 4.2. 

3.3 Saving Potential Estimation 

3.3.1 Saving Potential Estimation Methodologies 

In this module, the authors fitted several machine 

learning models to estimate the electricity saving 

potential of buildings. Because of the relatively small 

sample size and discrete categorical attributes in the 

studied problem, the authors chose decision tree 

regression model along with several boosting methods. 

There are mainly three types of decision trees: 

classification and regression trees (CART), C4.5, and 

C5.0 [13]. Among these decision trees, the CART is very 

similar to C4.5, yet it supports both categorical and 

continuous variables. Therefore CART is chosen to fit 

the dataset and estimate the electricity saving potential in 

this study. Furthermore, the authors used boosting 

algorithms such as Ada Boost and Random Forest to 

improve the performance of decision tree regression 

models. Both of the algorithms build multiple decision 

trees through iterations and take the average of the 

predicted value. Ada Boost is short for adaptive boost, 

which iterates the training process to build multiple 

decision trees and modifies the training data during each 

iteration and gives higher weight to the poorly modeled 

part [14]. Random forest algorithm, in addition to 

randomly selecting segmentations of the training data 

with replacement using the bootstrap method, also 

randomly selects the attributes when fitting the model.  
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3.3.2 Model Selection Criteria 

One of the major advantages of the decision tree 

algorithm is that it is easier to interpret the result and can 

provide logic statements of the model [13][15]. However, 

it is also very easy to get over-fitted. In this study, the 

authors used four criteria, bias2, variance, mean square 

error, and R2, together to prune the model to avoid both 

over-fitting and under-fitting and meanwhile, aiming for 

adequately good prediction performance. Denoting N as 

the sample size of the training data, {(1), (2), …, (N)} 

are the predicted values over the training data. The 

expected predicted value of the fitted model (x) is 

shown with (𝑥)̅̅ ̅̅ ̅̅  (see Equation 1). Bias2 captures the 

systematic error of the model (see Equation 2) [16]. 

When a model has a big bias2 value, it indicates that the 

model is under-fitted, whereas big variance indicates the 

model is over fitted (see Equation 3). 

(𝑥)̅̅ ̅̅ ̅̅ = 1/𝑁 ∑ 𝑓(𝑥)

𝑁

𝑥=1

 

(1) 

𝐵𝑖𝑎𝑠2 (𝑓(𝑥)) = ( (𝑥)̅̅ ̅̅ ̅̅ –  𝑓(𝑥))
2
 (2) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑓(𝑥)) =  𝐸 [((𝑥)̅̅ ̅̅ ̅̅ –  𝑓(𝑥))
2

] 
(3) 

The mean squared error (MSE) is composed of Bias2 

and Variance (see Equation 4), and measures the average 

squares of the errors, where 𝑌denotes the observed data. 

Meanwhile, R2 captures the capability of the model in 

explaining the observed data (see Equation 5). 

𝑀𝑆𝐸 = 1/𝑁 ∑(𝑓(𝑖) − 𝑌𝑖)2

𝑁

𝑖=1

 

(4) 

𝑅2 = 1 − ( ∑(𝑓(𝑖) − 𝑌𝑖)
2

𝑁

𝑖=1

/ ∑(𝑌𝑖 − 𝑌̅)2

𝑁

𝑖=1

) 

(5) 

In Figure 2, the simplified relationship between 

variance, bias2, and mean square error is demonstrated. 

As the complexity of the model increases, the Bias2 

decreases while the variance increases. There is an 

optimal point in the middle, where the variance meets 

with the Bias2, and the mean square error is the lowest. 

In this study, the authors visualized all four criteria to 

prune the models. For decision tree models, the authors 

iterated the depth of the tree from 1 to 10 to fit the models. 

For AdaBoost and Random Forest models, two 

parameters were included to iterate, the depth of the tree 

and the number of the tree estimators, both from 1 to 10. 

The optimal choice of the parameters was determined by 

the authors by visualizing the criteria, and the parameters 

with a lower bias, variance, MSE and higher R2 were 

chosen. At last, the optimal models for each model were 

fitted and evaluated based on the average R2 value among 

the cross-validation of the complete dataset.   

 

Figure 2. Simplified relationship between Bias2, 

Variance, and MSE  

4 Implementation of the Framework on a 

Case Study 

4.1 Overview 

The framework was tested on a case study of 19 

campus buildings (including offices, academic buildings, 

and dorms) that participated in DR programs in 2016. 

There were six events that happened in 2016. During the 

events, data such as weather and electricity meter data 

was collected from different sources to quantify the 

saving potential of the buildings. 

4.2 DR Dataset Pre-processing 

The authors examined the 116 DR protocol 

statements for nineteen buildings manually to extract the 

DR attribute-pairs to fit the models. Table 1 listed three 

examples of the extracted attribute-pairs. As shown in 

Table 1, there are eight attributes identified from the 

protocol statements. However, not every protocol 

Building 

ID 

Building_

type 

HVAC_ 

action 

HVAC_ 

quantity 

Light_ 

action 

Light_ 

quantity 

Fan_ 

action 

Fan_ 

quantity 

Elevator_

quantity 

Building1 Office Shut Off 4 Shut Off 5 Reduce 

Power 

40% 1 

Building2 Dorm Shut Off 1 Shut Off 27 Shut Off 5 1 

Building3 Office Reduce 

Power 

40% Shut Off 4 None -1 2 

Table 1. Three Examples of the Attribute-Pairs Extracted from the DR Protocols 
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includes all the attributes, and such cases were reflected 

as none in the dataset. For example, the DR protocol for 

Building 3 in Table 1 does not contain any instruction for 

Fans. Therefore, the authors put ‘None’ as the Fan_action 

and ‘-1’ as the Fan_quantity.  

In addition to the attribute-pairs extracted from the 

DR protocol statements, the authors also collected the 

weather condition data, DR profile data, and electricity 

meter data during the event (based on event times from 

DR profiles). The description of all the datasets is shown 

in Table 2. The datasets are integrated with each other by 

merging keys. For example, the DR attribute-pairs were 

merged to the DR profiles by linking the dataset based on 

the building ID. The integrated dataset was pre-processed 

using forward filling method, which means that the 

missing value is filled with the nearest previous data. 

Table 2. Description of the Datasets 

Datasets Variables Merging 

Key 

DR 

Attributes 

Pairs 

Building_type, 

HVAC_action, 

HVAC_attribute, 

Light_action, 

Light_attribute, 

Fan_action, 

Fan_attribute, 

Elevator_attribute 

Building ID 

Weather 

Data 

Weather Condition, 

Temperature, Humidity, 

Wind Speed 

Date-time 

DR Profiles Baseline, Enrollment Building ID 

Electricity 

Meter Data 

Electricity Consumption Date-time; 

Building ID 

4.3 Quantifying Saving Potential in Buildings 

4.3.1 Decision Tree 

With the integrated dataset from the previous section, 

the authors fitted the decision tree models and pruned it 

by iterating the depth of the trees from 1 to 10. Figure 4 

demonstrates the results of the MSE, R2, Variance, and 

Bias2 of the decision trees with different depths. As 

shown in Figure 3, MSE and Bias2 decrease when the 

depth of the tree increases, whereas R2 and Variance 

increase when the depth of the tree increases. When the 

depth of the tree is four, Bias drops drastically with 

relatively low variance and MSE, and with a fairly good 

R2. Therefore, the depth of the decision tree is determined 

as four, meaning that in this case, the model can provide 

sufficient capability in estimating the saving potential 

and not suffering over-fitting and under-fitting issues.  

 

Figure 3. Comparison of MSE, R2, Variance, and 

Bias2 of the Decision Trees with Different Depth 

of the Trees 

4.3.2 Ada Boosting 

To improve the performance, the authors 

implemented Ada Boosting decision trees and pruned the 

parameters by iterating both the depth of the trees and 

number of the tree estimators from 1 to 10. The heat map 

of the four criteria is shown in Figure 4 with blue 

indicating a small value and red indicating a large value. 

As shown in Figure 2 and Figure 4, variance and bias2 are 

negatively correlated. Hence the boxes with the color in 

middle range of the sidebar are selected as candidates. 

Furthermore, among the candidate boxes, the authors 

chose the parameters based on the R2 and Occam’s razor 

law, which means that the square with a higher R2 and 

less depth of tree and number of estimators will be chosen.  

Figure 4 shows that when the depth of the tree is equal 

to five and the number of tree estimators is four, the MSE, 

variance, and bias2 are smaller than the surrounding cells 

(meaning that the model is better fitted than the 

surrounding models), along with a relatively high R2 

(meaning that the model is capable of estimating the 

saving potential of the buildings). Therefore, the pruning 

process of Ada Boosting results in five as the depth of the 

tree and four as the number of estimators. 
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Figure 4. Heat map of MSE, R2, Variance, and 

Bias2 of the Ada Boost of Decision Trees with 

Different Depth of the Trees and Number of 

Estimator Trees 

4.3.3 Random Forest 

In addition to modifying the training sample to 

improve the performance, random forest fits the trees 

with different attributes from the integrated training 

dataset as well. The parameters for the random forest is 

the same as Ada boosting, the depth of the tree, and the 

number of tree estimators, and the best parameters are 

chosen based on the same process as Ada boosting as 

well. Figure 5 shows the heat map when pruning the 

random forest models. When the depth of the tree is six, 

and the number of tree estimators is four, the bias2, 

variance, and MSE are all fairly small with a high R2. 

Therefore, the best parameters for the random forest 

model, in this case, are six as the depth of tree and four 

as the number of estimators. 

4.3.4 Comparison of the Models 

The authors tested all the pruned models on the 

datasets using 20 folds cross-validation, which will 

randomly pick 70% of the data as the training sample to 

fit the model and 30% of the data as the testing sample to 

evaluate the performance for 20 times. The pruned 

parameters and average R2 from the cross-validation are 

shown in Table 3.  As shown in Table 3, random forest 

with six as the depth of the tree and four as the number 

of tree estimators has the best performance in explaining 

the DR dataset and resulting 0.862 as the R2, which 

indicates that the framework has better capability of 

estimating the true saving potential of the buildings in 

different types and scales.  

 

Figure 5. Heat map of MSE, R2, Variance, and 

Bias2 of the Random Forest of Decision Trees 

with Different Depth of the Trees and Number of 

Estimator Trees 

The comparisons between the estimated electricity 

saving potential from the random forest model, the 

enrollment value of the buildings, and the actual 

curtailment during the DR events are shown in Figure 6. 

In Figure 6, X-axis represents the actual curtailment 

(percentage of the baseline) of the buildings, and Y-axis 

represents the estimated electricity saving potential 

(percentage of the baseline) during the events (predicted 

by random forest model or the enrollment value from the 

DR profile). 

Table 3. Parameter and Performance of the Models 

Model Depth of 

Tree 

Number of 

Trees 

R2 

Decision 

Tree 

4 - 0.743 

Ada 

Boosting 

5 4 0.828 

Random 

Forest 

6 4 0.862 

The diagonal black line indicates the case when the 

actual curtailment is equal to the calculated electricity 

saving potential. The red dots illustrate the enrollment 

value from the DR profiles versus the actual curtailment, 

and the blue dots illustrate the estimated saving potential 

from the random forest model with respect to the actual 

curtailment. For the red dots, almost half of them 

indicates that the enrollment value is smaller than the 

actual curtailment during the events (the red dots that are 
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at the right of the black line), which indicates over-

performance of the buildings (i.e., facility operators 

signed up for a small enrollment value and resulting in 

saving more electricity) while half of them indicates that 

the enrollment value is larger than the actual curtailment 

(the red dots that are at the left of the black line), which 

indicates under-performance of the buildings (i.e., 

facility operators signed up for a large enrollment value 

and resulting in penalties due to less electricity saving). 

Meanwhile, the blue dots distribute closely around the 

black line, which demonstrates the capability of the 

framework for estimating the electricity saving potential 

for the studied campus buildings.  These cases illustrated 

the potential of the framework in estimating the saving 

potential of buildings. By enlarging the training set and 

including more cases, the framework can have a more 

promising performance over a group of buildings that 

share common characteristics.  

 

Figure 6. Comparison of MSE, R2, Variance, and 

Bias of the Decision Trees with Different Depth 

of the Tree 

4.4 Challenges and Future Work 

When implementing the framework on the DR 

datasets, the authors faced multiple challenges. Firstly, 

DR protocol statements were not explicitly written, 

which result in inaccuracy and difficulties when 

estimating the electricity saving potential of buildings. 

For example, when a DR protocol statement instructs the 

facility managers to shut down the AHUs in common 

areas, it is hard to quantify the saving potential since the 

quantity of involved equipment remains vague. Secondly, 

occupancy status in buildings plays an essential role 

impacting the electricity consumption, which gives 

inherent complexity in predicting the electricity 

consumption. Furthermore, occupancy data is rarely 

available in buildings, and the available occupancy data 

usually contains a large amount of noise. These situations 

lead to difficulties when estimating the electricity saving 

potential considering the uncertainty of the occupancy 

status. 

For future work, the authors plan to include more data 

to improve the performance of the framework presented 

in this study. In addition to extracting coarse building and 

equipment information from DR protocols, the authors 

intend to include Building Information Models (BIMs) to 

provide building and equipment configuration 

information to reduce the vagueness in DR protocol 

statements. Furthermore, the authors aim to collect DR 

related equipment sensor readings from building 

automation systems, which will provide much more 

details about the equipment behaviors during event times.  

5 Conclusion 

In this study, the authors presented a data-driven 

framework to estimate the electricity saving potential of 

buildings. The framework developed in this study fills 

the gap in the previous studies by providing a granular 

building-level data-driven approach to estimate the 

electricity saving potential for buildings by integrating 

various data sources containing data for DR events. By 

implementing the framework on 19 campus buildings 

that vary in type and scale, the authors demonstrated the 

capability of it in estimating the saving potential of 

buildings during DR events. The results from the case 

study indicate that the building owners and facility 

operators can benefit from the accurately determined 

saving potential by avoiding penalties and making the 

most out of the DR programs. The framework is 

extensible by integrating more equipment sensor data 

from BAS and BIM in the future to further improvement 

of the performance. 
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